51
|
Burslem GM, Crews CM. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell 2020; 181:102-114. [PMID: 31955850 PMCID: PMC7319047 DOI: 10.1016/j.cell.2019.11.031] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
New biological tools provide new techniques to probe fundamental biological processes. Here we describe the burgeoning field of proteolysis-targeting chimeras (PROTACs), which are capable of modulating protein concentrations at a post-translational level by co-opting the ubiquitin-proteasome system. We describe the PROTAC technology and its application to drug discovery and provide examples where PROTACs have enabled novel biological insights. Furthermore, we provide a workflow for PROTAC development and use and discuss the benefits and issues associated with PROTACs. Finally, we compare PROTAC-mediated protein-level modulation with other technologies, such as RNAi and genome editing.
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Departments of Chemistry and Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
52
|
Chen L, Wei Q, Bi S, Xie S. Maternal Embryonic Leucine Zipper Kinase Promotes Tumor Growth and Metastasis via Stimulating FOXM1 Signaling in Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:10. [PMID: 32047721 PMCID: PMC6997270 DOI: 10.3389/fonc.2020.00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignancy and is one of the most important cause of cancer related mortalities in the world. However, there is no clinically effective targeted therapeutic drugs for ESCC due to lack of valuable molecular therapeutic targets. In the present study, we investigated the biological function and molecular mechanisms of maternal embryonic leucine zipper kinase (MELK) in ESCC. The expression of MELK mRNA and protein was determined in cell lines and clinical samples of ESCC. MTT, focus formation and soft agar assays were carried out to measure cell proliferation and colony formation. Wound healing and transwell assays were used to assess the capacity of tumor cell migration and invasion. Nude mice models of subcutaneous tumor growth and lung metastasis were performed to examine the function of MELK in tumorigenecity and metastasis of ESCC cells. High expression of MELK was observed in ESCC cell line and human samples, especially in the metastatic tumor tissues. Moreover, overexpression of MELK promoted cell proliferation, colony formation, migration and invasion, and increased the expression and enzyme activity of MMP-2 and MMP-9 in ESCC cells. More importantly, enhanced expression of MELK greatly accelerated tumor growth and lung metastasis of ESCC cells in vivo. In contrast, knockdown of MELK by lentiviral shRNA resulted in an opposite effect both in vitro and in animal models. Mechanistically, MELK facilitated the phosphorylation of FOXM1, leading to activation of its downstream targets (PLK1, Cyclin B1, and Aurora B), and thereby promoted tumorigenesis and metastasis of ESCC cells. In conclusion, MELK enhances tumorigenesis, migration, invasion and metastasis of ESCC cells via activation of FOXM1 signaling pathway, suggesting MELK is a potential therapeutic target for ESCC patients, even those in an advanced stage.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Henan University, Kaifeng, China
| | - Qiuren Wei
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuning Bi
- School of Pharmacy, Henan University, Kaifeng, China
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
53
|
Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1. NPJ Breast Cancer 2020; 6:2. [PMID: 31909186 PMCID: PMC6941974 DOI: 10.1038/s41523-019-0143-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, and is associated with a poor prognosis due to frequent distant metastasis and lack of effective targeted therapies. Previously, we identified maternal embryonic leucine zipper kinase (MELK) to be highly expressed in TNBCs as compared with ER-positive breast cancers. Here we determined the molecular mechanism by which MELK is overexpressed in TNBCs. Analysis of publicly available data sets revealed that MELK mRNA is elevated in p53-mutant breast cancers. Consistent with this observation, MELK protein levels are higher in p53-mutant vs. p53 wild-type breast cancer cells. Furthermore, inactivation of wild-type p53, by loss or mutation of the p53 gene, increases MELK expression, whereas overexpression of wild-type p53 in p53-null cells reduces MELK promoter activity and MELK expression. We further analyzed MELK expression in breast cancer data sets and compared that with known wild-type p53 target genes. This analysis revealed that MELK expression strongly correlates with genes known to be suppressed by wild-type p53. Promoter deletion studies identified a p53-responsive region within the MELK promoter that did not map to the p53 consensus response elements, but to a region containing a FOXM1-binding site. Consistent with this result, knockdown of FOXM1 reduced MELK expression in p53-mutant TNBC cells and expression of wild-type p53 reduced FOXM1 expression. ChIP assays demonstrated that expression of wild-type p53 reduces binding of E2F1 (a critical transcription factor controlling FOXM1 expression) to the FOXM1 promoter, thereby, reducing FOXM1 expression. These results show that wild-type p53 suppresses FOXM1 expression, and thus MELK expression, through indirect mechanisms. Overall, these studies demonstrate that wild-type p53 represses MELK expression by inhibiting E2F1A-dependent transcription of FOXM1 and that mutation-driven loss of wild-type p53, which frequently occurs in TNBCs, induces MELK expression by suppressing FOXM1 expression and activity in p53-mutant breast cancers.
Collapse
|
54
|
McDonald IM, Grant GD, East MP, Gilbert TSK, Wilkerson EM, Goldfarb D, Beri J, Herring LE, Vaziri C, Cook JG, Emanuele MJ, Graves LM. Mass spectrometry-based selectivity profiling identifies a highly selective inhibitor of the kinase MELK that delays mitotic entry in cancer cells. J Biol Chem 2020; 295:2359-2374. [PMID: 31896573 DOI: 10.1074/jbc.ra119.011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.
Collapse
Affiliation(s)
- Ian M McDonald
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael P East
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Emily M Wilkerson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110; Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Joshua Beri
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Cyrus Vaziri
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Emanuele
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
55
|
Giuliano CJ, Lin A, Girish V, Sheltzer JM. Generating Single Cell-Derived Knockout Clones in Mammalian Cells with CRISPR/Cas9. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 128:e100. [PMID: 31503414 PMCID: PMC6741428 DOI: 10.1002/cpmb.100] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 technology enables the rapid generation of loss-of-function mutations in a targeted gene in mammalian cells. A single cell harboring those mutations can be used to establish a new cell line, thereby creating a CRISPR-induced knockout clone. These clonal cell lines serve as crucial tools for exploring protein function, analyzing the consequences of gene loss, and investigating the specificity of biological reagents. However, the successful derivation of knockout clones can be technically challenging and may be complicated by multiple factors, including incomplete target ablation and interclonal heterogeneity. Here, we describe optimized protocols and plasmids for generating clonal knockouts in mammalian cell lines. We provide strategies for guide RNA design, CRISPR delivery, and knockout validation that facilitate the derivation of true knockout clones and are amenable to multiplexed gene targeting. These protocols will be broadly useful for researchers seeking to apply CRISPR to study gene function in mammalian cells. © 2019 The Authors.
Collapse
Affiliation(s)
- Christopher J. Giuliano
- Cold Spring Harbor LaboratoryCold Spring HarborNew York
- Stony Brook UniversityStony BrookNew York
- Massachusetts Institute of TechnologyCambridgeMassachusetts
| | - Ann Lin
- Cold Spring Harbor LaboratoryCold Spring HarborNew York
- Stony Brook UniversityStony BrookNew York
| | - Vishruth Girish
- Cold Spring Harbor LaboratoryCold Spring HarborNew York
- Stony Brook UniversityStony BrookNew York
| | | |
Collapse
|
56
|
Rembacz KP, Zrubek KM, Golik P, Michalik K, Bogusz J, Wladyka B, Romanowska M, Dubin G. Crystal structure of Maternal Embryonic Leucine Zipper Kinase (MELK) in complex with dorsomorphin (Compound C). Arch Biochem Biophys 2019; 671:1-7. [PMID: 31108049 DOI: 10.1016/j.abb.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
Maternal Embryonic Leucine Zipper Kinase (MELK) is overexpressed in various tumors which has been convincingly linked to tumor cell survival. As such, MELK became an interesting target for pharmacological intervention. In this study we present the crystal structure of MELK in complex with dorsomorphin, an inhibitor of VEGFR and AMPK. By defining the mechanistic details of ligand recognition we identify a key residue (Cys89) at the hinge region of MELK responsible for positioning of the ligand at the catalytic pocket. This conclusion is supported by kinetic characterization of Cys89 mutants which show decreased affinity towards both ATP and dorsomorphin. The detailed binding mode of dorsomorphin characterized in this study defines a minimal requirement for MELK ligands, a valuable information for future rational design of inhibitors based on entirely new scaffolds.
Collapse
Affiliation(s)
- Krzysztof P Rembacz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karol M Zrubek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Przemyslaw Golik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | | | - Jozefina Bogusz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Benedykt Wladyka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Malgorzata Romanowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
57
|
Deng JL, Xu YH, Wang G. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis. Front Genet 2019; 10:695. [PMID: 31428132 PMCID: PMC6688090 DOI: 10.3389/fgene.2019.00695] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 01/10/2023] Open
Abstract
Background: The molecular mechanism of tumorigenesis remains to be fully understood in breast cancer. It is urgently required to identify genes that are associated with breast cancer development and prognosis and to elucidate the underlying molecular mechanisms. In the present study, we aimed to identify potential pathogenic and prognostic differentially expressed genes (DEGs) in breast adenocarcinoma through bioinformatic analysis of public datasets. Methods: Four datasets (GSE21422, GSE29431, GSE42568, and GSE61304) from Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) dataset were used for the bioinformatic analysis. DEGs were identified using LIMMA Package of R. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were conducted through FunRich. The protein-protein interaction (PPI) network of the DEGs was established through STRING (Search Tool for the Retrieval of Interacting Genes database) website, visualized by Cytoscape and further analyzed by Molecular Complex Detection (MCODE). UALCAN and Kaplan–Meier (KM) plotter were employed to analyze the expression levels and prognostic values of hub genes. The expression levels of the hub genes were also validated in clinical samples from breast cancer patients. In addition, the gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Results: In total, 203 up-regulated and 118 down-regulated DEGs were identified. Mitotic cell cycle and epithelial-to-mesenchymal transition pathway were the major enriched pathways for the up-regulated and down-regulated genes, respectively. The PPI network was constructed with 314 nodes and 1,810 interactions, and two significant modules are selected. The most significant enriched pathway in module 1 was the mitotic cell cycle. Moreover, six hub genes were selected and validated in clinical sample for further analysis owing to the high degree of connectivity, including CDK1, CCNA2, TOP2A, CCNB1, KIF11, and MELK, and they were all correlated to worse overall survival (OS) in breast cancer. Conclusion: These results revealed that mitotic cell cycle and epithelial-to-mesenchymal transition pathway could be potential pathways accounting for the progression in breast cancer, and CDK1, CCNA2, TOP2A, CCNB1, KIF11, and MELK may be potential crucial genes. Further, it could be utilized as new biomarkers for prognosis and potential new targets for drug synthesis of breast cancer.
Collapse
Affiliation(s)
- Jun-Li Deng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yun-Hua Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
58
|
Trevino V. Integrative genomic analysis identifies associations of molecular alterations to APOBEC and BRCA1/2 mutational signatures in breast cancer. Mol Genet Genomic Med 2019; 7:e810. [PMID: 31294536 PMCID: PMC6687632 DOI: 10.1002/mgg3.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The observed mutations in cancer are the result of ~30 mutational processes, which stamp particular mutational signatures (MS). Nevertheless, it is still not clear which genomic alterations correlate to several MS. Here, a method to analyze associations of genomic data with MS is presented and applied to The Cancer Genome Atlas breast cancer data revealing promising associations. METHODS The MS were discretized into clusters whose extremes were statistically associated with mutations, copy number, and gene expression data. RESULTS Known associations for apolipoprotein B editing complex (APOBEC) and for BRCA1 and BRCA2 support the proposal. For BRCA1/2, mutations in ARAP3, three focal deletions, and one amplification were detected. Around 50 mutated genes for the two APOBEC signatures were identified including three kinesins (KIF13A, KIF1B, KIF4A), three ubiquitins (USP45, UBR4, UBR1), and two demethylases (KDM5B, KDM5C) among other genes also connected to DNA damage pathways. The results suggest novel roles for other genes currently not involved in DNA repair. The altered expression program was very high for the BRCA1/2 signature, high for APOBEC signature 13 clearly associated to immune response, and low for APOBEC signature 2. The remaining signatures show scarce associations. CONCLUSION Specific genetic alterations can be associated with particular MS.
Collapse
Affiliation(s)
- Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, México
| |
Collapse
|
59
|
Weissmiller AM, Wang J, Lorey SL, Howard GC, Martinez E, Liu Q, Tansey WP. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun 2019; 10:2014. [PMID: 31043611 PMCID: PMC6494882 DOI: 10.1038/s41467-019-10022-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.
Collapse
Affiliation(s)
- April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
60
|
Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol 2019; 50:111-119. [PMID: 31004963 DOI: 10.1016/j.cbpa.2019.02.022] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/26/2022]
Abstract
Targeted protein degradation using Proteolysis Targeting Chimeras (PROTACs) has emerged as a novel therapeutic modality in drug discovery. PROTACs mediate the degradation of select proteins of interest (POIs) by hijacking the activity of E3 ubiquitin ligases for POI ubiquitination and subsequent degradation by the 26S proteasome. This hijacking mechanism has been used to degrade various types of disease-relevant POIs. In this review, we aim to highlight the recent advances in targeted protein degradation and describe the challenges that need to be addressed in order to efficiently develop potent PROTACs.
Collapse
|
61
|
Mayor-Ruiz C, Winter GE. Identification and characterization of cancer vulnerabilities via targeted protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:81-90. [PMID: 31200863 DOI: 10.1016/j.ddtec.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Target(ed) protein degradation (TPD) is a novel paradigm in drug discovery and a promising therapeutic strategy. TPD is based on small-molecules that catalyze the degradation of proteins by re-directing the ubiquitination activity of ubiquitin E3 ligases. Its unique molecular pharmacology enables robust, selective and fast elimination of proteins in cellular assays and in vivo. In addition to possible clinical applications, TPD is also emerging as an attractive alternative to traditional pharmacologic or genetic perturbation strategies. Directly acting degraders, as well as chemical-genetics derivatives offer unique opportunities in the pre-clinical identification, characterization and mechanistic validation of therapeutic targets.
Collapse
Affiliation(s)
- Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna, 1090, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna, 1090, Austria.
| |
Collapse
|
62
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
63
|
Sun Y, Ma L. New Insights into Long Non-Coding RNA MALAT1 in Cancer and Metastasis. Cancers (Basel) 2019; 11:cancers11020216. [PMID: 30781877 PMCID: PMC6406606 DOI: 10.3390/cancers11020216] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved among mammalian species, and based on in vitro results, has been reported to regulate alternative pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow normally, and do not show alterations in alternative splicing. While MALAT1 was originally described as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role described for MALAT1 is dependent on the cancer types and the experimental model systems. Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1 have been observed, which led to distinct models for MALAT1's functions and mechanisms of action in cancer and metastasis. In this review, we reflect on different experimental strategies used to study MALAT1's functions, and discuss the current mechanistic models of this highly abundant and conserved lncRNA.
Collapse
Affiliation(s)
- Yutong Sun
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
64
|
Boutard N, Sabiniarz A, Czerwińska K, Jarosz M, Cierpich A, Kolasińska E, Wiklik K, Gluza K, Commandeur C, Buda A, Stasiowska A, Bobowska A, Galek M, Fabritius CH, Bugaj M, Palacz E, Mazan A, Zarębski A, Krawczyńska K, Żurawska M, Zawadzki P, Milik M, Węgrzyn P, Dobrzańska M, Brzózka K, Kowalczyk P. 5-Keto-3-cyano-2,4-diaminothiophenes as selective maternal embryonic leucine zipper kinase inhibitors. Bioorg Med Chem Lett 2018; 29:607-613. [PMID: 30626559 DOI: 10.1016/j.bmcl.2018.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/06/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is involved in several key cellular processes and displays increased levels of expression in numerous cancer classes (colon, breast, brain, ovary, prostate and lung). Although no selective MELK inhibitors have yet been approved, increasing evidence suggest that inhibition of MELK would constitute a promising approach for cancer therapy. A weak high-throughput screening hit (17, IC50 ≈ 5 μM) with lead-like properties was optimized for MELK inhibition. The early identification of a plausible binding mode by molecular modeling offered guidance in the choice of modifications towards compound 52 which displayed a 98 nM IC50. A good selectivity profile was achieved for a representative member of the series (29) in a 486 protein kinase panel. Future elaboration of 52 has the potential to deliver compounds for further development with chemotherapeutic aims.
Collapse
Affiliation(s)
| | | | | | | | - Anna Cierpich
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | | | | | - Anna Buda
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | - Mariusz Galek
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | - Marta Bugaj
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | - Edyta Palacz
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | - Andrzej Mazan
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | | | | | - Mariusz Milik
- Selvita S.A, Bobrzyńskiego, 14, 30-338 Kraków, Poland
| | | | | | | | | |
Collapse
|
65
|
Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, Lee H, Zhou Z, Gan B, Nakagawa S, Ellis MJ, Liang H, Hung MC, You MJ, Sun Y, Ma L. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet 2018; 50:1705-1715. [PMID: 30349115 PMCID: PMC6265076 DOI: 10.1038/s41588-018-0252-3] [Citation(s) in RCA: 520] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
MALAT1 has previously been described as a metastasis-promoting long noncoding RNA (lncRNA). We show here, however, that targeted inactivation of the Malat1 gene in a transgenic mouse model of breast cancer, without altering the expression of its adjacent genes, promotes lung metastasis, and that this phenotype can be reversed by genetic add-back of Malat1. Similarly, knockout of MALAT1 in human breast cancer cells induces their metastatic ability, which is reversed by re-expression of Malat1. Conversely, overexpression of Malat1 suppresses breast cancer metastasis in transgenic, xenograft, and syngeneic models. Mechanistically, the MALAT1 lncRNA binds and inactivates the prometastatic transcription factor TEAD, preventing TEAD from associating with its co-activator YAP and target gene promoters. Moreover, MALAT1 levels inversely correlate with breast cancer progression and metastatic ability. These findings demonstrate that MALAT1 is a metastasis-suppressing lncRNA rather than a metastasis promoter in breast cancer, calling for rectification of the model for this highly abundant and conserved lncRNA.
Collapse
Affiliation(s)
- Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai-Long Piao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenbo Han
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenna Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ashley N Siverly
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah E Lawhon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Baochau N Ton
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhicheng Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
66
|
Wang Y, Li BB, Li J, Roberts TM, Zhao JJ. A Conditional Dependency on MELK for the Proliferation of Triple-Negative Breast Cancer Cells. iScience 2018; 9:149-160. [PMID: 30391850 PMCID: PMC6215964 DOI: 10.1016/j.isci.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/05/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
The role of maternal and embryonic leucine zipper kinase (MELK) in cancer cell proliferation has been contentious, with recent studies arriving at disparate conclusions. We investigated the in vitro dependency of cancer cells on MELK under a range of assay conditions. Abrogation of MELK expression has little effect under common culture conditions, in which cells are seeded at high densities and reach confluence in 3-5 days. However, MELK dependency becomes clearly apparent in clonogenic growth assays using either RNAi or CRISPR technologies to modulate MELK expression. This dependency is in sharp contrast to that of essential genes, such as those encoding classic mitotic kinases, but is similar to that of other oncogenes including MYC and KRAS. Our study provides an example demonstrating some of the challenges encountered in cancer target validation, and reveals how subtle, but important, technical variations can ultimately lead to divergent outcomes and conclusions.
Collapse
Affiliation(s)
- Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ben B Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jing Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
67
|
Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 2018; 284:91-101. [DOI: 10.1016/j.jbiotec.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
|
68
|
Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, Gionfriddo I, Mezzasoma F, Milano F, Nabet B, Buckley DL, Kornblau SM, Lin CY, Sportoletti P, Martelli MP, Falini B, Goodell MA. Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell 2018; 34:499-512.e9. [PMID: 30205049 PMCID: PMC6159911 DOI: 10.1016/j.ccell.2018.08.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023]
Abstract
NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.
Collapse
MESH Headings
- Aged
- Animals
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Down-Regulation
- Female
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Hydrazines/pharmacology
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Proteolysis
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Triazoles/pharmacology
- Xenograft Model Antitumor Assays
- Exportin 1 Protein
Collapse
Affiliation(s)
- Lorenzo Brunetti
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Michael C Gundry
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniele Sorcini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Anna G Guzman
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yung-Hsin Huang
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raghav Ramabadran
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilaria Gionfriddo
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Federica Mezzasoma
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Francesca Milano
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis L Buckley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven M Kornblau
- Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Maria Paola Martelli
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Brunangelo Falini
- Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06132 Perugia, Italy
| | - Margaret A Goodell
- Stem Cell and Regenerative Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Texas Children's Hospital and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
69
|
Inhibition of maternal embryonic leucine zipper kinase with OTSSP167 displays potent anti-leukemic effects in chronic lymphocytic leukemia. Oncogene 2018; 37:5520-5533. [PMID: 29895969 DOI: 10.1038/s41388-018-0333-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 11/08/2022]
Abstract
TP53 pathway defects contributed to therapy resistance and adverse clinical outcome in chronic lymphocytic leukemia (CLL), which represents an unmet clinical need with few therapeutic options. Maternal embryonic leucine zipper kinase (MELK) is a novel oncogene, which plays crucial roles in mitotic progression and stem cell maintenance. OTSSP167, an orally administrated inhibitor targeting MELK, is currently in a phase I/II clinical trial in patients with advanced breast cancer and acute myeloid leukemia. Yet, no investigation has been elucidated to date regarding the oncogenic role of MELK and effects of OTSSP167 in chronic lymphocytic leukemia (CLL). Previous studies confirmed MELK inhibition abrogated cancer cell survival via p53 signaling pathway. Thus, we aimed to determine the biological function of MELK and therapeutic potential of OTSSP167 in CLL. Herein, MELK over-expression was observed in CLL cells, and correlated with higher WBC count, advanced stage, elevated LDH, increased β2-MG level, unmutated IGHV, positive ZAP-70, deletion of 17p13 and inferior prognosis of CLL patients. In accordance with functional enrichment analyses in gene expression profiling, CLL cells with depletion or inhibition of MELK exhibited impaired cell proliferation, enhanced fast-onset apoptosis, induced G2/M arrest, attenuated cell chemotaxis and promoted sensitivity to fludarabine and ibrutinib. However, gain-of-function assay showed increased cell proliferation and cell chemotaxis. In addition, OTSSP167 treatment reduced phosphorylation of AKT and ERK1/2. It decreased FoxM1 phosphorylation, expression of FoxM1, cyclin B1 and CDK1, while up-regulating p53 and p21 expression. Taken together, MELK served as a candidate of therapeutic target in CLL. OTSSP167 exhibits potent anti-tumor activities in CLL cells, highlighting a novel molecule-based strategy for leukemic interventions.
Collapse
|
70
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
71
|
The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 2018; 14:431-441. [PMID: 29581585 DOI: 10.1038/s41589-018-0021-8] [Citation(s) in RCA: 582] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/02/2018] [Indexed: 01/19/2023]
Abstract
Dissection of complex biological systems requires target-specific control of the function or abundance of proteins. Genetic perturbations are limited by off-target effects, multicomponent complexity, and irreversibility. Most limiting is the requisite delay between modulation to experimental measurement. To enable the immediate and selective control of single protein abundance, we created a chemical biology system that leverages the potency of cell-permeable heterobifunctional degraders. The dTAG system pairs a novel degrader of FKBP12F36V with expression of FKBP12F36V in-frame with a protein of interest. By transgene expression or CRISPR-mediated locus-specific knock-in, we exemplify a generalizable strategy to study the immediate consequence of protein loss. Using dTAG, we observe an unexpected superior antiproliferative effect of pan-BET bromodomain degradation over selective BRD4 degradation, characterize immediate effects of KRASG12V loss on proteomic signaling, and demonstrate rapid degradation in vivo. This technology platform will confer kinetic resolution to biological investigation and provide target validation in the context of drug discovery.
Collapse
|
72
|
Wang Y, Li YM, Baitsch L, Huang A, Xiang Y, Tong H, Lako A, Von T, Choi C, Lim E, Min J, Li L, Stegmeier F, Schlegel R, Eck MJ, Gray NS, Mitchison TJ, Zhao JJ. Correction: MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. eLife 2018. [PMID: 29528283 PMCID: PMC5847332 DOI: 10.7554/elife.36414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
73
|
Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tõnisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B. The target landscape of clinical kinase drugs. Science 2018; 358:358/6367/eaan4368. [PMID: 29191878 DOI: 10.1126/science.aan4368] [Citation(s) in RCA: 520] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Collapse
Affiliation(s)
- Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Harald Polzer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany
| | | | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Svenja Petzoldt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chen Meng
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Reiter
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Huichao Qiao
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Dominic Helm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Heiner Koch
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Schoof
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | - Elena Casale
- Oncology, Nerviano Medical Sciences Srl, Milan, Italy
| | | | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | | | | | - Anne-Kathrin Garz
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Bjoern-Oliver Gohlke
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Structural Bioinformatics Group, Charité-Universitätsmedizin, Berlin, Germany
| | - Daniel Paul Zolg
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Gian Kayser
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tonu Vooder
- Center of Thoracic Surgery, Krefeld, Germany.,Estonian Genome Center, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Robert Preissner
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Structural Bioinformatics Group, Charité-Universitätsmedizin, Berlin, Germany
| | - Hannes Hahne
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Neeme Tõnisson
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Karl Kramer
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Katharina Götze
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | | | | | | | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philipp A Greif
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Sabine Schneider
- Department of Chemistry, TUM, Garching, Germany.,Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | | | - Juergen Ruland
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institut für Klinische Chemie und Pathobiochemie, TUM, Munich, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany.,Department of Pediatrics, Dr von Hauner Children's Hospital, LMU, Munich, Germany
| | - Karsten Spiekermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center For Integrated Protein Science Munich (CIPSM), Munich, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany
| |
Collapse
|
74
|
Jurmeister S, Ramos-Montoya A, Sandi C, Pértega-Gomes N, Wadhwa K, Lamb AD, Dunning MJ, Attig J, Carroll JS, Fryer LG, Felisbino SL, Neal DE. Identification of potential therapeutic targets in prostate cancer through a cross-species approach. EMBO Mol Med 2018; 10:e8274. [PMID: 29437778 PMCID: PMC5840539 DOI: 10.15252/emmm.201708274] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 01/01/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence.
Collapse
Affiliation(s)
- Sarah Jurmeister
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | | | - Chiranjeevi Sandi
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - Nelma Pértega-Gomes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Karan Wadhwa
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - Alastair D Lamb
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Department of Urology, University of Cambridge, Cambridge, UK
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Mark J Dunning
- Bioinformatics Core Facility, CRUK Cambridge Institute, Cambridge, UK
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lee Gd Fryer
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - Sérgio L Felisbino
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - David E Neal
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Department of Urology, University of Cambridge, Cambridge, UK
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
75
|
Giuliano CJ, Lin A, Smith JC, Palladino AC, Sheltzer JM. MELK expression correlates with tumor mitotic activity but is not required for cancer growth. eLife 2018; 7:32838. [PMID: 29417930 PMCID: PMC5805410 DOI: 10.7554/elife.32838] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies.
Collapse
Affiliation(s)
| | - Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Ann C Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
76
|
Settleman J, Sawyers CL, Hunter T. Challenges in validating candidate therapeutic targets in cancer. eLife 2018; 7:e32402. [PMID: 29417929 PMCID: PMC5805407 DOI: 10.7554/elife.32402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 12/18/2022] Open
Abstract
More than 30 published articles have suggested that a protein kinase called MELK is an attractive therapeutic target in human cancer, but three recent reports describe compelling evidence that it is not. These reports highlight the caveats associated with some of the research tools that are commonly used to validate candidate therapeutic targets in cancer research.
Collapse
Affiliation(s)
| | | | - Tony Hunter
- Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
77
|
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL, Guo YE, Hnisz D, Jaenisch R, Bradner JE, Gray NS, Young RA. YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Cell 2017; 171:1573-1588.e28. [PMID: 29224777 DOI: 10.1016/j.cell.2017.11.008] [Citation(s) in RCA: 613] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/08/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not employ this structural protein. Here, we show that the ubiquitously expressed transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements and forms dimers that facilitate the interaction of these DNA elements. Deletion of YY1 binding sites or depletion of YY1 protein disrupts enhancer-promoter looping and gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control.
Collapse
Affiliation(s)
- Abraham S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alla A Sigova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Daniel S Day
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Behnam Nabet
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dennis L Buckley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yang Eric Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
78
|
Wu S, Chen X, Hu C, Wang J, Shen Y, Zhong Z. Up-Regulated Maternal Embryonic Leucine Zipper Kinase Predicts Poor Prognosis of Hepatocellular Carcinoma Patients in a Chinese Han Population. Med Sci Monit 2017; 23:5705-5713. [PMID: 29192136 PMCID: PMC5721591 DOI: 10.12659/msm.907600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Maternal embryonic leucine zipper kinase (MELK) has been implicated in various types of tumors, but its expression profile and clinicopathologic significance in hepatocellular carcinoma (HCC) in Chinese Han people remains unknown. Therefore, this study attempted to investigate the expression pattern of MELK in HCC tissues obtained from a Chinese Han population. MATERIAL AND METHODS The expression of MELK, from RNA to protein levels, in HCC or disease-free human liver tissues was evaluated using quantitative real-time polymerase chain reaction assays and immunohistochemistry staining, and its prognostic significance was determined based on its impact on HCC patients' survival. RESULTS We found that HCC tissues expressed a higher level of MELK RNA than non-tumor tissues in tumor-related public databases (P<0.001). Hence, we assessed MELK mRNA expression within 32 HCC samples and their adjacent non-tumorous liver tissues in our center. Subsequently, MELK protein expression was evaluated within 101 HCC specimens and 40 disease-free liver tissues. Notably, it revealed that high MELK protein expression was significantly related with tumor number, tumor size, higher pathological tumor-nodule-metastasis stage, vascular invasion, and recurrence (P<0.05, all). Furthermore, elevated MELK protein expression was correlated with decreased overall survival and disease-free survival (P=0.004 and P=0.002, respectively). Univariate and multivariate analysis results show that MELK protein may serve as an independent prognostic indicator for determining prognosis of HCC patients. CONCLUSIONS We found that, in a Chinese Han population, MELK was highly expressed within HCC tissues from RNA to protein levels, and may be a potential independent prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Shaohan Wu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Xujian Chen
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Chundong Hu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Jing Wang
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Yiyu Shen
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| | - Zhengxiang Zhong
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China (mainland)
| |
Collapse
|