951
|
Cancer stem cells in pancreatic cancer. Cancers (Basel) 2010; 2:1629-41. [PMID: 24281178 PMCID: PMC3837327 DOI: 10.3390/cancers2031629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/29/2010] [Accepted: 08/18/2010] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.
Collapse
|
952
|
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2010; 585:2087-99. [PMID: 20708002 DOI: 10.1016/j.febslet.2010.08.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
MicroRNAs have emerged as key post-transcriptional regulators of gene expression, involved in various physiological and pathological processes. It was found that several miRNAs are directly involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in human cancer, suggesting an important role in malignant transformation. A better understanding of the miRNA regulation and misexpression in cancer may ultimately yield further insight into the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against cancer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and their importance in the tumorigenic process.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
953
|
Suryawanshi H, Scaria V, Maiti S. Modulation of microRNA function by synthetic ribozymes. MOLECULAR BIOSYSTEMS 2010; 6:1807-9. [PMID: 20697623 DOI: 10.1039/c0mb00010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as one of the major class of gene regulatory molecules in eukaryotic cells. Aberrant miRNA expression has been implicated in many human diseases. Herein, we exploit the site-specific cleavage ability of hammerhead ribozymes to design synthetic ribozymes and establish that they can cleave miRNA, thereby inhibiting miRNA function. We also used modified ribozymes where a 3'-3'-linked nucleotide "cap" (inverted T) was added and few ribonucleotides were changed to 2'-O-methyl nucleotides. The modified ribozyme was more efficient at inhibiting miR-21 than the wild type ribozyme.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology CSIR, Mall Road, New Delhi, India
| | | | | |
Collapse
|
954
|
Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467:86-90. [PMID: 20693987 DOI: 10.1038/nature09284] [Citation(s) in RCA: 750] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 06/14/2010] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) belong to a recently discovered class of small RNA molecules that regulate gene expression at the post-transcriptional level. miRNAs have crucial functions in the development and establishment of cell identity, and aberrant metabolism or expression of miRNAs has been linked to human diseases, including cancer. Components of the miRNA machinery and miRNAs themselves are involved in many cellular processes that are altered in cancer, such as differentiation, proliferation and apoptosis. Some miRNAs, referred to as oncomiRs, show differential expression levels in cancer and are able to affect cellular transformation, carcinogenesis and metastasis, acting either as oncogenes or tumour suppressors. The phenomenon of 'oncogene addiction' reveals that despite the multistep nature of tumorigenesis, targeting of certain single oncogenes can have therapeutic value, and the possibility of oncomiR addiction has been proposed but never demonstrated. MicroRNA-21 (miR-21) is a unique miRNA in that it is overexpressed in most tumour types analysed so far. Despite great interest in miR-21, most of the data implicating it in cancer have been obtained through miRNA profiling and limited in vitro functional assays. To explore the role of miR-21 in cancer in vivo, we used Cre and Tet-off technologies to generate mice conditionally expressing miR-21. Here we show that overexpression of miR-21 leads to a pre-B malignant lymphoid-like phenotype, demonstrating that mir-21 is a genuine oncogene. When miR-21 was inactivated, the tumours regressed completely in a few days, partly as a result of apoptosis. These results demonstrate that tumours can become addicted to oncomiRs and support efforts to treat human cancers through pharmacological inactivation of miRNAs such as miR-21.
Collapse
Affiliation(s)
- Pedro P Medina
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
955
|
Chen RF, Huang HC, Ou CY, Hsu TY, Chuang H, Chang JC, Wang L, Kuo HC, Yang KD. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis. Clin Exp Allergy 2010; 40:1482-90. [PMID: 20701609 DOI: 10.1111/j.1365-2222.2010.03592.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The prevalence of allergic diseases has increased in the past decades. It is unknown whether expression of certain microRNAs (miRNAs) in neonatal leucocytes is correlated to IgE production and/or allergic diseases. OBJECTIVE This study investigated the association of miRNA expression in neonatal leucocytes with cord blood IgE (CBIgE) elevation and development of allergic disease. METHODS We screened for the expression of a panel of 157 miRNAs in mononuclear leucocytes from human umbilical cord blood (CB) samples with elevated CBIgE and tracked the association of down-regulated miRNA expression to the miRNA-targeted gene expression and to children with allergic rhinitis (AR). RESULTS Among the initial screen of 10 CB samples with elevated CBIgE, expression of eight of the 157 miRNAs was low. Of these eight down-expressed miRNAs, three remained down-regulation in a validation with other 20 CB samples, and two of the three miRNAs, miR-21 and miR-126, were significantly lower in monocytes from AR children. Further analysis of mRNA expression of the miR-21-targeted genes identified that TGFBR2 expression on monocytes was significantly up-regulated in CB with elevated CBIgE, and in AR patients. Transfection of miR-21 precursor into monocytes from patients with AR increased miR-21 expression and decreased TGFBR2 expression. CONCLUSION This study demonstrated the first in the literature that lower miR-21 expression in CB and increased TGFBR2 expression is associated with antenatal IgE production and development of AR.
Collapse
Affiliation(s)
- R-F Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
956
|
Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 2010; 107:14339-44. [PMID: 20651252 DOI: 10.1073/pnas.0912701107] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is associated with significant morbidity and mortality. Given the importance of microRNAs (miRNAs) in regulating gene expression, we examined expression profiles of miRNAs following renal IRI. Global miRNA expression profiling on samples prepared from the kidneys of C57BL/6 mice that underwent unilateral warm ischemia revealed nine miRNAs (miR-21, miR-20a, miR-146a, miR-199a-3p, miR-214, miR-192, miR-187, miR-805, and miR-194) that are differentially expressed following IRI when compared with sham controls. These miRNAs were also differently expressed following IRI in immunodeficient RAG-2/common gamma-chain double-knockout mice, suggesting that the changes in expression observed are not significantly influenced by lymphocyte infiltration and therefore define a lymphocyte-independent signature of renal IRI. In vitro studies revealed that miR-21 is expressed in proliferating tubular epithelial cells (TEC) and up-regulated by both cell-intrinsic and -extrinsic mechanisms resulting from ischemia and TGF-beta signaling, respectively. In vitro, knockdown of miR-21 in TEC resulted in increased cell death, whereas overexpression prevented cell death. However, overexpression of miR-21 alone was not sufficient to prevent TEC death following ischemia. Our findings therefore define a molecular fingerprint of renal injury and suggest miR-21 may play a role in protecting TEC from death.
Collapse
|
957
|
hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer 2010; 103:567-74. [PMID: 20628378 PMCID: PMC2939772 DOI: 10.1038/sj.bjc.6605724] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Expression of ABCG2 is normally absent or low in the pancreas, but high in human pancreatic cancer cells. The mechanism by which ABCG2 is altered in human cancers remains unknown. Methods: We investigated ABCG2 expression in four pancreatic cancer cell lines, and used three microRNA (miRNA) target prediction programmes, and information from the existing literature to predict and identify hsa-miR-520h as an miRNA that targets ABCG2. The function of this miRNA was investigated by transient transfection of the pancreatic cancer cell line PANC-1 with oligonucleotides that mimic hsa-miR-520h. Results: Results showed that both mRNA and protein levels of ABCG2 were reduced, indicating that it was a target of hsa-miR-520h. Introduction of hsa-miR-520h mimics into PANC-1 cells also resulted in inhibition of cell migration and invasion, and reduction of side population cells. Cell proliferation, cell cycle progression and apoptosis were not affected. Conclusions: We propose that the effects of hsa-miR-520h may be, at least in part, caused by its regulation of ABCG2. Thus, our findings provide a new insight into the function of miRNA in the regulation of ABCG2 expression in pancreatic cancer. Gene therapy using miRNA mimics may therefore be useful as a pancreatic cancer therapy.
Collapse
|
958
|
Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 2010; 1352:255-64. [PMID: 20633539 DOI: 10.1016/j.brainres.2010.07.009] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/27/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. In mammal animals, their function mainly represses the target mRNAs transcripts via imperfectly complementary to the 3'UTR of target mRNAs. Several miRNAs have been recently reported to be involved in modulation of glioma development, especially some up-regulated miRNAs, such as microRNA-21 (miR-21), which has been found to function as an oncogene in cultured glioblastoma multiforme cells. Temozolomide (TMZ), an alkylating agent, is a promising chemotherapeutic agent for treating glioblastoma. However, resistance develops quickly and with high frequency. To explore the mechanism of resistance, we found that miR-21 could protect human glioblastoma U87MG cells from TMZ induced apoptosis. Our studies showed that TMZ markedly enhanced apoptosis in U87MG cells compared with untreated cells (P<0.05). However, over-express miR-21 in U87MG cells could significantly reduce TMZ-induced apoptosis (P<0.05). Pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins are known to regulate the apoptosis of glioma cells. Bcl-2, resistance to induction of apoptosis, constitutes one major obstacle to chemotherapy in many cancer cells. Bax is shown to correlate with an increased survival of glioblastoma multiforme patients. Further research demonstrated that the mechanism was associated with a shift in Bax/Bcl-2 ratio and change in caspase-3 activity. Compared to control cells, cells treated with TMZ showed a significant increase in the Bax/Bcl-2 ratio and caspase-3 activity (P<0.01). However, such effect was partly prevented by treatment of cells with miR-21 overexpression before, which appeared to downregulate the Bax expression, upregulate the Bcl-2 expression and decrease caspase-3 activity. Taken together, these results suggested that over-express miR-21 could inhibit TMZ-induced apoptosis in U87MG cells, at least in part, by decreasing Bax/Bcl-2 ratio and caspase-3 activity, which highlighted the possibility of miR-21 overexpression in the clinical resistance to chemotherapeutic therapy of TMZ.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, The First People's Hospital of Kunshan affiliated with Jiangsu University, Suzhou, PR China
| | | | | | | | | | | |
Collapse
|
959
|
MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol 2010; 119:125-30. [PMID: 20624637 DOI: 10.1016/j.ygyno.2010.06.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are non-coding, single-stranded small RNAs that regulate gene expression negatively, which is involved in fundamental cellular processes and the initiation, development and progression of human cancer. In this study, we investigated the role of miR-27a in the development of drug resistance in ovarian cancer cells. METHODS Expression of miR-27a in ovarian cancer cell lines A2780 and A2780/Taxol were detected by stem-loop real-time PCR. A2780 and A2780/Taxol cells were transfected with the mimics or inhibitors of miR-27a or negative control RNA (NC) by Lipofectamine 2000. The expression levels of MDR1 mRNA, P-glycoprotein (P-gp) and Homeodomain-interacting protein kinase-2 (HIPK2) proteins were assessed by real-time PCR and western blot respectively. Drug sensitivity was analyzed by MTT assay while apoptosis and the fluorescence intensity of intracellular Rhodamine 123 (Rh-123) were measured by FACS. RESULTS The expression levels of miR-27a and P-gp were up-regulated in paclitaxel-resistant ovarian cancer cell line A2780/Taxol as compared with its parental line A2780. Transfection of A2780/Taxol cells with the inhibitors of miR-27a decreased the expression of MDR1 mRNA and P-gp protein, increased HIPK2 protein expression, enhanced the sensitivity of A2780/taxol cells to paclitaxel, increased paclitaxel-induced apoptosis and the fluorescence intensity of intracellular Rh-123. Expression of MDR1 mRNA was increased while the sensitivity to paclitaxel was decreased in A2780 cells management with the mimics of miR-27a. CONCLUSIONS The deregulation of miR-27a may be involved in the development of drug resistance, regulating the expression of MDR1/P-gp, at least in part, by targeting HIPK2 in ovarian cancer cells.
Collapse
|
960
|
Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, Yang K, He X, Chen S. MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol 2010; 53:98-107. [PMID: 20447717 DOI: 10.1016/j.jhep.2010.02.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/28/2010] [Accepted: 02/15/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS MicroRNA-21 negatively regulates several targets, thereby affecting tumorigenesis. However, its mechanism of action in human hepatocellular carcinoma is poorly understood, and no direct evidence has shown a correlation between microRNA-21 function and phenotype. In this study, we investigate the function of microRNA-21 as a potent oncomir and probe the relationship between microRNA-21, its targets, and phenotypic alterations. METHODS We designed a set of rescue experiments using different combinations of anti-microRNA-21, siRNA, and a negative control to modulate the protein level of microRNA-21 targets and resulting phenotypic alterations. MicroRNA-21 was suppressed using anti-microRNA-21 to further uncover its effect on several critical signaling pathways. RESULTS We demonstrate that hepatocellular carcinoma is characterized by elevated levels of microRNA-21 and marked reductions of PTEN, PDCD4, and RECK expression. Silencing of PTEN and PDCD4 to prevent their induction by anti-microRNA-21 treatment led to decreased apoptosis and increased invasion, while silencing of RECK only led to increased invasion. Moreover, knockdown of microRNA-21 resulted in alterations of the Akt signaling pathway, the expression of p21 and MMP families, which are associated with apoptosis, and the cell cycle or invasiveness of cancer cells. CONCLUSIONS MicroRNA-21 simultaneously regulates multiple programs that enhance cell proliferation, apoptosis or tumor invasiveness by targeting PTEN, PDCD4, and RECK in hepatocellular carcinomas. Targeting of microRNA-21 is sufficient to limit tumor cell proliferation and invasion in a manner that is likely to involve associated changes in multiple targets, suggesting that suppression of microRNA-21 may be a novel approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Changzheng Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Department of Biochemistry, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
961
|
De Guire V, Caron M, Scott N, Ménard C, Gaumont-Leclerc MF, Chartrand P, Major F, Ferbeyre G. Designing small multiple-target artificial RNAs. Nucleic Acids Res 2010; 38:e140. [PMID: 20453028 PMCID: PMC2910070 DOI: 10.1093/nar/gkq354] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are naturally occurring small RNAs that regulate the expression of several genes. MiRNAs' targeting rules are based on sequence complementarity between their mature products and targeted genes' mRNAs. Based on our present understanding of those rules, we developed an algorithm to design artificial miRNAs to target simultaneously a set of predetermined genes. To validate in silico our algorithm, we tested different sets of genes known to be targeted by a single miRNA. The algorithm finds the seed of the corresponding miRNA among the solutions, which also include the seeds of new artificial miRNA sequences potentially capable of targeting these genes as well. We also validated the functionality of some artificial miRNAs designed to target simultaneously members of the E2F family. These artificial miRNAs reproduced the effects of E2Fs inhibition in both normal human fibroblasts and prostate cancer cells where they inhibited cell proliferation and induced cellular senescence. We conclude that the current miRNA targeting rules based on the seed sequence work to design multiple-target artificial miRNAs. This approach may find applications in both research and therapeutics.
Collapse
Affiliation(s)
- Vincent De Guire
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Maxime Caron
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Nicolas Scott
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Catherine Ménard
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Marie-France Gaumont-Leclerc
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Pascal Chartrand
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - François Major
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Gerardo Ferbeyre
- Département de Biochimie and Institute for Research in Immunology and Cancer, and Computer Science Department, RNA Engineering Laboratory, Université de Montréal, Montréal, QC H3C 3J7 Canada
| |
Collapse
|
962
|
Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. ACTA ACUST UNITED AC 2010; 200:154-60. [DOI: 10.1016/j.cancergencyto.2010.04.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/09/2010] [Accepted: 04/18/2010] [Indexed: 12/16/2022]
|
963
|
Varol N, Konac E, Gurocak OS, Sozen S. The realm of microRNAs in cancers. Mol Biol Rep 2010; 38:1079-89. [PMID: 20563858 DOI: 10.1007/s11033-010-0205-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are members of the non-protein coding RNA family. miRNAs, which can regulate genes on transcriptomic level through either degrading the target messenger RNA (mRNA) or suppressing the protein synthesis, also take part in a number of biological functions that involve development, differentiation, proliferation and apoptosis. The mutations and polymorphisms in the expression levels of miRNA genes or alterations in their epigenetic mechanisms may play their roles in the formation of malignancies. Increasing evidence shows that aberrant miRNA expression profiles are present in a variety of cancers. Therefore, it has been suggested that these profiles could be useful for diagnosis and classification of different tumor types and that these small RNAs might provide significant opportunities for the development of future miRNA-based therapies. In this review, we aimed to look into the realm of miRNAs, which is a recent area of research, appraise their biological activities on molecular level and their probable benefits on clinical practice.
Collapse
Affiliation(s)
- Nuray Varol
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | | | | | | |
Collapse
|
964
|
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding, single-stranded RNAs that negatively regulate gene expression by mainly binding to 30 untranslated region (UTR) of target mRNAs at the post-transcriptional level. Recent studies have demonstrated that aberrant expressions of miRNAs are closely associated with the development, invasion, metastasis and prognosis of various cancers including prostate cancer (PCa). The proposed molecular mechanisms that underlie the aberrant expression of miRNAs result from gene changes, epigenetic modification and alteration of Dicer abundance. Although up to 50 miRNAs have been reported to be significantly expressed in human PCa, only a small number of them were experimentally shown to make contribution to the pathogenesis of PCa. The aim of this review is to describe the mechanisms of several known miRNAs, summarize recent studies on the relevance of altered expression of oncogenic miRNAs (e.g. miR-221/-222, miR-21, and miR-125b) and tumor suppressor miRNAs (e.g. miR-101, miR-126*, miR-146a, miR-330, miR-34 cluster, and miR-200 family) for PCa. Additionally, their potential clinical applications and prospects in PCa, such as biomarkers and clinical therapies, are also briefly discussed.
Collapse
Affiliation(s)
- Yingxin Pang
- Institute of Biochemistry and Molecular Biology, Shandong University, Jinan, China
| | | | | |
Collapse
|
965
|
Chira P, Vareli K, Sainis I, Papandreou C, Briasoulis E. Alterations of MicroRNAs in Solid Cancers and Their Prognostic Value. Cancers (Basel) 2010; 2:1328-53. [PMID: 24281118 PMCID: PMC3835132 DOI: 10.3390/cancers2021328] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/02/2010] [Accepted: 06/10/2010] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, naturally abundant, small, regulatory non-coding RNAs that inhibit gene expression at the post-transcriptional level in a sequence-specific manner. Each miRNA represses the protein expression of several coding genes in a manner proportional to the sequence complementarity with the target transcripts. MicroRNAs play key regulatory roles in organismal development and homeostasis. They control fundamental biological processes, such as stem-cell regulation and cellular metabolism, proliferation, differentiation, stress resistance, and apoptosis. Differential miRNA expression is found in malignant tumors in comparison to normal tissue counterparts. This indicates that miRNA deregulation contributes to the initiation and progression of cancer. Currently, miRNA expression signatures are being rigorously investigated in various tumor types, with the aim of developing novel, efficient biomarkers that can improve clinical management of cancer patients. This review discusses deregulated miRNAs in solid tumors, and focuses on their emerging prognostic potential.
Collapse
Affiliation(s)
- Panagiota Chira
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- Biomedical Research Institute, Foundation for Research & Technology, University Campus, Ioannina 45110, Greece
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- Department of Biological Applications and Technologies, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
| | - Christos Papandreou
- School of Medicine, University of Thessaly, 22 Papakiriazi, Larissa 41222, Greece; E-Mail: (C.P.)
| | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- School of Medicine, University of Ioannina, University Campus, Ioannina 45110, Greece
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
966
|
Ferdin J, Kunej T, Calin GA. Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol Cancer Res Treat 2010; 9:123-38. [PMID: 20218735 DOI: 10.1177/153303461000900202] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) belong to the heterogeneous class of non-coding RNAs (ncRNAs), which are by definition RNA molecules that do not encode for proteins, but have instead important structural, catalytic or regulatory functions. In this review we first provide an overview of the different ncRNA families, focusing in particular on miRNAs and their relevance in tumour development and progression. Second we shortly describe the available ncRNA expression profiling methods, which comprise microarray, bead-based hybridization methods, in situ hybridization, quantitative real-time polymerase chain reaction, cloning and deep sequencing methods. Finally, we used the PubMed database to perform an extensive literature search for miRNA expression profiling research articles in cancer and identified 58 studies that were published between 2004 and 2009; we identified 70 miRNAs that were reported in at least five studies as being either up- or downregulated, depending on the type of cancer, and 192 miRNAs that were reported to be up- or downregulated in at least two reports. MiRNA expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis, and response to treatment. Based on the most important findings we discuss the possible use of miRNAs as clinical biomarkers in the management of cancer patients for diagnosis, prognosis, and response to therapy.
Collapse
Affiliation(s)
- Jana Ferdin
- Department of Animal Science Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia.
| | | | | |
Collapse
|
967
|
MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 2010; 10:543-50. [PMID: 20541466 DOI: 10.1016/j.coph.2010.05.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/24/2022]
Abstract
The knowledge that miRNA expression is frequently dysregulated in cancer has uncovered an entirely new repertoire of molecular factors upstream of gene expression, with exciting potential as novel biomarkers and therapeutic targets in cancer. Exploiting the unique characteristics of these molecules including their stability, tissue specificity, ease of detection and manipulation, will bring clinicians ever closer to achieving the goal of individualized cancer treatment. We present a comprehensive and timely review of the role of miRNAs in cancer. Herein we address briefly miRNA biogenesis, the putative role of miRNAs as oncogenes or tumor suppressors, and their potential as sensitive and specific tumor markers with particular emphasis on the commonest cancers; breast, prostate, lung and colorectal. We also discuss circulating tumor-associated miRNAs which are emerging as clinically useful tools for early detection, prognostication and management of various cancers. Finally we explore their potential therapeutic applications in the field of cancer and highlight some of the potential challenges that need to be overcome in order to bring miRNAs from bench to bedside. Given the evidence to date, we envisage a pivotal role for miRNAs in the future individualized management of cancer patients.
Collapse
|
968
|
Wright JA, Richer JK, Goodall GJ. microRNAs and EMT in mammary cells and breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:213-23. [PMID: 20499142 DOI: 10.1007/s10911-010-9183-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/12/2010] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are master regulators of gene expression in many biological and pathological processes, including mammary gland development and breast cancer. The differentiation program termed the epithelial to mesenchymal transition (EMT) involves changes in a number of microRNAs. Some of these microRNAs have been shown to control cellular plasticity through the suppression of EMT-inducers or to influence cellular phenotype through the suppression of genes involved in defining the epithelial and mesenchymal cell states. This has led to the suggestion that microRNAs maybe a novel therapeutic target for the treatment of breast cancer. In this review, we will discuss microRNAs that are involved in EMT in mammary cells and breast cancer.
Collapse
Affiliation(s)
- Josephine A Wright
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia.
| | | | | |
Collapse
|
969
|
Al-Nakhle H, Burns PA, Cummings M, Hanby AM, Hughes TA, Satheesha S, Shaaban AM, Smith L, Speirs V. Estrogen receptor {beta}1 expression is regulated by miR-92 in breast cancer. Cancer Res 2010; 70:4778-84. [PMID: 20484043 PMCID: PMC2883739 DOI: 10.1158/0008-5472.can-09-4104] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Estrogen receptor beta1 (ERbeta1) downregulation occurs in many breast cancers, but the responsible molecular mechanisms remain unclear. Here, we report that levels of ERbeta1 expression are negatively regulated by the microRNA miR-92. Expression analysis in a cohort of primary breast tumors confirmed a significant negative correlation between miR-92 and both ERbeta1 mRNA and protein. Inhibition of miR-92 in MCF-7 cells increased ERbeta1 expression in a dose-dependent manner, whereas miR-92 overexpression led to ERbeta1 downregulation. Reporter constructs containing candidate miR-92 binding sites in the 3'-untranslated region (UTR) of ERbeta1 suggested by bioinformatics analysis confirmed that miR-92 downregulated ERbeta1 via direct targeting of its 3'-UTR. Our results define a potentially important mechanism for downregulation of ERbeta1 expression in breast cancer.
Collapse
Affiliation(s)
- H Al-Nakhle
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - PA Burns
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - M Cummings
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - AM Hanby
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - TA Hughes
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - S Satheesha
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - AM Shaaban
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - L Smith
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - V Speirs
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
970
|
Sarkar FH, Li Y, Wang Z, Kong D, Ali S. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 2010; 13:57-66. [PMID: 20236855 PMCID: PMC2883024 DOI: 10.1016/j.drup.2010.02.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 12/19/2022]
Abstract
Recently, microRNAs (miRNAs) have received increasing attention in the field of cancer research. miRNAs play important roles in many normal biological processes; however, the aberrant miRNA expression and its correlation with the development and progression of cancers is an emerging field. Therefore, miRNAs could be used as biomarkers for diagnosis of cancer and prediction of prognosis. Importantly, some miRNAs could regulate the formation of cancer stem cells and the acquisition of epithelial-mesenchymal transition, which are critically associated with drug resistance. Moreover, some miRNAs could target genes related to drug sensitivity, resulting in the altered sensitivity of cancer cells to anti-cancer drugs. Emerging evidences have also shown that knock-down or re-expression of specific miRNAs by synthetic anti-sense oligonucleotides or pre-miRNAs could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. More importantly, recent studies have shown that natural agents including isoflavone, 3,3'-diindolylmethane, and (-)-epigallocatechin-3-gallate altered miRNA expression profiles, leading to an increased sensitivity of cancer cells to conventional therapeutics. These emerging results suggest that specific targeting of miRNAs by different approaches could open new avenues for cancer treatment through overcoming drug resistance and thereby improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
971
|
Giovannetti E, Funel N, Peters GJ, Del Chiaro M, Erozenci LA, Vasile E, Leon LG, Pollina LE, Groen A, Falcone A, Danesi R, Campani D, Verheul HM, Boggi U. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res 2010; 70:4528-4538. [PMID: 20460539 DOI: 10.1158/0008-5472.can-09-4467] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNA-21 (miR-21) was reported to be overexpressed and contributes to invasion and gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to evaluate whether miR-21 expression was associated with the overall survival (OS) of PDAC patients treated with gemcitabine and to provide mechanistic insights for new therapeutic targets. miR-21 expression was evaluated in cells (including 7 PDAC cell lines, 7 primary cultures, fibroblasts, and a normal pancreatic ductal cell line) and tissues (neoplastic specimens from 81 PDAC patients and normal ductal samples) isolated by laser microdissection. The role of miR-21 on the pharmacologic effects of gemcitabine was studied with a specific miR-21 precursor (pre-miR-21). Patients with high miR-21 expression had a significantly shorter OS both in the metastatic and in the adjuvant setting. Multivariate analysis confirmed the prognostic significance of miR-21. miR-21 expression in primary cultures correlated with expression in their respective tissues and with gemcitabine resistance. Pre-miR-21 transfection significantly decreased antiproliferative effects and apoptosis induction by gemcitabine, whereas matrix metalloproteinase (MMP)-2/MMP-9 and vascular endothelial growth factor expression were upregulated. Addition of inhibitors of phosphoinositide 3-kinase and mammalian target of rapamycin resulted in decrease of phospho-Akt and prevented pre-miR-21-induced resistance to the proapoptotic effects of gemcitabine. miR-21 expression correlated with outcome in PDAC patients treated with gemcitabine. Modulation of apoptosis, Akt phosphorylation, and expression of genes involved in invasive behavior may contribute to the role of miR-21 in gemcitabine chemoresistance and to the rational development of new targeted combinations.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Dose-Response Relationship, Drug
- Humans
- Matrix Metalloproteinase 2/biosynthesis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Middle Aged
- PTEN Phosphohydrolase/biosynthesis
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/biosynthesis
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Retrospective Studies
- Treatment Outcome
- Vascular Endothelial Growth Factor A/biosynthesis
- Gemcitabine
Collapse
|
972
|
Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 2010; 27:1027-41. [PMID: 20306121 PMCID: PMC2974845 DOI: 10.1007/s11095-010-0105-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/25/2010] [Indexed: 12/11/2022]
Abstract
In recent years, microRNAs have received greater attention in cancer research. These small, non-coding RNAs could inhibit target gene expression by binding to the 3' untranslated region of target mRNA, resulting in either mRNA degradation or inhibition of translation. miRNAs play important roles in many normal biological processes; however, studies have also shown that aberrant miRNA expression is correlated with the development and progression of cancers. The miRNAs could have oncogenic or tumor suppressor activities. Moreover, some miRNAs could regulate formation of cancer stem cells and epithelial-mesenchymal transition phenotype of cancer cells which are typically drug resistant. Furthermore, miRNAs could be used as biomarkers for diagnosis and prognosis, and thus miRNAs are becoming emerging targets for cancer therapy. Recent studies have shown that natural agents including curcumin, isoflavone, indole-3-carbinol, 3,3'-diindolylmethane, (-)-epigallocatechin-3-gallate, resveratrol, etc. could alter miRNA expression profiles, leading to the inhibition of cancer cell growth, induction of apoptosis, reversal of epithelial-mesenchymal transition, or enhancement of efficacy of conventional cancer therapeutics. These emerging results clearly suggest that specific targeting of miRNAs by natural agents could open newer avenues for complete eradication of tumors by killing the drug-resistant cells to improve survival outcome in patients diagnosed with malignancies.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dejuan Kong
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhiwei Wang
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA. Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, Michigan 48201, USA
| |
Collapse
|
973
|
Ferracin M, Zagatti B, Rizzotto L, Cavazzini F, Veronese A, Ciccone M, Saccenti E, Lupini L, Grilli A, De Angeli C, Negrini M, Cuneo A. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer 2010; 9:123. [PMID: 20504344 PMCID: PMC2892453 DOI: 10.1186/1476-4598-9-123] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 05/26/2010] [Indexed: 11/30/2022] Open
Abstract
Background Fludarabine, is one of the most active single agents in the treatment of chronic lymphocytic leukemia (CLL). Over time, however, virtually all CLL patients become fludarabine-refractory. To elucidate whether microRNAs are involved in the development of fludarabine resistance, we analyzed the expression of 723 human miRNAs before and 5-days after fludarabine mono-therapy in 17 CLL patients which were classified as responder or refractory to fludarabine treatment based on NCI criteria. Results By comparing the expression profiles of these two groups of patients, we identified a microRNA signature able to distinguish refractory from sensitive CLLs. The expression of some microRNAs was also able to predict fludarabine resistance of 12 independent CLL patients. Among the identified microRNAs, miR-148a, miR-222 and miR-21 exhibited a significantly higher expression in non-responder patients either before and after fludarabine treatment. After performing messenger RNA expression profile of the same patients, the activation of p53-responsive genes was detected in fludarabine responsive cases only, therefore suggesting a possible mechanism linked to microRNA deregulation in non-responder patients. Importantly, inhibition of miR-21 and miR-222 by anti-miRNA oligonucleotides induced a significant increase in caspase activity in fludarabine-treated p53-mutant MEG-01 cells, suggesting that miR-21 and miR-222 up-regulation may be involved in the establishment of fludarabine resistance. Conclusions This is the first report that reveals the existence of a microRNA profile that differentiate refractory and sensitive CLLs, either before and after fludarabine mono-therapy. A p53 dysfunctional pathway emerged in refractory CLLs and could contribute in explaining the observed miRNA profile. Moreover, this work indicates that specific microRNAs can be used to predict fludarabine resistance and may potentially be used as therapeutic targets, therefore establishing an important starting point for future studies.
Collapse
Affiliation(s)
- Manuela Ferracin
- Dipartimento di Medicina Sperimentale e Diagnostica Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
974
|
Abstract
Esophageal carcinogenesis is a multi-stage process, involving a variety of changes in gene expression and physiological structure change. MicroRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules. Recent innovation in miRNAs profiling technology have shed new light on the pathology of esophageal carcinoma (EC), and also heralded great potential for exploring novel biomarkers for both EC diagnosis and treatment. Frequent dysregulation of miRNA in malignancy highlights the study of molecular factors upstream of gene expression following the extensive investigation on elucidating the important role of miRNA in carcinogenesis. We herein present a thorough review of the role of miRNAs in EC, addressing miRNA functions, their putative role as oncogenes or tumor suppressors and their potential target genes. The recent progresses in discovering the quantifiable circulating cancer-associated miRNAs indicate the potential clinical use of miRNAs as novel minimally invasive biomarkers for EC and other cancers. We also discuss the potential role of miRNAs in detection, screening and surveillance of EC as miRNAs can be a potential target in personalized treatment of EC.
Collapse
|
975
|
Koturbash I, Zemp FJ, Pogribny I, Kovalchuk O. Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis. Mutat Res 2010; 722:94-105. [PMID: 20472093 DOI: 10.1016/j.mrgentox.2010.05.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/08/2010] [Indexed: 12/17/2022]
Abstract
Small non-coding RNAs-microRNAs, are potent negative regulators of gene expression. MicroRNAs are involved in multiple biological processes, metabolic regulation, including cell proliferation, differentiation, and programmed cell death. Since the dysregulation of these processes is a hallmark of cancer, microRNAs can be viewed as major contributors to the pathogenesis of cancer, including initiation and progression of cancer. This review focuses on microRNA biogenesis and function, and their role in cancer, metastasis, drug resistance, and tumorigenesis.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Biological Sciences, University of Lethbridge, AB, Canada
| | | | | | | |
Collapse
|
976
|
MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol 2010; 28:1469-74. [PMID: 20480266 DOI: 10.1007/s12032-010-9563-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/04/2010] [Indexed: 02/07/2023]
Abstract
MicroRNAs are involved in different cancer-related processes. MicroRNA-21 (miR-21), as an oncomiR, is overexpressed in all kinds of tumors and the role of miR-21 in carcinogenesis is elucidated in many cancers gradually. However, the function of miR-21 in osteosarcoma is still unclear. In our study, we found that miR-21 was significantly overexpressed in osteosarcoma tissues. More importantly, we confirmed that knockdown of miR-21 greatly decreased cell invasion and migration of MG-63. Furthermore, we identified that RECK (reversion-inducing-cysteine-rich protein with kazal motifs), a tumor suppressor gene, was a direct target of miR-21. Finally, the expression of RECK protein negatively correlated with the expression of miR-21 in human osteosarcoma tissues, indicating the potential regulation of RECK by miR-21. Our results suggest that miR-21 expression has a key role in regulating cellular processes in osteosarcoma, likely through regulating RECK and may serve as a therapeutic target.
Collapse
|
977
|
Bilodeau E, Alawi F, Costello BJ, Prasad JL. Molecular diagnostics for head and neck pathology. Oral Maxillofac Surg Clin North Am 2010; 22:183-94. [PMID: 20159486 DOI: 10.1016/j.coms.2009.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular diagnostic techniques are quickly finding a role in the detection and diagnosis of tumors, and in predicting their behavior. They may also prove useful in developing new therapeutic approaches to head and neck cancer. The surgeon working in the craniomaxillofacial region should have an understanding of these technologies, their availability in various settings, and how they affect various aspects of treatment, particularly in the detection and treatment of malignancies. This article offers an overview of recent advances in molecular diagnostic techniques, with their implications for diagnosis and management of head and neck tumors.
Collapse
Affiliation(s)
- Elizabeth Bilodeau
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
978
|
Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT, Funel N, Park JK, Kim MA, Kang GH, Kim SW, Chiaro MD, Peters GJ, Giaccone G. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 2010; 5:e10630. [PMID: 20498843 PMCID: PMC2871055 DOI: 10.1371/journal.pone.0010630] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/20/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. The high risk of recurrence following surgical resection provides the rationale for adjuvant therapy. However, only a subset of patients benefit from adjuvant therapy. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of novel candidate biomarkers, including microRNAs, can predict clinical outcome in PDAC patients treated with adjuvant therapy. METHODOLOGY/PRINCIPAL FINDINGS Formalin-fixed paraffin embedded specimens from a cohort of 82 resected Korean PDAC cases were analyzed for protein expression by immunohistochemistry and for microRNA expression using quantitative Real-Time PCR. Cox proportional hazards model analysis in the subgroup of patients treated with adjuvant therapy (N = 52) showed that lower than median miR-21 expression was associated with a significantly lower hazard ratio (HR) for death (HR = 0.316; 95%CI = 0.166-0.600; P = 0.0004) and recurrence (HR = 0.521; 95%CI = 0.280-0.967; P = 0.04). MiR-21 expression status emerged as the single most predictive biomarker for treatment outcome among all 27 biological and 9 clinicopathological factors evaluated. No significant association was detected in patients not treated with adjuvant therapy. In an independent validation cohort of 45 frozen PDAC tissues from Italian cases, all treated with adjuvant therapy, lower than median miR-21 expression was confirmed to be correlated with longer overall as well as disease-free survival. Furthermore, transfection with anti-miR-21 enhanced the chemosensitivity of PDAC cells. CONCLUSIONS SIGNIFICANCE Low miR-21 expression was associated with benefit from adjuvant treatment in two independent cohorts of PDAC cases, and anti-miR-21 increased anticancer drug activity in vitro. These data provide evidence that miR-21 may allow stratification for adjuvant therapy, and represents a new potential target for therapy in PDAC.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Cell Proliferation/drug effects
- Chemotherapy, Adjuvant
- Cohort Studies
- Disease-Free Survival
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fluorouracil/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Italy
- Korea
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Multivariate Analysis
- Oligonucleotide Array Sequence Analysis
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- Proportional Hazards Models
- Recurrence
- Reproducibility of Results
- Treatment Outcome
Collapse
Affiliation(s)
- Jin-Hyeok Hwang
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Voortman
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Leticia G. Leon
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yong-Tae Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Niccola Funel
- Divisione di Chirurgia Generale e dei Trapianti dell'Uremico e del Diabetico, Hospital of Pisa, Pisa, Italy
| | - Joo Kyung Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min A. Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Whe Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Marco Del Chiaro
- Divisione di Chirurgia Generale e dei Trapianti dell'Uremico e del Diabetico, Hospital of Pisa, Pisa, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Giuseppe Giaccone
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
979
|
Abstract
Chemotherapy is the preferred treatment for malignancies. However, a successful long-term use of chemotherapy is often prevented by the development of drug resistance. Many mechanisms such as gene mutation, DNA methylation and histone modification have important roles in the resistance of cancer cells to chemotherapeutic agents. Climent suggested miR-125b was involved in the development of drug resistance by microRNA (miRNA) dysregulation. miRNAs are endogenously expressed small non-coding RNAs, which are evolutionarily conserved and function as regulators of gene expression. Much effort has been exerted in analyzing the role of miRNAs in the development of drug resistance in a variety of malignancies. Several research groups have shown that the expressions of miRNAs in chemoresistant cancer cells and their parental chemosensitive ones are different. The molecular targets and mechanisms of chemosensitivity and chemoresistance are also elucidated. This article reviews the functions of miRNAs in the development of drug resistance.
Collapse
|
980
|
Connolly EC, Van Doorslaer K, Rogler LE, Rogler CE. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res 2010; 8:691-700. [PMID: 20460403 DOI: 10.1158/1541-7786.mcr-09-0465] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is a multistep process that involves the deregulation of oncogenes and tumor suppressors beyond changes required for primary tumor formation. RHOB is known to have tumor suppressor activity, and its knockdown is associated with more aggressive tumors as well as changes in cell shape, migration, and adhesion. This study shows that oncogenic microRNA, miR-21, represses RHOB expression by directly targeting the 3' untranslated region. Loss of miR-21 is associated with an elevation of RHOB in hepatocellular carcinoma cell lines Huh-7 and HepG2 and in the metastatic breast cancer cell line MDA-MB-231. Using in vitro models of distinct stages of metastasis, we showed that loss of miR-21 also causes a reduction in migration, invasion, and cell elongation. The reduction in migration and cell elongation can be mimicked by overexpression of RHOB. Furthermore, changes in miR-21 expression lead to alterations in matrix metalloproteinase-9 activity. Therefore, we conclude that miR-21 promotes multiple components of the metastatic phenotype in vitro by regulating several important tumor suppressors, including RHOB.
Collapse
Affiliation(s)
- Erin C Connolly
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
981
|
Abstract
Apoptosis is a well-orchestrated cellular mechanism that balances the effects of cell proliferation and cell death. MicroRNAs (miRNAs) have been shown to control cell growth, differentiation, and apoptosis; and can be significantly deregulated in many cancers types. In fact, the ability to evade apoptosis is a hallmark of tumorigenesis. Although the role of miRNAs in the regulation of apoptosis is not fully understood, the recent influx of data strongly suggests that miRNAs play a significant role in regulating programmed cell death, or apoptosis. The genes involved in apoptotic pathways can be broadly classified as pro-apoptotic and anti-apoptotic. Many of these apoptotic genes, irrespective of their positive or negative functional role in apoptosis, are regulated by miRNAs. In this review, we discuss the emerging role of miRNA-mediated gene networks in the control of apoptosis.
Collapse
Affiliation(s)
- Subbaya Subramanian
- Department of Laboratory Medicine & Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
982
|
Staaf J, Jönsson G, Ringnér M, Vallon-Christersson J, Grabau D, Arason A, Gunnarsson H, Agnarsson BA, Malmström PO, Johannsson OT, Loman N, Barkardottir RB, Borg Å. High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast Cancer Res 2010; 12:R25. [PMID: 20459607 PMCID: PMC2917012 DOI: 10.1186/bcr2568] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/05/2010] [Accepted: 05/06/2010] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets. METHODS Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number alterations (CNAs) in HER2+ tumors, which were related to a set of 554 non-HER2 amplified (HER2-) breast tumors. High-resolution oligonucleotide aCGH was used to delineate the 17q12-q21 region in high detail. RESULTS The HER2-amplicon was narrowed to an 85.92 kbp region including the TCAP, PNMT, PERLD1, HER2, C17orf37 and GRB7 genes, and higher HER2 copy numbers indicated worse prognosis. In 31% of HER2+ tumors the amplicon extended to TOP2A, defining a subgroup of HER2+ breast cancer associated with estrogen receptor-positive status and with a trend of better survival than HER2+ breast cancers with deleted (18%) or neutral TOP2A (51%). HER2+ tumors were clearly distinguished from HER2- tumors by the presence of recurrent high-level amplifications and firestorm patterns on chromosome 17q. While there was no significant difference between HER2+ and HER2- tumors regarding the incidence of other recurrent high-level amplifications, differences in the co-amplification pattern were observed, as shown by the almost mutually exclusive occurrence of 8p12, 11q13 and 20q13 amplification in HER2+ tumors. GISTIC analysis identified 117 significant CNAs across all autosomes. Supervised analyses revealed: (1) significant CNAs separating HER2+ tumors stratified by clinical variables, and (2) CNAs separating HER2+ from HER2- tumors. CONCLUSIONS We have performed a comprehensive survey of CNAs in HER2+ breast tumors, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets. Our analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer.
Collapse
Affiliation(s)
- Johan Staaf
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184, Lund, Sweden
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184, Lund, Sweden
| | - Markus Ringnér
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184, Lund, Sweden
| | - Johan Vallon-Christersson
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184, Lund, Sweden
| | - Dorthe Grabau
- Department of Pathology, Clinical Sciences, Lund University, University Hospital, SE 22185 Lund, Sweden
| | - Adalgeir Arason
- Department of Pathology, Landspitali-University Hospital, 101 Reykjavik, Iceland
| | - Haukur Gunnarsson
- Department of Pathology, Landspitali-University Hospital, 101 Reykjavik, Iceland
| | - Bjarni A Agnarsson
- Department of Pathology, Landspitali-University Hospital, 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Per-Olof Malmström
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
| | - Oskar Th Johannsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Oncology, Landspitali-University Hospital, 101 Reykjavik, Iceland
| | - Niklas Loman
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali-University Hospital, 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Åke Borg
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184, Lund, Sweden
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC B10, SE 22184, Lund, Sweden
| |
Collapse
|
983
|
Edwards JK, Pasqualini R, Arap W, Calin GA. MicroRNAs and ultraconserved genes as diagnostic markers and therapeutic targets in cancer and cardiovascular diseases. J Cardiovasc Transl Res 2010; 3:271-9. [PMID: 20560048 DOI: 10.1007/s12265-010-9179-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/01/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), approximately 19-25 nucleotides in length, are posttranscriptional regulators of protein expression that target and inhibit translation of messenger (m) RNAs. Recent research on miRNAs has produced a plethora of new material on the role of miRNAs in disease. Deregulation or ablation of miRNA expression has led to major pathologies including heart disease and cancer. Signatures of differential miRNA expression have been uncovered for nearly every disease. Recent research has focused on exploitation of the selectivity of these signatures as markers of disease and for therapeutic applications. The significance of additional mechanisms of abnormal posttranscriptional regulation, such as ultraconserved genes (UCGs), has recently been recognized. This review focuses on the identification of aberrant posttranscriptional regulators (miRNAs and UCGs) in cancer and cardiovascular disease and addresses the applications of this work towards diagnosis and therapy.
Collapse
Affiliation(s)
- Julianna K Edwards
- David H. Koch Center, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
984
|
Le Quesne J, Caldas C. Micro-RNAs and breast cancer. Mol Oncol 2010; 4:230-41. [PMID: 20537965 DOI: 10.1016/j.molonc.2010.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 12/18/2022] Open
Abstract
Micro-RNAs (miRs) are a recently described class of genes, encoding small non-coding RNA molecules, which primarily act by down-regulating the translation of target mRNAs. miRs are involved in a range of normal physiological processes, notably differentiation and cell type determination. It has become apparent that they are also key factors in cancer, playing both oncogenic and tumour-suppressing roles. We discuss here what is known of miR biology in the normal breast, and of their emerging roles in breast cancer.
Collapse
Affiliation(s)
- John Le Quesne
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | |
Collapse
|
985
|
Abstract
Work over the last decade has revealed novel regulatory mechanisms in pathological disease states that are mediated by microRNAs and has inspired researchers to begin elucidating the specific roles of miRNAs in the regulation of genes involved in cancer development and progression. Recently, miRNAs have been explored as therapeutic targets and diagnostic markers of cancer. In this paper, we review recent advances in the study of miRNAs involved in tumorigenesis, focusing on miRNA regulation of genes that have been demonstrated to play critical roles in lung cancer development. We discuss miRNA regulation of genes that play critical roles in the process of malignant transformation, angiogenesis and tumor metastasis, the dysregulation of miRNA expression in cancer development, and the development of miRNA-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Liqin Du
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8807, USA
| | | |
Collapse
|
986
|
Wang Z. MicroRNA: A matter of life or death. World J Biol Chem 2010; 1:41-54. [PMID: 21537368 PMCID: PMC3083949 DOI: 10.4331/wjbc.v1.i4.41] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 02/05/2023] Open
Abstract
Progressive cell loss due to apoptosis is a pathological hallmark implicated in a wide spectrum of degenerative diseases such as heart disease, atherosclerotic arteries and hypertensive vessels, Alzheimer's disease and other neurodegenerative disorders. Tremendous efforts have been made to improve our understanding of the molecular mechanisms and signaling pathways involved in apoptosistic cell death. Once ignored completely or overlooked as cellular detritus, microRNAs (miRNAs) that were discovered only a decade ago, have recently taken many by surprise. The importance of miRNAs has steadily gained appreciation and miRNA biology has exploded into a massive swell of interest with enormous range and potential in almost every biological discipline because of their widespread expression and diverse functions in both animals and humans. It has been established that miRNAs are critical regulators of apoptosis of various cell types. These small molecules act by repressing the expression of either the proapoptotic or antiapoptotic genes to produce antiapoptotic or proapoptotic effects. Appealing evidence has been accumulating for the involvement of miRNAs in human diseases associated with apoptotic cell death and the potential of miRNAs as novel therapeutic targets for the treatment of the diseases. This editorial aims to convey this message and to boost up the research interest by providing a timely, comprehensive overview on regulation of apoptosis by miRNAs and a synopsis on the pathophysiologic implications of this novel regulatory network based on the currently available data in the literature. It begins with a brief introduction to apoptosis and miRNAs, followed by the description of the fundamental aspects of miRNA biogenesis and action, and the role of miRNAs in regulating apoptosis of cancer cells and cardiovascular cells. Speculations on the development of miRNAs as potential therapeutic targets are also presented. Remarks are also provided to point out the unanswered questions and to outline the new directions for the future research of the field.
Collapse
Affiliation(s)
- Zhiguo Wang
- Zhiguo Wang, Research Center, Montreal Heart Institute and Department of Medicine, University of Montreal, Montreal, PQ H1T 1C8, Canada
| |
Collapse
|
987
|
Role of inflammation and oxidative stress mediators in gliomas. Cancers (Basel) 2010; 2:693-712. [PMID: 24281089 PMCID: PMC3835099 DOI: 10.3390/cancers2020693] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.
Collapse
|
988
|
Guo X, Wu Y, Hartley RS. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 2010; 6:575-83. [PMID: 19875930 DOI: 10.4161/rna.6.5.10079] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of naturally occurring, small, non-coding RNAs that control gene expression during development,normal cell function and disease. Although there is emerging evidence that some miRNAs can function as oncogenes or tumor suppressors, there is limited understanding of the role of miRNAs in cancer. In this study, we observed that the expression of miR-125a was inversely correlated with HuR expression in several different breast carcinoma cell lines. HuR is a stress-induced RNA binding protein whose expression is elevated or localization perturbed in several different cancers. Increased cytoplasmic localization of HuR is a prognostic marker in breast cancer. Real time PCR and gene reporter assays indicated that HuR was translationally repressed by miR-125a. Re-establishing miR-125a expression in breast cancer cells decreased HuR protein level and inhibited cell growth. Using MCF-7 breast cancer cells, we further clarified that miR-125a inhibited cell growth via a dramatic suppression of cell proliferation and promotion of apoptosis.In addition, cell migration was also inhibited by miR-125a overexpression. Importantly, the repression of cell proliferation and migration engendered by miR-125a was partly rescued by HuR re-expression. Our results suggest that miR-125a may function as a tumor suppressor for breast cancer, with HuR as a direct and functional target.
Collapse
Affiliation(s)
- Xu Guo
- Department of Cell Biology and Physiology and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | | |
Collapse
|
989
|
Pfeifer A, Lehmann H. Pharmacological potential of RNAi--focus on miRNA. Pharmacol Ther 2010; 126:217-27. [PMID: 20388525 DOI: 10.1016/j.pharmthera.2010.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) is a cellular process that is widely used as a research tool to control the expression of specific genes and has the potential as a therapeutic strategy for many diseases. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two principal categories of small RNAs that induce RNAi in a broad spectrum of eukaryotic organisms including human cells. miRNAs have an enormous capacity to regulate multiple genes and the expression of approximately 30% of the human genes is affected by these non-coding RNAs. Because many miRNAs are specifically expressed during disease, miRNAs are interesting tools for pharmacology and understanding the function of specific miRNAs will help to identify novel drug targets. Furthermore, miRNA-based diagnostics as well as therapeutic interventions are being developed for clinical applications.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Biomedical Center, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | |
Collapse
|
990
|
Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 2010; 46:1692-702. [PMID: 20371173 DOI: 10.1016/j.ejca.2010.02.043] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are now known to play important roles in the regulation of gene expression for developmental timing, cell proliferation and apoptosis. Therefore, it is likely that they also modulate sensitivity and resistance to anti-cancer drugs. To better understand the molecular mechanisms of multidrug resistance in SCLC and identify novel molecular markers, we evaluated the expression of 856 miRNAs and approximately 22,000 genes using miRNA microarray and cDNA microarray in cellular models of SCLC which were widely used as sensitive (NCI-H69) and resistant cell lines (NCI-H69AR) to chemotherapy. We also analysed the correlations between miRNA and mRNA expression patterns. Further studies were tested to determine whether the differentially expressed miRNAs were involved in multidrug resistance in SCLC. Our results showed that 61 miRNAs are presented significantly (>3-fold) including up-regulation of 24 miRNAs and down-regulation of 37 miRNAs. Among these miRNAs, 48 of 61 differentially expressed miRNAs were firstly reported to be closely associated with drug resistance and 37.7% (24/61) of miRNA genes were organised as 10 clusters in total 61 significantly expressed miRNAs. We also found that only 27 of 69 miRNAs were significantly correlated with 604 of 21,522 70 mRNA transcripts by MAS database. The sensitivity to anti-cancer drugs Cisplatin, Etoposide and Doxorubicin greatly increased or reduced following transfection of the drug-resistant H69AR cells with the mimics or antagomirs of miR-134, miR-379 and miR-495, respectively. miR-134 increases the cell survival by inducing G1 arrest in H69AR cells. MRP1/ABCC1 is negatively regulated by miR-134 and down-regulation of MRP1/ABCC1 at the protein level largely correlates with elevated levels of miR-134 in H69AR cells. Our results support for the first time a substantial role for miRNAs in multidrug resistance in SCLC. miR-134 could be a causal factor of the down-regulation of MRP1/ABCC1 in H69AR cells. These findings provide valuable information for potential utility of these miRNAs as specific diagnostic biomarkers and novel therapeutic approaches for drug resistance of SCLC.
Collapse
|
991
|
Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59:978-86. [PMID: 20086228 PMCID: PMC2844845 DOI: 10.2337/db09-0881] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.
Collapse
Affiliation(s)
- Elodie Roggli
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aurore Britan
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Sonia Gattesco
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Lin-Marq
- Department of Genetic Medicine and Development, Geneva Eurexpress, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Amar Abderrahmani
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Service of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Romano Regazzi
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Romano Regazzi,
| |
Collapse
|
992
|
Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 2010; 298:G535-41. [PMID: 20167875 PMCID: PMC2853303 DOI: 10.1152/ajpgi.00338.2009] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During liver regeneration, normally quiescent liver cells reenter the cell cycle, nonparenchymal and parenchymal cells divide, and proper liver architecture is restored. The gene expression programs regulating these transitions are not completely understood. MicroRNAs are a newly discovered class of small regulatory RNAs that silence messenger RNAs by binding to their 3'-untranslated regions (UTRs). A number of microRNAs, including miR-21, have been shown to be involved in regulation of cell proliferation. We performed partial hepatectomies on mice and allowed the liver to regenerate for 1, 6, 12, 24, and 48 h and 4 and 7 days. We compared the expression of miR-21 in the posthepatectomy liver to the prehepatectomy liver by Northern blot and found that miR-21 was upregulated during the early stages of liver regeneration. NF-kappaB signaling is also activated very early during liver regeneration. It has been previously reported that NF-kappaB upregulates the miR-21 precursor transcript. The predicted miR-21 target, Pellino (Peli1), is a ubiquitin ligase involved in activating NF-kappaB signaling. We observed an inverse correlation between miR-21 and Peli1 mRNA levels during liver regeneration. miR-21 overexpression in cultured cells inhibited a Peli1 3'-UTR luciferase reporter. Using NF-kappaB reporter assays, we determined that miR-21 overexpression inhibits NF-kappaB signaling. In conclusion, miR-21 expression was upregulated during early stages of liver regeneration. Targeting of Peli1 by miR-21 could potentially provide the basis for a negative feedback cycle regulating NF-kappaB signaling.
Collapse
Affiliation(s)
- Rebecca T. Marquez
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Erik Wendlandt
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Courtney Searcey Galle
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kathy Keck
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Anton P. McCaffrey
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
993
|
Carletti MZ, Fiedler SD, Christenson LK. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 2010; 83:286-95. [PMID: 20357270 DOI: 10.1095/biolreprod.109.081448] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in many developmental processes, including cell differentiation and apoptosis. Transition of proliferative ovarian granulosa cells to terminally differentiated luteal cells in response to the ovulatory surge of luteinizing hormone (LH) involves rapid and pronounced changes in cellular morphology and function. MicroRNA 21 (miR-21, official symbol Mir21) is one of three highly LH-induced miRNAs in murine granulosa cells, and here we examine the function and temporal expression of Mir21 within granulosa cells as they transition to luteal cells. Granulosa cells were transfected with blocking (2'-O-methyl) and locked nucleic acid (LNA-21) oligonucleotides, and mature Mir21 expression decreased to one ninth and one twenty-seventh of its basal expression, respectively. LNA-21 depletion of Mir21 activity in cultured granulosa cells induced apoptosis. In vivo, follicular granulosa cells exhibit a decrease in cleaved caspase 3, a hallmark of apoptosis, 6 h after the LH/human chorionic gonadotropin surge, coincident with the highest expression of mature Mir21. To examine whether Mir21 is involved in regulation of apoptosis in vivo, mice were treated with a phospho thioate-modified LNA-21 oligonucleotide, and granulosa cell apoptosis was examined. Apoptosis increased in LNA-21-treated ovaries, and ovulation rate decreased in LNA-21-treated ovaries, compared with their contralateral controls. We have examined a number of Mir21 apoptotic target transcripts identified in other systems; currently, none of these appear to play a role in the induction of ovarian granulosa cell apoptosis. This study is the first to implicate the antiapoptotic Mir21 (an oncogenic miRNA) as playing a clear physiologic role in normal tissue function.
Collapse
Affiliation(s)
- Martha Z Carletti
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | |
Collapse
|
994
|
Abstract
MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.
Collapse
|
995
|
Zhu S, Sachdeva M, Wu F, Lu Z, Mo YY. Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 2010; 29:1763-72. [PMID: 20023705 PMCID: PMC2845735 DOI: 10.1038/onc.2009.459] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/06/2009] [Accepted: 11/12/2009] [Indexed: 12/18/2022]
Abstract
Ubc9 is an E2-conjugating enzyme that transfers the activated small ubiquitin-like modifier (SUMO) to protein substrates, and thus it has an important function in sumoylation-mediated cellular pathways. We have earlier reported that Ubc9 promotes tumor growth in the xenograft mouse model using breast cancer cell line MCF-7 in part through regulation of Bcl-2 expression. In this study, we show that ectopic expression of wild-type Ubc9 (Ubc9-WT) promotes cell invasion and metastasis. Surprisingly, the dominant negative mutant Ubc9 (Ubc9-DN) also causes the same phenotype, indicating that the ability of Ubc9 to promote invasion and metastasis is distinct from its ability to conjugate SUMO to protein substrates. Of considerable interest, several microRNAs such as miR-224 are regulated by Ubc9. Although ectopic expression of Ubc9 causes downregulation of miR-224, suppression of Ubc9 by Ubc9-siRNAs leads to its upregulation. We further show that miR-224 can inhibit cell invasion and directly targets CDC42 and CXCR4, and that suppression of CDC42 and CXCR4 by RNAi causes inhibition of Ubc9-mediated invasion. Together, these results show a molecular link between Ubc9 and the metastasis genes such as CDC42 and CXCR4, and thus provide new insight into the mechanism by which Ubc9 promotes tumor invasion and metastasis.
Collapse
Affiliation(s)
- Shuomin Zhu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Mohit Sachdeva
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Fangting Wu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Zhaohui Lu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| | - Yin-Yuan Mo
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL
| |
Collapse
|
996
|
Lan FF, Wang H, Chen YC, Chan CY, Ng SS, Li K, Xie D, He ML, Lin MC, Kung HF. Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int J Cancer 2010; 128:319-31. [PMID: 20309945 DOI: 10.1002/ijc.25336] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 03/09/2010] [Indexed: 12/12/2022]
Abstract
zMicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs that regulate approximately one-third of human genes at post-transcription level. Previous studies have shown that miRNAs were implicated in many cellular processes and participated in the progress of various tumors including hepatocellular carcinoma (HCC). Among all miRNAs, the let-7 family is well recognized to play pivotal roles in tumorigenesis by functioning as potential growth suppressor. In the present study, we aimed to investigate the role of let-7 family, particularly the hsa-let-7g, in the molecular pathogenesis of HCC. By use of MTT, qPCR, Western blotting and 2-dimensional electrophoresis (2-DE), over-expression of hsa-let-7g was found to inhibit the proliferation of HCC cell line via negative and positive regulations of c-Myc and p16(INK4A) , respectively. The expression of hsa-let-7g was noted to be markedly lowered in the HepG2, Hep3B and Huh7 cells, yet higher in the Bel-7404 HCC cell line. Proliferation of HCC cell line was significantly inhibited after the transfection of hsa-let-7g mimics, while hsa-let-7g inhibitor transfection exerted an opposite effect. Concurrently, the mRNA and protein levels of c-Myc were found significantly decreased in HepG2 cells after transfection of hsa-let-7g mimics, but obviously increased in Bel-7404 cells after transfection of hsa-let-7g inhibitor. As revealed by 2-DE, a significant upregulation of p16(INK4A) was revealed after the gain-of-function study using hsa-let-7g. Therefore, we suggest that hsa-let-7g may act as a tumor suppressor gene that inhibits HCC cell proliferation by downregulating the oncogene, c-Myc, and upregulating the tumor suppressor gene, p16(INK4A) .
Collapse
Affiliation(s)
- Fei-Fei Lan
- Laboratory of Integrated Biosciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
997
|
Abstract
MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that post-transcriptionally inhibit gene expression. Many miRNAs have been implicated in several human cancers, including breast cancer. Here we describe the association between altered miRNA signatures and breast cancer tumorigenesis and metastasis. The loss of several tumor suppressor miRNAs (miR-206, miR-17-5p, miR-125a, miR-125b, miR-200, let-7, miR-34 and miR-31) and the overexpression of certain oncogenic miRNAs (miR-21, miR-155, miR-10b, miR-373 and miR-520c) have been observed in many breast cancers. The gene networks orchestrated by these miRNAs are still largely unknown, although key targets have been identified that may contribute to the disease phenotype. Here we report how the observed perturbations in miRNA expression profiles may lead to disruption of key pathways involved in breast cancer.
Collapse
|
998
|
Tran N, O'Brien CJ, Clark J, Rose B. Potential role of micro-RNAs in head and neck tumorigenesis. Head Neck 2010; 32:1099-111. [DOI: 10.1002/hed.21356] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
999
|
Abstract
microRNAs are small noncoding RNAs that regulate protein-coding genes via posttranscriptional repression. Most protein-coding genes are subjected to microRNA-mediated regulation, making the potential effect of these small molecules on regulatory networks enormous. Recent research has implicated miRNAs in the regulation of innate and adaptive immune responses as well as inflammatory networks in various cell and tissue types. In this review, we summarize the current knowledge about miRNAs in immunity and inflammation, focusing on the recent results on miRNAs involved in the regulation of immune responses and inflammatory diseases.
Collapse
Affiliation(s)
- Enikö Sonkoly
- Molecular Dermatology Research Group, Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
1000
|
Chen Q, Li WG. Advances in understanding the relationship between microRNAs and cholangiocarcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:563-567. [DOI: 10.11569/wcjd.v18.i6.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs widely distributed in plants and animals. They can inhibit the expression of protein-coding genes by binding to the 3' UTR of mRNAs and inducing either translational repression or mRNA degradation. It has been demonstrated that miRNAs play important roles in regulating cell proliferation, apoptosis and differentiation. In addition, miRNAs can function as oncogenes or tumor suppressor genes and are therefore closely associated with oncogenesis. This review will focus on the biogenesis, silencing mechanism, and biological function of miRNAs, and their roles in the development and progression of cholangiocarcinoma.
Collapse
|