951
|
Bhattacharyya N, Dey A, Minucci S, Zimmer A, John S, Hager G, Ozato K. Retinoid-induced chromatin structure alterations in the retinoic acid receptor beta2 promoter. Mol Cell Biol 1997; 17:6481-90. [PMID: 9343411 PMCID: PMC232501 DOI: 10.1128/mcb.17.11.6481] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription of the retinoic acid receptor beta2 (RARbeta2) gene is induced by retinoic acid (RA) in mouse P19 embryonal carcinoma (EC) cells. Here we studied RA-induced chromatin structure alterations in the endogenous RARbeta2 promoter and in an integrated, multicopy RARbeta2 promoter in EC cells. RA markedly increased restriction site accessibility within the promoter, including a site near the RA responsive element (RARE) to which the nuclear receptor retinoid X receptor (RXR)-RAR heterodimer binds. These changes coincided with RA-induced alterations in the DNase I hypersensitivity pattern in and around the promoter. These changes became undetectable upon removal of RA, which coincided with the extinction of transcription. Analyses with receptor-selective ligands and an antagonist showed that increase in restriction site accessibility correlates with transcriptional activation, which parallels the RA-induced in vivo footprint of the promoter. Despite these changes, the micrococcal nuclease digestion profile of this promoter was not altered by RA. These results indicate that concurrent with the binding of the RXR-RAR heterodimer to the RARE, the local chromatin structure undergoes dynamic, reversible changes in and around the promoter without globally affecting the nucleosomal organization.
Collapse
Affiliation(s)
- N Bhattacharyya
- Laboratory of Molecular Growth and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
952
|
Yang WM, Yao YL, Sun JM, Davie JR, Seto E. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 1997; 272:28001-7. [PMID: 9346952 DOI: 10.1074/jbc.272.44.28001] [Citation(s) in RCA: 369] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several human cDNAs encoding a histone deacetylase protein, HDAC3, have been isolated. Analysis of the predicted amino acid sequence of HDAC3 revealed an open reading frame of 428 amino acids with a predicted molecular mass of 49 kDa. The HDAC3 protein is 50% identical in DNA sequence and 53% identical in protein sequence compared with the previously cloned human HDAC1. Comparison of the HDAC3 sequence with human HDAC2 also yielded similar results, with 51% identity in DNA sequence and 52% identity in protein sequence. The expressed HDAC3 protein is functionally active because it possesses histone deacetylase activity, represses transcription when tethered to a promoter, and binds transcription factor YY1. Similar to HDAC1 and HDAC2, HDAC3 is ubiquitously expressed in many different cell types.
Collapse
Affiliation(s)
- W M Yang
- Moffitt Cancer Center and Research Institute, the Department of Medical Microbiology and Immunology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
953
|
Minucci S, Horn V, Bhattacharyya N, Russanova V, Ogryzko VV, Gabriele L, Howard BH, Ozato K. A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc Natl Acad Sci U S A 1997; 94:11295-300. [PMID: 9326603 PMCID: PMC23446 DOI: 10.1073/pnas.94.21.11295] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Accepted: 08/25/1997] [Indexed: 02/05/2023] Open
Abstract
Histone acetylation is thought to have a role in transcription. To gain insight into the role of histone acetylation in retinoid-dependent transcription, we studied the effects of trichostatin A (TSA), a specific inhibitor of histone deacetylase, on P19 embryonal carcinoma cells. We show that coaddition of TSA and retinoic acid (RA) markedly enhances neuronal differentiation in these cells, although TSA alone does not induce differentiation but causes extensive apoptosis. Consistent with the cooperative effect of TSA and RA, coaddition of the two agents synergistically enhanced transcription from stably integrated RA-responsive promoters. The transcriptional synergy by TSA and RA required the RA-responsive element and a functional retinoid X receptor (RXR)/retinoic acid receptor (RAR) heterodimer, both obligatory for RA-dependent transcription. Furthermore, TSA led to promoter activation by an RXR-selective ligand that was otherwise inactive in transcription. In addition, TSA enhanced transcription from a minimum basal promoter, independently of the RA-responsive element. Finally, we show that TSA alone or in combination with RA increases in vivo endonuclease sensitivity within the RA-responsive promoter, suggesting that TSA treatment might alter a local chromatin environment to enhance RXR/RAR heterodimer action. Thus, these results indicate that histone acetylation influences activity of the heterodimer, which is in line with the observed interaction between the RXR/RAR heterodimer and a histone acetylase presented elsewhere.
Collapse
Affiliation(s)
- S Minucci
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
954
|
Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1997; 1:300-8. [PMID: 9667866 DOI: 10.1016/s1367-5931(97)80066-x] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible acetylation of lysines on the amino-terminal tails of nucleosomal histones is correlated with changes in chromatin structure and transcription. The recent characterization of enzymes directly responsible for regulating histone acetylation and deacetylation and the cloning of their encoding cDNAs have provided insights into the possible functional and regulatory mechanisms of these classes of molecules. Nuclear histone acetylases have been shown to be transcriptional coactivators and coactivator-associated proteins, while histone deacetylases have been identified as components of nuclear co-repressor complexes. These findings confirm previous studies linking histone acetylation and transcriptional regulation.
Collapse
Affiliation(s)
- C A Hassig
- Howard Hughes Medical Institute, Harvard University Department of Chemistry, 12 Oxford Street, Cambridge, MA 02138, USA. hassig@slsiris harvard.edu
| | | |
Collapse
|
955
|
Philips A, Maira M, Mullick A, Chamberland M, Lesage S, Hugo P, Drouin J. Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 1997; 17:5952-9. [PMID: 9315653 PMCID: PMC232443 DOI: 10.1128/mcb.17.10.5952] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two important functions of glucocorticoids (Gc), namely, suppression of immune system function and feedback repression of the hypothalamo-pituitary-adrenal (HPA) axis, are mediated through repression of gene transcription. Previous studies have indicated that this repression is exerted in part through antagonism between the glucocorticoid receptors (GR) and the AP-1 family of transcription factors. However, this mechanism could not account for repression of the pro-opiomelanocortin (POMC) gene, an important regulator of the HPA axis. Our recent identification of the orphan nuclear receptor Nur77 as a mediator of CRH induction of POMC transcription led us, in the present work, to show that Gc antagonize this positive signal at two levels. First, Gc partly blunt the CRH induction of Nur77 mRNA, and second, they antagonize Nur77-dependent transcription. GR repression is exerted by antagonism of Nur77 action on the NurRE element of the POMC gene. Gc antagonism of NurRE activity was observed in response to physiological stimuli in both endocrine (CRH induction of POMC) and lymphoid (T-cell receptor activation) cells. In transfection experiments, transcriptional activation by Nur77 and the repressor activity of liganded GR titrated each other on their cognate DNA target. In vitro binding experiments as well as mutation analysis of GR suggest that the mechanism of GR antagonism of Nur77 is very similar to that of the antagonism between GR and AP-1. The convergence of positive signals mediated by Nur77 (and also probably by related family members) and negative signals exerted by GR appears to be a general mechanism for control of transcription, since it is active in both endocrine and lymphoid cells.
Collapse
MESH Headings
- Animals
- Cell Line
- Corticotropin-Releasing Hormone/pharmacology
- DNA/metabolism
- DNA, Recombinant
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dexamethasone/pharmacology
- Glucocorticoids/pharmacology
- Hybridomas
- Mice
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Pituitary Gland/cytology
- Pituitary Gland/physiology
- Pro-Opiomelanocortin/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Steroid
- Signal Transduction/genetics
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
Collapse
Affiliation(s)
- A Philips
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
956
|
Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A, Kerckaert JP, Evans RM, Leprince D. Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci U S A 1997; 94:10762-7. [PMID: 9380707 PMCID: PMC23478 DOI: 10.1073/pnas.94.20.10762] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The LAZ3/BCL6 (lymphoma-associated zinc finger 3/B cell lymphomas 6) gene frequently is altered in non-Hodgkin lymphomas. It encodes a sequence-specific DNA binding transcriptional repressor that contains a conserved N-terminal domain, termed BTB/POZ (bric-à-brac tramtrack broad complex/pox viruses and zinc fingers). Using a yeast two-hybrid screen, we show here that the LAZ3/BCL6 BTB/POZ domain interacts with the SMRT (silencing mediator of retinoid and thyroid receptor) protein. SMRT originally was identified as a corepressor of unliganded retinoic acid and thyroid receptors and forms a repressive complex with a mammalian homolog of the yeast transcriptional repressor SIN3 and the HDAC-1 histone deacetylase. Protein binding assays demonstrate that the LAZ3/BCL6 BTB/POZ domain directly interacts with SMRT in vitro. Furthermore, DNA-bound LAZ3/BCL6 recruits SMRT in vivo, and both overexpressed proteins completely colocalize in nuclear dots. Finally, overexpression of SMRT enhances the LAZ3/BCL6-mediated repression. These results define SMRT as a corepressor of LAZ3/BCL6 and suggest that LAZ3/BCL6 and nuclear hormone receptors repress transcription through shared mechanisms involving SMRT recruitment and histone deacetylation.
Collapse
Affiliation(s)
- P Dhordain
- U124 Institut National de la Santé et de la Recherche Médicale, Institut de Recherches sur le Cancer de Lille Place de Verdun, F-59045 Lille Cedex France.
| | | | | | | | | | | | | | | | | |
Collapse
|
957
|
Abstract
'The amino termini of histones extend from the nucleosomal core and are modified by acetyltransferases and deacetylases during the cell cycle. These acetylation patterns may direct histone assembly and help regulate the unfolding and activity of genes.
Collapse
Affiliation(s)
- M Grunstein
- Department of Biological Chemistry, UCLA School of Medicine and the Molecular Biology Institute, University of California, Los Angeles 90095, USA
| |
Collapse
|
958
|
Zhang F, Pöpperl H, Morrison A, Kovàcs EN, Prideaux V, Schwarz L, Krumlauf R, Rossant J, Featherstone MS. Elements both 5' and 3' to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech Dev 1997; 67:49-58. [PMID: 9347914 DOI: 10.1016/s0925-4773(97)00104-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report, we show that a lacZ reporter spanning 12.5 kb of murine Hoxd4 genomic DNA contains the major regulatory elements controlling Hoxd4 expression in the mouse embryo. Mutational analysis revealed multiple regulatory regions both 5' and 3' to the coding region. These include a 3' enhancer region required for expression in the central nervous system (CNS) and setting the anterior border in the paraxial mesoderm, and a 5' mesodermal enhancer that directs expression in paraxial and lateral plate mesoderm. A previously defined retinoic acid response element (RARE) is a component of the 5' mesodermal enhancer. Our results support a model in which retinoic acid receptors (RARs) and HOX proteins mediate the initiation and maintenance of Hoxd4 expression.
Collapse
Affiliation(s)
- F Zhang
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
959
|
Abstract
The tumor suppressor p53 exerts antiproliferation effects through its ability to function as a sequence-specific DNA-binding transcription factor. Here, we demonstrate that p53 can be modified by acetylation both in vivo and in vitro. Remarkably, the site of p53 that is acetylated by its coactivator, p300, resides in a C-terminal domain known to be critical for the regulation of p53 DNA binding. Furthermore, the acetylation of p53 can dramatically stimulate its sequence-specific DNA-binding activity, possibly as a result of an acetylation-induced conformational change. These observations clearly indicate a novel pathway for p53 activation and, importantly, provide an example of an acetylation-mediated change in the function of a nonhistone regulatory protein. These results have significant implications regarding the molecular mechanisms of various acetyltransferase-containing transcriptional coactivators whose primary targets have been presumed to be histones.
Collapse
Affiliation(s)
- W Gu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
960
|
Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997; 90:569-80. [PMID: 9267036 DOI: 10.1016/s0092-8674(00)80516-4] [Citation(s) in RCA: 1103] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report here the identification of a novel cofactor, ACTR, that directly binds nuclear receptors and stimulates their transcriptional activities in a hormone-dependent fashion. ACTR also recruits two other nuclear factors, CBP and P/CAF, and thus plays a central role in creating a multisubunit coactivator complex. In addition, and unexpectedly, we show that purified ACTR is a potent histone acetyltransferase and appears to define a distinct evolutionary branch to this recently described family. Thus, hormonal activation by nuclear receptors involves the mutual recruitment of at least three classes of histone acetyltransferases that may act cooperatively as an enzymatic unit to reverse the effects of histone deacetylase shown to be part of the nuclear receptor corepressor complex.
Collapse
Affiliation(s)
- H Chen
- Howard Hughes Medical Institute, School of Medicine, University of California at San Diego, La Jolla 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
961
|
Schroen DJ, Chen JD, Vincenti MP, Brinckerhoff CE. The nuclear receptor corepressor SMRT inhibits interstitial collagenase (MMP-1) transcription through an HRE-independent mechanism. Biochem Biophys Res Commun 1997; 237:52-8. [PMID: 9266828 DOI: 10.1006/bbrc.1997.7073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nuclear receptors inhibit synthesis of collagenase-1 (matrix metalloproteinase-1; MMP-1), an enzyme that degrades interstitial collagens and contributes to joint pathology in rheumatoid arthritis. SMRT (Silencing Mediator for Retinoid and Thyroid hormone receptors) mediates the repressive effect of nuclear receptors at hormone responsive elements (HREs), prompting us to investigate whether this co-repressor could also regulate transcription of MMP-1, which lacks any known HREs. We find that primary synovial fibroblasts express SMRT. When over-expressed by transient transfection, SMRT inhibits MMP-1 promoter activity induced by interleukin-1 (IL-1), phorbol phorbol myristate acetate (PMA) or v-Src. SMRT apparently inhibits MMP-1 gene expression by interfering with one or more transcriptional elements clustered in a region between -321 and +63. We conclude that SMRT negatively regulates MMP-1 synthesis through a novel, HRE-independent mechanism that involves proximal regions of the MMP-1 promoter.
Collapse
Affiliation(s)
- D J Schroen
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
962
|
Abstract
Mad proteins are transcriptional repressors that antagonize transcriptional activation and transformation by Myc oncoprotein; recent findings suggest that they repress transcription by recruiting histone deacetylases to target sites on DNA.
Collapse
Affiliation(s)
- A Kiermaier
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | |
Collapse
|
963
|
Kasten MM, Dorland S, Stillman DJ. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 1997; 17:4852-8. [PMID: 9234741 PMCID: PMC232337 DOI: 10.1128/mcb.17.8.4852] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SIN3 gene is required for the transcriptional repression of diverse genes in Saccharomyces cerevisiae. Sin3p does not bind directly to DNA but is thought to be targeted to promoters by interacting with sequence-specific DNA-binding proteins. We show here that Sin3p is present in a large multiprotein complex with an apparent molecular mass, estimated by gel filtration chromatography, of greater than 2 million Da. Genetic studies have shown that the yeast RPD3 gene has a function similar to that of SIN3 in transcriptional regulation, as SIN3 and RPD3 negatively regulate the same set of genes. The SIN3 and RPD3 genes are conserved from yeasts to mammals, and recent work suggests that RPD3 may encode a histone deacetylase. We show that Rpd3p is present in the Sin3p complex and that an rpd3 mutation eliminates SIN3-dependent repression. Thus, Sin3p may function as a bridge to recruit the Rpd3p histone deacetylase to specific promoters.
Collapse
Affiliation(s)
- M M Kasten
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| | | | | |
Collapse
|
964
|
|