51
|
Veling MT, Nguyen DT, Thadani NN, Oster ME, Rollins NJ, Brock KP, Bethel NP, Lim S, Baker D, Way JC, Marks DS, Chang RL, Silver PA. Natural and Designed Proteins Inspired by Extremotolerant Organisms Can Form Condensates and Attenuate Apoptosis in Human Cells. ACS Synth Biol 2022; 11:1292-1302. [PMID: 35176859 DOI: 10.1021/acssynbio.1c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically induced apoptosis. We show that several proteins from tardigrades, nematodes, and the Chinese giant salamander are apoptosis-protective. Notably, we identify a region of the human ApoE protein with similarity to extremotolerance-associated proteins that also protects against apoptosis. This region mirrors the phase separation behavior seen with such proteins, like the tardigrade protein CAHS2. Moreover, we identify a synthetic protein, DHR81, that shares this combination of elevated phase separation propensity and apoptosis protection. Finally, we demonstrate that driving protective proteins into the condensate state increases apoptosis protection, and highlights the ability of DHR81 condensates to sequester caspase-7. Taken together, this work draws a link between extremotolerance-associated proteins, condensate formation, and designing human cellular protection.
Collapse
Affiliation(s)
- Mike T. Veling
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Dan T. Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Nicole N. Thadani
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michela E. Oster
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Nathan J. Rollins
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Neville P. Bethel
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jeffrey C. Way
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Roger L. Chang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
52
|
Wilkinson E, Cui YH, He YY. Roles of RNA Modifications in Diverse Cellular Functions. Front Cell Dev Biol 2022; 10:828683. [PMID: 35350378 PMCID: PMC8957929 DOI: 10.3389/fcell.2022.828683] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Chemical modifications of RNA molecules regulate both RNA metabolism and fate. The deposition and function of these modifications are mediated by the actions of writer, reader, and eraser proteins. At the cellular level, RNA modifications regulate several cellular processes including cell death, proliferation, senescence, differentiation, migration, metabolism, autophagy, the DNA damage response, and liquid-liquid phase separation. Emerging evidence demonstrates that RNA modifications play active roles in the physiology and etiology of multiple diseases due to their pervasive roles in cellular functions. Here, we will summarize recent advances in the regulatory and functional role of RNA modifications in these cellular functions, emphasizing the context-specific roles of RNA modifications in mammalian systems. As m6A is the best studied RNA modification in biological processes, this review will summarize the emerging advances on the diverse roles of m6A in cellular functions. In addition, we will also provide an overview for the cellular functions of other RNA modifications, including m5C and m1A. Furthermore, we will also discuss the roles of RNA modifications within the context of disease etiologies and highlight recent advances in the development of therapeutics that target RNA modifications. Elucidating these context-specific functions will increase our understanding of how these modifications become dysregulated during disease pathogenesis and may provide new opportunities for improving disease prevention and therapy by targeting these pathways.
Collapse
Affiliation(s)
- Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, United States
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
53
|
Yerramilli VS, Ross AH, Scarlata S, Gericke A. IQGAP1 scaffolding links phosphoinositide kinases to cytoskeletal reorganization. Biophys J 2022; 121:793-807. [PMID: 35077666 PMCID: PMC8943696 DOI: 10.1016/j.bpj.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022] Open
Abstract
IQGAP1 is a multidomain scaffold protein that coordinates the direction and impact of multiple signaling pathways by scaffolding its various binding partners. However, the spatial and temporal resolution of IQGAP1 scaffolding remains unclear. Here, we use fluorescence imaging and correlation methods that allow for real-time live-cell changes in IQGAP1 localization and complex formation during signaling. We find that IQGAP1 and PIPKIγ interact on both the plasma membrane and in cytosol. Epidermal growth factor (EGF) stimulation, which can initiate cytoskeletal changes, drives the movement of the cytosolic pool toward the plasma membrane to promote cytoskeletal changes. We also observe that a significant population of cytosolic IQGAP1-PIPKIγ complexes localize to early endosomes, and in some instances form aggregated clusters which become highly mobile upon EGF stimulation. Our imaging studies show that PIPKIγ and PI3K bind simultaneously to IQGAP1, which may accelerate conversion of PI4P to PI(3,4,5)P3 that is required for cytoskeletal changes. Additionally, we find that IQGAP1 is responsible for PIPKIγ association with two proteins associated with cytoskeletal changes, talin and Cdc42, during EGF stimulation. These results directly show that IQGAP1 provides a physical link between phosphoinositides (through PIPKIγ), focal adhesion formation (through talin), and cytoskeletal reorganization (through Cdc42) upon EGF stimulation. Taken together, our results support the importance of IQGAP1 in regulating cell migration by linking phosphoinositide lipid signaling with cytoskeletal reorganization.
Collapse
Affiliation(s)
- V. Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Alonzo H. Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
54
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
55
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
56
|
Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021; 281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.
Collapse
Affiliation(s)
- Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
57
|
Suzuki HI, Onimaru K. Biomolecular condensates in cancer biology. Cancer Sci 2021; 113:382-391. [PMID: 34865286 PMCID: PMC8819300 DOI: 10.1111/cas.15232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the characteristics of cancer cells is essential for the development of improved diagnosis and therapeutics. From a gene regulation perspective, the super‐enhancer concept has been introduced to systematically understand the molecular mechanisms underlying the identities of various cell types and has been extended to the analysis of cancer cells and cancer genome alterations. In addition, several characteristic features of super‐enhancers have led to the recognition of the link between gene regulation and biomolecular condensates, which is often mediated by liquid‐liquid phase separation. Several lines of evidence have suggested molecular and biophysical principles and their alterations in cancer cells, which are particularly associated with gene regulation and cell signaling (“ transcriptional” and “signaling” condensates). These findings collectively suggest that the modification of biomolecular condensates represents an important mechanism by which cancer cells acquire various cancer hallmark traits and establish functional innovation for cancer initiation and progression. The condensate model also provides the molecular basis of the vulnerability of cancer cells to transcriptional perturbation and further suggests the possibility of therapeutic targeting of condensates. This review summarizes recent findings regarding the relationships between super‐enhancers and biomolecular condensate models, multiple scenarios of condensate alterations in cancers, and the potential of the condensate model for therapeutic development.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Koh Onimaru
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| |
Collapse
|
58
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
59
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
60
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
61
|
Hidalgo P, Pimentel A, Mojica-Santamaría D, von Stromberg K, Hofmann-Sieber H, Lona-Arrona C, Dobner T, González RA. Evidence That the Adenovirus Single-Stranded DNA Binding Protein Mediates the Assembly of Biomolecular Condensates to Form Viral Replication Compartments. Viruses 2021; 13:1778. [PMID: 34578359 PMCID: PMC8473285 DOI: 10.3390/v13091778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
A common viral replication strategy is characterized by the assembly of intracellular compartments that concentrate factors needed for viral replication and simultaneously conceal the viral genome from host-defense mechanisms. Recently, various membrane-less virus-induced compartments and cellular organelles have been shown to represent biomolecular condensates (BMCs) that assemble through liquid-liquid phase separation (LLPS). In the present work, we analyze biophysical properties of intranuclear replication compartments (RCs) induced during human adenovirus (HAdV) infection. The viral ssDNA-binding protein (DBP) is a major component of RCs that contains intrinsically disordered and low complexity proline-rich regions, features shared with proteins that drive phase transitions. Using fluorescence recovery after photobleaching (FRAP) and time-lapse studies in living HAdV-infected cells, we show that DBP-positive RCs display properties of liquid BMCs, which can fuse and divide, and eventually form an intranuclear mesh with less fluid-like features. Moreover, the transient expression of DBP recapitulates the assembly and liquid-like properties of RCs in HAdV-infected cells. These results are of relevance as they indicate that DBP may be a scaffold protein for the assembly of HAdV-RCs and should contribute to future studies on the role of BMCs in virus-host cell interactions.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.M.-S.); (C.L.-A.)
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (K.v.S.); (H.H.-S.); (T.D.)
| | - Arturo Pimentel
- Laboratorio Nacional de Microscopía Avanzada (LNMA), Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Mexico;
| | - Diana Mojica-Santamaría
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.M.-S.); (C.L.-A.)
| | - Konstantin von Stromberg
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (K.v.S.); (H.H.-S.); (T.D.)
| | - Helga Hofmann-Sieber
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (K.v.S.); (H.H.-S.); (T.D.)
| | - Christian Lona-Arrona
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.M.-S.); (C.L.-A.)
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Thomas Dobner
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (K.v.S.); (H.H.-S.); (T.D.)
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.M.-S.); (C.L.-A.)
| |
Collapse
|
62
|
|
63
|
Feric M, Misteli T. Phase separation in genome organization across evolution. Trends Cell Biol 2021; 31:671-685. [PMID: 33771451 PMCID: PMC8286288 DOI: 10.1016/j.tcb.2021.03.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Phase separation is emerging as a paradigm to explain the self-assembly and organization of membraneless bodies in the cell. Recent advances show that this principle also extends to nucleoprotein complexes, including DNA-based structures. We discuss here recent observations on the role of phase separation in genome organization across the evolutionary spectrum from bacteria to mammals. These findings suggest that molecular interactions amongst DNA-binding proteins evolved to form a variety of biomolecular condensates with distinct material properties that affect genome organization and function. We suggest that phase separation contributes to genome organization across evolution and that the resulting phase behavior of genomes may underlie regulatory mechanisms and disease.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD, USA.
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
64
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
65
|
Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett 2021; 516:84-98. [PMID: 34102285 DOI: 10.1016/j.canlet.2021.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023]
Abstract
N-myristoylation is a crucial signaling and pathogenic modification process that confers hydrophobicity to cytosolic proteins. Although different large-scale approaches have been applied, a large proportion of myristoylated proteins remain to be identified. EZH2 is overexpressed in lung cancer cells and exerts oncogenic effects via its intrinsic methyltransferase activity. Using a well-established click chemistry approach, we found that EZH2 can be modified by myristoylation at its N-terminal glycine in lung cancer cells. Hydrophobic interaction is one of the main forces driving or stabilizing liquid-liquid phase separation (LLPS), raising the possibility that myristoylation can modulate LLPS by mediating hydrophobic interactions. Indeed, myristoylation facilitates EZH2 to form phase-separated liquid droplets in lung cancer cells and in vitro. Furthermore, we provide evidence that myristoylation-mediated LLPS of EZH2 compartmentalizes its non-canonical substrate, STAT3, and activates STAT3 signaling, ultimately resulting in accelerated lung cancer cell growth. Thus, targeting EZH2 myristoylation may have significant therapeutic efficacy in the treatment of lung cancer. Altogether, these observations not only extend the list of myristoylated proteins, but also indicate that hydrophobic lipidation may serve as a novel incentive to induce or maintain LLPS.
Collapse
|
66
|
Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell 2021; 39:174-192. [PMID: 33417833 PMCID: PMC8721577 DOI: 10.1016/j.ccell.2020.12.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
67
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|