51
|
Tiwari VP, Pandit S, Vallurupalli P. Exchangeable deuterons introduce artifacts in amide 15N CEST experiments used to study protein conformational exchange. JOURNAL OF BIOMOLECULAR NMR 2019; 73:43-48. [PMID: 30661150 DOI: 10.1007/s10858-018-00223-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Protein molecules sample different conformations in solution and characterizing these conformations is crucial to understanding protein function. 15N CEST experiments are now routinely used to study slow conformational exchange of protein molecules between a 'visible' major state and 'invisible' minor states. These experiments have also been adapted to measure the solvent exchange rates of amide protons by exploiting the one bond deuterium isotope effect on the amide 15N chemical shifts. However at moderately high temperatures (~ 50 °C) that are sometimes required to populate protein minor conformers to levels (~ 1%) that can be detected by CEST experiments solvent H/D exchange can lead to 'dips' in low B115N CEST profiles that can be wrongly assigned to the conformational exchange process being characterized. This is demonstrated in the case of ~ 18 kDa T4 Lysozyme (T4L) at 50 °C and the ~ 11 kDa E. coli hibernation promoting factor (HPF) at 52 °C. This problem is trivially solved by eliminating the exchangeable deuterons in the solvent by using either an external D2O lock or by using a small amount (~ 1-3%) of a molecule like d6-DMSO that does not contain exchangeable deuterons to lock the spectrometer.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Subhendu Pandit
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
52
|
Whitesell L, Robbins N, Huang DS, McLellan CA, Shekhar-Guturja T, LeBlanc EV, Nation CS, Hui R, Hutchinson A, Collins C, Chatterjee S, Trilles R, Xie JL, Krysan DJ, Lindquist S, Porco JA, Tatu U, Brown LE, Pizarro J, Cowen LE. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 2019; 10:402. [PMID: 30679438 PMCID: PMC6345968 DOI: 10.1038/s41467-018-08248-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
New strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals. Seeking a route to species-selectivity, we investigate the nucleotide-binding domain (NBD) of Hsp90 from the most common human fungal pathogen, Candida albicans. Here we report structures for this NBD alone, in complex with ADP or in complex with known Hsp90 inhibitors. Encouraged by the conformational flexibility revealed by these structures, we synthesize an inhibitor with >25-fold binding-selectivity for fungal Hsp90 NBD. Comparing co-crystals occupied by this probe vs. anticancer Hsp90 inhibitors revealed major, previously unreported conformational rearrangements. These insights and our probe's species-selectivity in culture support the feasibility of targeting Hsp90 as a promising antifungal strategy.
Collapse
Affiliation(s)
- Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - David S Huang
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | | | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Catherine S Nation
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Sharanya Chatterjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Richard Trilles
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Lauren E Brown
- Department of Chemistry, Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Juan Pizarro
- Department of Tropical Medicine, School of Public Health and Tropical Medicine and Vector-Borne Infectious Disease Research Center, Tulane University, New Orleans, LA, 70112, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
53
|
Mayer MP, Gierasch LM. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 2018; 294:2085-2097. [PMID: 30455352 DOI: 10.1074/jbc.rev118.002810] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hsp70 chaperones are central hubs of the protein quality control network and collaborate with co-chaperones having a J-domain (an ∼70-residue-long helical hairpin with a flexible loop and a conserved His-Pro-Asp motif required for ATP hydrolysis by Hsp70s) and also with nucleotide exchange factors to facilitate many protein-folding processes that (re)establish protein homeostasis. The Hsp70s are highly dynamic nanomachines that modulate the conformation of their substrate polypeptides by transiently binding to short, mostly hydrophobic stretches. This interaction is regulated by an intricate allosteric mechanism. The J-domain co-chaperones target Hsp70 to their polypeptide substrates, and the nucleotide exchange factors regulate the lifetime of the Hsp70-substrate complexes. Significant advances in recent years are beginning to unravel the molecular mechanism of this chaperone machine and how they treat their substrate proteins.
Collapse
Affiliation(s)
- Matthias P Mayer
- From the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany and
| | - Lila M Gierasch
- the Departments of Biochemistry and Molecular Biology and.,Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
54
|
Boswell ZK, Latham MP. Methyl-Based NMR Spectroscopy Methods for Uncovering Structural Dynamics in Large Proteins and Protein Complexes. Biochemistry 2018; 58:144-155. [PMID: 30336000 DOI: 10.1021/acs.biochem.8b00953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NMR spectroscopy is particularly adept at site-specifically monitoring dynamic processes in proteins, such as protein folding, domain movements, ligand binding, and side-chain rotations. By coupling the favorable spectroscopic properties of highly dynamic side-chain methyl groups with transverse-relaxation-optimized spectroscopy (TROSY), it is now possible to routinely study such dynamic processes in high-molecular-weight proteins and complexes approaching 1 MDa. In this Perspective, we describe many elegant methyl-based NMR experiments that probe slow (second) to fast (picosecond) dynamics in large systems. To demonstrate the power of these methods, we also provide interesting examples of studies that utilized each methyl-based NMR technique to uncover functionally important dynamics. In many cases, the NMR experiments are paired with site-directed mutagenesis and/or other biochemical assays to put the dynamics and function into context. Our vision of the future of structural biology involves pairing methyl-based NMR spectroscopy with biochemical studies to advance our knowledge of the motions large proteins and macromolecular complexes use to choreograph complex functions. Such studies will be essential in elucidating the critical structural dynamics that underlie function and characterizing alterations in these processes that can lead to human disease.
Collapse
Affiliation(s)
- Zachary K Boswell
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79423 , United States
| | - Michael P Latham
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79423 , United States
| |
Collapse
|
55
|
Yuwen T, Bah A, Brady JP, Ferrage F, Bouvignies G, Kay LE. Measuring Solvent Hydrogen Exchange Rates by Multifrequency Excitation 15N CEST: Application to Protein Phase Separation. J Phys Chem B 2018; 122:11206-11217. [DOI: 10.1021/acs.jpcb.8b06820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alaji Bah
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lewis E. Kay
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
56
|
Cochaperones enable Hsp70 to use ATP energy to stabilize native proteins out of the folding equilibrium. Sci Rep 2018; 8:13213. [PMID: 30181618 PMCID: PMC6123477 DOI: 10.1038/s41598-018-31641-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
The heat shock protein 70 (Hsp70) chaperones, vital to the proper folding of proteins inside cells, consume ATP and require cochaperones in assisting protein folding. It is unclear whether Hsp70 can utilize the free energy from ATP hydrolysis to fold a protein into a native state that is thermodynamically unstable in the chaperone-free equilibrium. Here I present a model of Hsp70-mediated protein folding, which predicts that Hsp70, as a result of differential stimulation of ATP hydrolysis by its Hsp40 cochaperone, dissociates faster from a substrate in fold-competent conformations than from one in misfolding-prone conformations, thus elevating the native concentration above and suppressing the misfolded concentration below their respective equilibrium values. Previous models would not make or imply these predictions, which are experimentally testable. My model quantitatively reproduces experimental refolding kinetics, predicts how modulations of the Hsp70/Hsp40 chaperone system affect protein folding, and suggests new approaches to regulating cellular protein quality.
Collapse
|
58
|
de Paula VS, Valente AP. A Dynamic Overview of Antimicrobial Peptides and Their Complexes. Molecules 2018; 23:molecules23082040. [PMID: 30111717 PMCID: PMC6222744 DOI: 10.3390/molecules23082040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
In this narrative review, we comprehensively review the available information about the recognition, structure, and dynamics of antimicrobial peptides (AMPs). Their complex behaviors occur across a wide range of time scales and have been challenging to portray. Recent advances in nuclear magnetic resonance and molecular dynamics simulations have revealed the importance of the molecular plasticity of AMPs and their abilities to recognize targets. We also highlight experimental data obtained using nuclear magnetic resonance methodologies, showing that conformational selection is a major mechanism of target interaction in AMP families.
Collapse
Affiliation(s)
- Viviane Silva de Paula
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Ana Paula Valente
- Centro de Biologia Estrutural e Bioimagem, Instituto de Bioquímica Médica, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
59
|
Capturing dynamic conformational shifts in protein–ligand recognition using integrative structural biology in solution. Emerg Top Life Sci 2018; 2:107-119. [DOI: 10.1042/etls20170090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/17/2022]
Abstract
In recent years, a dynamic view of the structure and function of biological macromolecules is emerging, highlighting an essential role of dynamic conformational equilibria to understand molecular mechanisms of biological functions. The structure of a biomolecule, i.e. protein or nucleic acid in solution, is often best described as a dynamic ensemble of conformations, rather than a single structural state. Strikingly, the molecular interactions and functions of the biological macromolecule can then involve a shift between conformations that pre-exist in such an ensemble. Upon external cues, such population shifts of pre-existing conformations allow gradually relaying the signal to the downstream biological events. An inherent feature of this principle is conformational dynamics, where intrinsically disordered regions often play important roles to modulate the conformational ensemble. Unequivocally, solution-state NMR spectroscopy is a powerful technique to study the structure and dynamics of such biomolecules in solution. NMR is increasingly combined with complementary techniques, including fluorescence spectroscopy and small angle scattering. The combination of these techniques provides complementary information about the conformation and dynamics in solution and thus affords a comprehensive description of biomolecular functions and regulations. Here, we illustrate how an integrated approach combining complementary techniques can assess the structure and dynamics of proteins and protein complexes in solution.
Collapse
|