951
|
Abstract
With the completion of the human genome sequence and the advent of technologies to study functional aspects of genomes, molecular comparisons between humans and other primates have gained momentum. The comparison of the human genome to the genomes of species closely related to humans allows the identification of genomic features that set primates apart from other mammals and of features that set certain primates notably humans apart from other primates. In this article, we review recent progress in these areas with an emphasis on how comparative approaches may be used to identify functionally relevant features unique to the human genome.
Collapse
Affiliation(s)
- Wolfgang Enard
- Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | | |
Collapse
|
952
|
Abstract
Completing the primary genomic sequence of Arabidopsis thaliana was a major milestone, being the first plant genome and only the third high-quality finished eukaryotic genome sequence. Understanding how the genome sequence comprehensively encodes developmental programs and environmental responses is the next major challenge for all plant genome projects. This requires fully characterizing the genes, the regulatory sequences, and their functions. We discuss several functional genomics approaches to decode the linear sequence of the reference plant Arabidopsis thaliana, including full-length cDNA collections, microarrays, natural variation, knockout collections, and comparative sequence analysis. Genomics provides the essential tools to speed the work of the traditional molecular geneticist and is now a scientific discipline in its own right.
Collapse
Affiliation(s)
- Justin O Borevitz
- Genomic Analysis Laboratory, Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
953
|
Pond SLK, Frost SDW. A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol 2004; 22:478-85. [PMID: 15509724 DOI: 10.1093/molbev/msi031] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ratio of nonsynonymous (dN) to synonymous (dS) substitution rates, omega, provides a measure of selection at the protein level. Models have been developed that allow omega to vary among lineages. However, these models require the lineages in which differential selection has acted to be specified a priori. We propose a genetic algorithm approach to assign lineages in a phylogeny to a fixed number of different classes of omega, thus allowing variable selection pressure without a priori specification of particular lineages. This approach can identify models with a better fit than a single-ratio model, and with fits that are better than (in an information theoretic sense) a fully local model, in which all lineages are assumed to evolve under different values of omega, but with far fewer parameters. By averaging over models which explain the data reasonably well, we can assess the robustness of our conclusions to uncertainty in model estimation. Our approach can also be used to compare results from models in which branch classes are specified a priori with a wide range of credible models. We illustrate our methods on primate lysozyme sequences and compare them with previous methods applied to the same data sets.
Collapse
|
954
|
McClellan DA, Palfreyman EJ, Smith MJ, Moss JL, Christensen RG, Sailsbery JK. Physicochemical Evolution and Molecular Adaptation of the Cetacean and Artiodactyl Cytochrome b Proteins. Mol Biol Evol 2004; 22:437-55. [PMID: 15509727 DOI: 10.1093/molbev/msi028] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cetaceans have most likely experienced metabolic shifts since evolutionarily diverging from their terrestrial ancestors, shifts that may be reflected in the proteins such as cytochrome b that are responsible for metabolic efficiency. However, accepted statistical methods for detecting molecular adaptation are largely biased against even moderately conservative proteins because the primary criterion involves a comparison of nonsynonymous and synonymous substitution rates (dN/dS); they do not allow for the possibility that adaptation may come in the form of very few amino acid changes. We apply the MM01 model to the possible molecular adaptation of cytochrome b among cetaceans because it does not rely on a dN/dS ratio, instead evaluating positive selection in terms of the amino acid properties that comprise protein phenotypes that selection at the molecular level may act upon. We also apply the codon-degeneracy model (CDM), which focuses on evaluating overall patterns of nucleotide substitution in terms of base exchange, codon position, and synonymy to estimate the overall effect of selection. Using these relatively new models, we characterize the molecular adaptation that has occurred in the cetacean cytochrome b protein by comparing revealed amino acid replacement patterns to those found among artiodactyls, the modern terrestrial mammals found to be most closely related to cetaceans. Our findings suggest that several regions of the cetacean cytochrome b protein have experienced molecular adaptation. Also, these adaptations are spatially associated with domain structure, protein function, and the structure and function of the cytochrome bc(1) complex and its constituents. We also have found a general correlation between the results of the analytical software programs TreeSAAP (which implements the MM01 model) and CDM (which implements the codon-degeneracy model).
Collapse
Affiliation(s)
- D A McClellan
- Department of. Integrative Biology, Brigham Young University, Provo, Utah, USA.
| | | | | | | | | | | |
Collapse
|
955
|
Bielawski JP, Dunn KA, Sabehi G, Béjà O. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc Natl Acad Sci U S A 2004; 101:14824-9. [PMID: 15466697 PMCID: PMC522022 DOI: 10.1073/pnas.0403999101] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin, a retinal-binding protein, represents a potentially significant source of light-driven energy production in the world's oceans. The distribution of photochemically divergent proteorhodopsins is stratified according to depth. Here, we present evidence that such photochemical diversity was tuned by Darwinian selection. By using a Bayesian method, we identified sites targeted by Darwinian selection and mapped them to three-dimensional models of proteorhodopsins. We suggest that spectral fine-tuning results from the combined effect of amino acids that directly interact with retinal and those that influence the confirmation of the retinal-binding pocket.
Collapse
Affiliation(s)
- Joseph P Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada.
| | | | | | | |
Collapse
|
956
|
Pavlicek A, Noskov VN, Kouprina N, Barrett JC, Jurka J, Larionov V. Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition. Hum Mol Genet 2004; 13:2737-51. [PMID: 15385441 DOI: 10.1093/hmg/ddh301] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Germ-line mutations in the BRCA1 gene predispose affected individuals to breast and ovarian cancer syndromes. In an attempt to systematically analyze a broader spectrum of genetic changes ranging from frequent exon deletions and duplications to amino acid replacements and protein truncations, we isolated and characterized full size BRCA1 homologues from a representative group of non-human primates. Our analysis represents the first comprehensive sequence comparison of primate BRCA1 loci and corresponding proteins. The comparison revealed an unusually high proportion of indels in non-coding DNA. The major force driving evolutionary changes in non-coding BRCA1 sequences was Alu-mediated rearrangements, including Alu transpositions and Alu-associated deletions, indicating that structural instability of this locus may be intrinsic in anthropoids. Analysis of the non-synonymous/synonymous ratio in coding portions of the gene revealed the presence of both conserved and rapidly evolving regions in the BRCA1 protein. Previously, a rapidly evolving region with evidence of positive evolutionary selection in human and chimpanzee had been identified only in exon 11. Here, we show that most of the internal BRCA1 sequence is variable between primates and evolved under positive selection. In contrast, the terminal regions of BRCA1, which encode the RING finger and BRCT domains, experienced negative selection, which left them almost identical between the compared primates. Distribution of the reported missense mutations, but not frameshift and nonsense mutations, is positively correlated with BRCA1 protein conservation. Finally, on the basis of protein sequence conservation, we identified missense changes that are likely to compromise BRCA1 function.
Collapse
Affiliation(s)
- Adam Pavlicek
- Genetic Information Research Institute, Mountain View, CA, USA
| | | | | | | | | | | |
Collapse
|
957
|
Guindon S, Rodrigo AG, Dyer KA, Huelsenbeck JP. Modeling the site-specific variation of selection patterns along lineages. Proc Natl Acad Sci U S A 2004; 101:12957-62. [PMID: 15326304 PMCID: PMC516501 DOI: 10.1073/pnas.0402177101] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unambiguous footprint of positive Darwinian selection in protein-coding DNA sequences is revealed by an excess of nonsynonymous substitutions over synonymous substitutions compared with the neutral expectation. Methods for analyzing the patterns of nonsynonymous and synonymous substitutions usually rely on stochastic models in which the selection regime may vary across the sequence but remains constant across lineages for any amino acid position. Despite some work that has relaxed the constraint that selection patterns remain constant over time, no model provides a strong statistical framework to deal with switches between selection processes at individual sites during the course of evolution. This paper describes an approach that allows the site-specific selection process to vary along lineages of a phylogenetic tree. The parameters of the switching model of codon substitution are estimated by using maximum likelihood. The analysis of eight HIV-1 env homologous sequence data sets shows that this model provides a significantly better fit to the data than one that does not take into account switches between selection patterns in the phylogeny at individual sites. We also provide strong evidence that the strength and the frequency of occurrence of selection might not be estimated accurately when the site-specific variation of selection regimes is ignored.
Collapse
Affiliation(s)
- Stéphane Guindon
- Bioinformatics Institute, Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
958
|
Pereira V. Genome Evolution: Gene history repeats itself. Heredity (Edinb) 2004; 93:3-4. [PMID: 15083166 DOI: 10.1038/sj.hdy.6800457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
959
|
Barbash DA, Awadalla P, Tarone AM. Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus. PLoS Biol 2004; 2:e142. [PMID: 15208709 PMCID: PMC423131 DOI: 10.1371/journal.pbio.0020142] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 03/11/2004] [Indexed: 12/05/2022] Open
Abstract
Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr) gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past—at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles. Transgenic experiments show that the HMR gene has functionally diverged in Drosophila melanogaster and its sibling species and causes the death of hybrid offspring in interspecific crosses
Collapse
Affiliation(s)
- Daniel A Barbash
- 1Section of Evolution and Ecology, University of CaliforniaDavis, CaliforniaUnited States of America
| | - Philip Awadalla
- 1Section of Evolution and Ecology, University of CaliforniaDavis, CaliforniaUnited States of America
- 2Department of Genetics, North Carolina State UniversityRaleigh, North CarolinaUnited States of America
| | - Aaron M Tarone
- 1Section of Evolution and Ecology, University of CaliforniaDavis, CaliforniaUnited States of America
| |
Collapse
|
960
|
Emes RD, Beatson SA, Ponting CP, Goodstadt L. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res 2004; 14:591-602. [PMID: 15060000 PMCID: PMC383303 DOI: 10.1101/gr.1940604] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical cues influence a range of behavioral responses in rodents. The involvement of protein odorants and odorant receptors in mediating reproductive behavior, foraging, and predator avoidance suggests that their genes may have been subject to adaptive evolution. We have estimated the consequences of selection on rodent pheromones, their receptors, and olfactory receptors. These families were chosen on the basis of multiple gene duplications since the common ancestor of rat and mouse. For each family, codons were identified that are likely to have been subject to adaptive evolution. The majority of such sites are situated on the solvent-accessible surfaces of putative pheromones and the lumenal portions of their likely receptors. We predict that these contribute to physicochemical and functional diversity within pheromone-receptor interaction sites.
Collapse
Affiliation(s)
- Richard D Emes
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
961
|
McCartney MA, Lessios HA. Adaptive Evolution of Sperm Bindin Tracks Egg Incompatibility in Neotropical Sea Urchins of the Genus Echinometra. Mol Biol Evol 2004; 21:732-45. [PMID: 14963103 DOI: 10.1093/molbev/msh071] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bindin is a gamete recognition protein known to control species-specific sperm-egg adhesion and membrane fusion in sea urchins. Previous analyses have shown that diversifying selection on bindin amino acid sequence is found when gametically incompatible species are compared, but not when species are compatible. The present study analyzes bindin polymorphism and divergence in the three closely related species of Echinometra in Central America: E. lucunter and E. viridis from the Caribbean, and E. vanbrunti from the eastern Pacific. The eggs of E. lucunter have evolved a strong block to fertilization by sperm of its neotropical congeners, whereas those of the other two species have not. As in the Indo-West Pacific (IWP) Echinometra, the neotropical species show high intraspecific bindin polymorphism in the same gene regions as in the IWP species. Maximum likelihood analysis shows that many of the polymorphic codon sites are under mild positive selection. Of the fixed amino acid replacements, most have accumulated along the bindin lineage of E. lucunter. We analyzed the data with maximum likelihood models of variation in positive selection across lineages and codon sites, and with models that consider sites and lineages simultaneously. Our results show that positive selection is concentrated along the E. lucunter bindin lineage, and that codon sites with amino acid replacements fixed in this species show by far the highest signal of positive selection. Lineage-specific positive selection paralleling egg incompatibility provides support that adaptive evolution of sperm proteins acts to maintain recognition of bindin by changing egg receptors. Because both egg incompatibility and bindin divergence are greater between allopatric species than between sympatric species, the hypothesis of selection against hybridization (reinforcement) cannot explain why adaptive evolution has been confined to a single lineage in the American Echinometra. Instead, processes acting to varying degrees within species (e.g., sperm competition, sexual selection, and sexual conflict) are more promising explanations for lineage-specific positive selection on bindin.
Collapse
|
962
|
Abstract
Simple model organisms that are amenable to comprehensive experimental analysis can be used to elucidate the molecular genetic architecture of complex traits. They can thereby enhance our understanding of these traits in other organisms, including humans. Here, we describe the use of the nematode Caenorhabditis elegans as a tractable model system to study innate immunity. We detail our current understanding of the worm's immune system, which seems to be characterized by four main signaling cascades: a p38 mitogen-activated protein kinase, a transforming growth factor-beta-like, a programed cell death, and an insulin-like receptor pathway. Many details, especially regarding pathogen recognition and immune effectors, are only poorly characterized and clearly warrant further investigation. We additionally speculate on the evolution of the C. elegans immune system, taking into special consideration the relationship between immunity, stress responses and digestion, the diversification of the different parts of the immune system in response to multiple and/or coevolving pathogens, and the trade-off between immunity and host life history traits. Using C. elegans to address these different facets of host-pathogen interactions provides a fresh perspective on our understanding of the structure and complexity of innate immune systems in animals and plants.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Department of Evolutionary Biology, Institute for Animal Evolution and Ecology, Westphalian Wilhelms-University, Muenster, Germany.
| | | | | |
Collapse
|
963
|
Yang J, Gu H, Yang Z. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea). J Mol Evol 2004; 58:54-63. [PMID: 14743314 DOI: 10.1007/s00239-003-2525-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 07/21/2003] [Indexed: 11/30/2022]
Abstract
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoides, which are important for the pigmentation of flowers and act as attractants to pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. In morning glories (Ipomoea), five functional CHS genes (A-E) have been described. Phylogenetic analysis of the Ipomoea CHS gene family revealed that CHS A, B, and C experienced accelerated rates of amino acid substitution relative to CHS D and E. To examine whether the CHS genes of the morning glories underwent adaptive evolution, maximum-likelihood models of codon substitution were used to analyze the functional sequences in the Ipomoea CHS gene family. These models used the nonsynonymous/synonymous rate ratio (omega = d(N)/ d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio test suggested significant variation in selection pressure among amino acid sites, with a small proportion of them detected to be under positive selection along the branches ancestral to CHS A, B, and C. Positive Darwinian selection appears to have promoted the divergence of subfamily ABC and subfamily DE and is at least partially responsible for a rate increase following gene duplication.
Collapse
Affiliation(s)
- Ji Yang
- College of Life Sciences, Peking, University, Beijing, 100871, China
| | | | | |
Collapse
|
964
|
McInerney JO, Littlewood DTJ, Creevey CJ. Detecting adaptive molecular evolution: additional tools for the parasitologist. ADVANCES IN PARASITOLOGY 2004; 54:359-79. [PMID: 14711091 DOI: 10.1016/s0065-308x(03)54009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is likely that infectious diseases have shaped the evolution of many vertebrates, including humans. The etiological agents of disease continuously strive to evade the immune response and the immune response, in turn, seeks to change in order to keep pace with the invaders. This 'arms race' may be characterized by the selection for new variant hosts and new variant parasites. Here we discuss the utility of phylogenetics in detecting adaptive evolution at the molecular level and, for illustration, we concentrate on a family of surface-exposed proteins (the rifins) found in the recently sequenced genome of Plasmodium falciparum. We employed phylogeny-based methods in order to characterize adaptive evolution in these proteins. We found evidence for adaptive evolution in many of the amino acid residues in at least one lineage. These results indicate that there has been selection for those strains of P. falciparum that contain the new genotypes. These proteins are likely to be of great importance for the survival of the parasite. Studies of the interaction of these proteins with the antigen-presenting cells of the immune system should lead to a better understanding of malarial infection.
Collapse
Affiliation(s)
- James O McInerney
- Bioinformatics and Pharmacogenomics Laboratory, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | |
Collapse
|
965
|
Kalia A, Bessen DE. Natural selection and evolution of streptococcal virulence genes involved in tissue-specific adaptations. J Bacteriol 2004; 186:110-21. [PMID: 14679231 PMCID: PMC303441 DOI: 10.1128/jb.186.1.110-121.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms underlying niche adaptation in bacteria are not fully understood. Primary infection by the pathogen group A streptococcus (GAS) takes place at either the throat or the skin of its human host, and GAS strains differ in tissue site preference. Many skin-tropic strains bind host plasminogen via the plasminogen-binding group A streptococcal M protein (PAM) present on the cell surface; inactivation of genes encoding either PAM or streptokinase (a plasminogen activator) leads to loss of virulence at the skin. Unlike PAM, which is present in only a subset of GAS strains, the gene encoding streptokinase (ska) is present in all GAS isolates. In this study, the evolution of the virulence genes known to be involved in skin infection was examined. Most genetic diversity within ska genes was localized to a region encoding the plasminogen-docking domain (beta-domain). The gene encoding PAM displayed strong linkage disequilibrium (P << 0.01) with a distinct phylogenetic cluster of the ska beta-domain-encoding region. Yet, ska alleles of distant taxa showed a history of intragenic recombination, and high intrinsic levels of recombination were found among GAS strains having different tissue tropisms. The data suggest that tissue-specific adaptations arise from epistatic coselection of bacterial virulence genes. Additional analysis of ska genes showed that approximately 4% of the codons underwent strong diversifying selection. Horizontal acquisition of one ska lineage from a commensal Streptococcus donor species was also evident. Together, the data suggest that new phenotypes can be acquired through interspecies recombination between orthologous genes, while constrained functions can be preserved; in this way, orthologous genes may provide a rich and ready source for new phenotypes and thereby play a facilitating role in the emergence of new niche adaptations in bacteria.
Collapse
Affiliation(s)
- Awdhesh Kalia
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
966
|
Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 2003; 302:1960-3. [PMID: 14671302 DOI: 10.1126/science.1088821] [Citation(s) in RCA: 469] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.
Collapse
Affiliation(s)
- Andrew G Clark
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
967
|
Abstract
The genome sequences of multiple species has enabled functional inferences from comparative genomics. A primary objective is to infer biological functions from the conservation of homologous DNA sequences between species. A second, more difficult, objective is to understand what functional DNA sequences have changed over time and are responsible for species' phenotypic differences. The neutral theory of molecular evolution provides a theoretical framework in which both objectives can be explicitly tested. Development of statistical tests within this framework has provided insight into the evolutionary forces that constrain and in some cases change DNA sequences and the resulting patterns that emerge. In this article, we review recent work on how functional constraint and changes in protein function are inferred from protein polymorphism and divergence data. We relate these studies to our understanding of the neutral theory and adaptive evolution.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | |
Collapse
|
968
|
Midgley RS, Bell AI, McGeoch DJ, Rickinson AB. Latent gene sequencing reveals familial relationships among Chinese Epstein-Barr virus strains and evidence for positive selection of A11 epitope changes. J Virol 2003; 77:11517-30. [PMID: 14557637 PMCID: PMC229270 DOI: 10.1128/jvi.77.21.11517-11530.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) strains from the highly HLA-A11-positive Chinese population are predominantly type 1 and show a variety of sequence changes (relative to the contemporary Caucasian prototype strain B95.8) in the nuclear antigen EBNA3B sequences encoding two immunodominant HLA-A11 epitopes, here called IVT and AVF. This has been interpreted by some as evidence of immune selection and by others as random genetic drift. To study epitope variation in a broader genomic context, we sequenced the whole of EBNA3B and parts of the EBNA2, 3A, and 3C genes from each of 31 Chinese EBV isolates. At each locus, type 1 viruses showed <2% nucleotide divergence from the B95.8 prototype while type 2 sequences remained even closer to the contemporary African prototype Ag876. However, type 1 isolates could clearly be divided into families based on linked patterns of sequence divergence from B95.8 across all four EBNA loci. Different patterns of IVT and AVF variation were associated with the different type 1 families, and there was additional epitope diversity within families. When the EBNA3 gene sequences of type 1 Chinese strains were subject to computer-based analysis, particular codons within the A11-epitope-coding region were among the few identified as being under positive or diversifying selection pressure. From these results, and the observation that mutant epitopes are consistently nonimmunogenic in vivo, we conclude that the immune selection hypothesis remains viable and worthy of further investigation.
Collapse
Affiliation(s)
- R S Midgley
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
969
|
Martinez-Castilla LP, Alvarez-Buylla ER. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci U S A 2003; 100:13407-12. [PMID: 14597714 PMCID: PMC263827 DOI: 10.1073/pnas.1835864100] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants.
Collapse
Affiliation(s)
- León Patricio Martinez-Castilla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, National Autonomous University of Mexico, Ap Postal 70-275, Mexico D.F., 04510, Mexico
| | | |
Collapse
|
970
|
Rodríguez-Trelles F, Tarrío R, Ayala FJ. Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci U S A 2003; 100:13413-7. [PMID: 14576276 PMCID: PMC263828 DOI: 10.1073/pnas.1835646100] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is a primary source of molecular substrate for the emergence of evolutionary novelties. The chances for redundant gene sequences to evolve new functions are small compared with the probability that the copies become disabled by deleterious mutations. Functional divergence after gene duplication can result in two alternative evolutionary fates: one copy acquires a novel function (neofunctionalization), or each copy adopts part of the tasks of their parental gene (subfunctionalization). The relative prevalence of each outcome is unknown. Similarly unknown is the relative importance of positive selection versus random fixation of neutral mutations. Aldehyde oxidase (Ao) and xanthine dehydrogenase (Xdh) genes encode two complex members of the xanthine oxidase family of molybdo-flavoenzymes that carry different functions. Ao is known to have originated from a duplicate of an Xdh gene in eukaryotes, before the origin of multicellularity. We show that (i) Ao evolved independently twice from two different Xdh paralogs, the second time in the chordates, before the diversification of vertebrates; (ii) after each duplication, the Ao duplicate underwent a period of rapid evolution during which identical sites across the two molecules, involving the flavin adenine dinucleotide and substrate-binding pockets, were subjected to intense positive Darwinian selection; and (iii) the second Ao gene likely endured two periods of redundancy, initially as a duplicate of Xdh and later as a functional equivalent of the old Ao, which is currently absent from the vertebrate genome. Caution is appropriate in structural genomics when using sequence similarity for assigning protein function.
Collapse
|
971
|
Kinsella RJ, Fitzpatrick DA, Creevey CJ, McInerney JO. Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc Natl Acad Sci U S A 2003; 100:10320-5. [PMID: 12917487 PMCID: PMC193559 DOI: 10.1073/pnas.1737230100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2002] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis is a high GC Gram-positive member of the actinobacteria. The mycobacterial cell wall is composed of a complex assortment of lipids and is the interface between the bacterium and its environment. The biosynthesis of fatty acids plays an essential role in the formation of cell wall components, in particular mycolic acids, which have been targeted by many of the drugs used to treat M. tuberculosis infection. M. tuberculosis has approximately 250 genes involved in fatty acid metabolism, a much higher proportion than in any other organism. In silico methods have been used to compare the genome of M. tuberculosis CDC1551 to a database of 58 complete bacterial genomes. The resulting alignments were scanned for genes specifically involved in fatty acid biosynthetic pathway I. Phylogenetic analysis of these alignments was used to investigate horizontal gene transfer, gene duplication, and adaptive evolution. It was found that of the eight gene families examined, five of the phylogenies reconstructed suggest that the actinobacteria have a closer relationship with the alpha-proteobacteria than expected. This is either due to either an ancient transfer of genes or deep paralogy and subsequent retention of the genes in unrelated lineages. Additionally, adaptive evolution and gene duplication have been an influence in the evolution of the pathway. This study provides a key insight into how M. tuberculosis has developed its unique fatty acid synthetic abilities.
Collapse
Affiliation(s)
- Rhoda J Kinsella
- Bioinformatics and Pharmacogenomics Laboratory, Biology Department, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | | | |
Collapse
|
972
|
Zhang N, Harrex AL, Holland BR, Fenton LE, Cannon RD, Schmid J. Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res 2003; 13:2005-17. [PMID: 12952872 PMCID: PMC403672 DOI: 10.1101/gr.1024903] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 06/30/2003] [Indexed: 12/22/2022]
Abstract
The ALS (agglutinin-like sequence) gene family encodes proteins that play a role in adherence of the yeast Candida albicans to endothelial and epithelial cells. The proteins are proposed as virulence factors for this important fungal pathogen of humans. We analyzed 66 C. albicans strains, representing a worldwide collection of 266 infection-causing isolates, and discovered 60 alleles of the ALS7 open reading frame (ORF). Differences between alleles were largely caused by rearrangements of repeat elements in the so-called tandem repeat domain (21 different types occurred) and the VASES region (19 different types). C. albicans is diploid, and combinations of ALS7 alleles generated 49 different genotypes. ALS7 expression was detected in samples isolated directly from five oral candidosis patients. ORFs in the opposite direction contained within the ALS7 ORF were also transcribed in all strains tested. Isolates representing a more pathogenic general-purpose genotype (GPG) cluster of strains tended to have more tandem repeats than other strains. Two types of VASES regions were largely exclusive to GPG strains; the remaining types were largely exclusive to noncluster strains. Our results provide evidence that ALS7 is a hypermutable contingency locus and important for the success of C. albicans as an opportunistic pathogen of humans.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
973
|
Zhang L, Pavlovic V, Cantor CR, Kasif S. Human-mouse gene identification by comparative evidence integration and evolutionary analysis. Genome Res 2003; 13:1190-202. [PMID: 12743024 PMCID: PMC403647 DOI: 10.1101/gr.703903] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 02/03/2003] [Indexed: 11/24/2022]
Abstract
The identification of genes in the human genome remains a challenge, as the actual predictions appear to disagree tremendously and vary dramatically on the basis of the specific gene-finding methodology used. Because the pattern of conservation in coding regions is expected to be different from intronic or intergenic regions, a comparative computational analysis can lead, in principle, to an improved computational identification of genes in the human genome by using a reference, such as mouse genome. However, this comparative methodology critically depends on three important factors: (1) the selection of the most appropriate reference genome. In particular, it is not clear whether the mouse is at the correct evolutionary distance from the human to provide sufficiently distinctive conservation levels in different genomic regions, (2) the selection of comparative features that provide the most benefit to gene recognition, and (3) the selection of evidence integration architecture that effectively interprets the comparative features. We address the first question by a novel evolutionary analysis that allows us to explicitly correlate the performance of the gene recognition system with the evolutionary distance (time) between the two genomes. Our simulation results indicate that there is a wide range of reference genomes at different evolutionary time points that appear to deliver reasonable comparative prediction of human genes. In particular, the evolutionary time between human and mouse generally falls in the region of good performance; however, better accuracy might be achieved with a reference genome further than mouse. To address the second question, we propose several natural comparative measures of conservation for identifying exons and exon boundaries. Finally, we experiment with Bayesian networks for the integration of comparative and compositional evidence.
Collapse
Affiliation(s)
- Lingang Zhang
- Center for Advanced Biotechnology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
974
|
Bailly X, Leroy R, Carney S, Collin O, Zal F, Toulmond A, Jollivet D. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection. Proc Natl Acad Sci U S A 2003; 100:5885-90. [PMID: 12721359 PMCID: PMC156296 DOI: 10.1073/pnas.1037686100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hemoglobin of the deep-sea hydrothermal vent vestimentiferan Riftia pachyptila (annelid) is able to bind toxic hydrogen sulfide (H(2)S) to free cysteine residues and to transport it to fuel endosymbiotic sulfide-oxidising bacteria. The cysteine residues are conserved key amino acids in annelid globins living in sulfide-rich environments, but are absent in annelid globins from sulfide-free environments. Synonymous and nonsynonymous substitution analysis from two different sets of orthologous annelid globin genes from sulfide rich and sulfide free environments have been performed to understand how the sulfide-binding function of hemoglobin appeared and has been maintained during the course of evolution. This study reveals that the sites occupied by free-cysteine residues in annelids living in sulfide-rich environments and occupied by other amino acids in annelids from sulfide-free environments, have undergone positive selection in annelids from sulfide-free environments. We assumed that the high reactivity of cysteine residues became a disadvantage when H(2)S disappeared because free cysteines without their natural ligand had the capacity to interact with other blood components, disturb homeostasis, reduce fitness and thus could have been counterselected. To our knowledge, we pointed out for the first time a case of function loss driven by molecular adaptation rather than genetic drift. If constraint relaxation (H(2)S disappearance) led to the loss of the sulfide-binding function in modern annelids from sulfide-free environments, our work suggests that adaptation to sulfide-rich environments is a plesiomorphic feature, and thus that the annelid ancestor could have emerged in a sulfide-rich environment.
Collapse
Affiliation(s)
- Xavier Bailly
- Equipe Evolution et Génétique des Populations Marines, Station Biologique de Roscoff, Unité Mixte de Recherche 7127, Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie, 29680 Roscoff, France.
| | | | | | | | | | | | | |
Collapse
|
975
|
Semple CAM, Rolfe M, Dorin JR. Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol 2003; 4:R31. [PMID: 12734011 PMCID: PMC156587 DOI: 10.1186/gb-2003-4-5-r31] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 03/18/2003] [Accepted: 04/03/2003] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Innate immunity is the first line of defense against microorganisms in vertebrates and acts by providing an initial barrier to microorganisms and triggering adaptive immune responses. Peptides such as beta-defensins are an important component of this defense, providing a broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several enveloped viruses. Beta-defensins are small cationic peptides that vary in their expression patterns and spectrum of pathogen specificity. Disruptions in beta-defensin function have been implicated in human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and evolution of human beta-defensins might form the basis for novel therapies. Here we use a combination of laboratory and computational techniques to characterize the main human beta-defensin locus on chromosome 8p22-p23. RESULTS In addition to known genes in the region we report the genomic structures and expression patterns of four novel human beta-defensin genes and a related pseudogene. These genes show an unusual pattern of evolution, with rapid divergence between second exon sequences that encode the mature beta-defensin peptides matched by relative stasis in first exons that encode signal peptides. CONCLUSIONS We conclude that the 8p22-p23 locus has evolved by successive rounds of duplication followed by substantial divergence involving positive selection, to produce a diverse cluster of paralogous genes established before the human-baboon divergence more than 23 million years ago. Positive selection, disproportionately favoring alterations in the charge of amino-acid residues, is implicated as driving second exon divergence in these genes.
Collapse
Affiliation(s)
- Colin A M Semple
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | |
Collapse
|
976
|
Abstract
The further evolution of informational molecular sequences should depend on the number of viable alternatives possible for the sequences as set by selection, the unrepaired mutation rate, and time. Most biomolecular clocks are based on Kimura's nearly neutral mutation random-drift hypothesis. This clock assumes that informational sequences are in equilibrium, i.e., the nucleotides mutate at a uniform rate and the number of nucleotides unconstrained by selection remains constant. Correcting for deviations from these assumptions should produce a more accurate clock. Informational molecules probably formed from polynucleotides having some other function such as nitrogen or nucleotide storage, thus being initially functionally unselected. At any time the rate of development of functionality in a protein may be expected to be proportional to the number of viable alternatives of sequence in its potentially interacting regions. Assuming the rate of unrepaired mutations is constant, these clocks should exponentially slow as they evolve, each with a different rate toward individual equilibria. Also if the degree of selection changes, its clock rate should change. For a more precise clock two approaches are suggested to estimate these time dependent changes in evolutionary rate. An improved clock could improve estimation of phylogeny and put a time scale on that phylogeny.
Collapse
Affiliation(s)
- Kenneth W Foster
- Physics Department, Syracuse University, Syracuse, NY 13244-1130, USA.
| |
Collapse
|
977
|
Yang J, Huang J, Gu H, Zhong Y, Yang Z. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 2003; 19:1752-9. [PMID: 12270901 DOI: 10.1093/oxfordjournals.molbev.a003997] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids, which are important for the pigmentation of flowers and act as attractants to the pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. Plants of the Dendranthema genus have white, yellow, and pink flowers, exhibiting considerable variation in flower color. In this article, 18 CHS genes from six Dendranthema species were sequenced. Two of them were found to be pseudogenes. The functional Dendranthema CHS genes formed three well-supported subfamilies: SF1, SF2, and SF3. The inferred phylogeny of the CHS genes of Dendranthema and Gerbera suggests that those genes originated as a result of duplications before divergence of these two genera, and the function of Dendranthema CHS genes have diverged in a similar fashion to the Gerbera CHS genes; i.e., the genes of SF1 and SF3 code for typical CHS enzymes expressed during different stages of development, whereas the genes of SF2 code for another enzyme that is different from CHS in substrate specificity and reaction. Relative rate tests revealed that the Dendranthema CHS genes significantly deviated from clocklike evolution at nonsynonymous sites. Maximum likelihood analysis showed that the nonsynonymous-synonymous (omega = d(N)/d(S)) rate ratio for the lineage ancestral to SF2 was much higher than for other lineages, with some sites having a ratio well above one. Positive selective pressure appears to have driven the divergence of SF2 from SF1 and SF3.
Collapse
Affiliation(s)
- Ji Yang
- College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
978
|
Abstract
Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
979
|
Clark AG, Glanowski S, Nielsen R, Thomas P, Kejariwal A, Todd MJ, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M. Positive selection in the human genome inferred from human-chimp-mouse orthologous gene alignments. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 68:471-7. [PMID: 15338650 DOI: 10.1101/sqb.2003.68.479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- A G Clark
- Molecular Biology & Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Abstract
A pressing problem in studying the evolution of microbial pathogens is to determine the extent to which these genomes recombine. This information is essential for locating pathogenicity loci by using association studies or population genetic approaches. Recombination also complicates the use of phylogenetic approaches to estimate evolutionary parameters such as selection pressures. Reliable methods that detect and estimate the rate of recombination are, therefore, vital. This article reviews the approaches that are available for detecting and estimating recombination in microbial pathogens and how they can be used to understand pathogen evolution and to identify medically relevant loci.
Collapse
Affiliation(s)
- Philip Awadalla
- Section of Evolution and Ecology, University of California at Davis, California 95616, USA.
| |
Collapse
|
981
|
Knipple DC, Rosenfield CL, Nielsen R, You KM, Jeong SE. Evolution of the integral membrane desaturase gene family in moths and flies. Genetics 2002; 162:1737-52. [PMID: 12524345 PMCID: PMC1462379 DOI: 10.1093/genetics/162.4.1737] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lepidopteran insects use sex pheromones derived from fatty acids in their species-specific mate recognition system. Desaturases play a particularly prominent role in the generation of structural diversity in lepidopteran pheromone biosynthesis as a result of the diverse enzymatic properties they have evolved. These enzymes are homologous to the integral membrane desaturases, which play a primary role in cold adaptation in eukaryotic cells. In this investigation, we screened for desaturase-encoding sequences in pheromone glands of adult females of eight lepidopteran species. We found, on average, six unique desaturase-encoding sequences in moth pheromone glands, the same number as is found in the genome database of the fly, Drosophila melanogaster, vs. only one to three in other characterized eukaryotic genomes. The latter observation suggests the expansion of this gene family in insects before the divergence of lepidopteran and dipteran lineages. We present the inferred homology relationships among these sequences, analyze nonsynonymous and synonymous substitution rates for evidence of positive selection, identify sequence and structural correlates of three lineages containing characterized enzymatically distinct desaturases, and discuss the evolution of this sequence family in insects.
Collapse
Affiliation(s)
- Douglas C Knipple
- Department of Entomology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456, USA.
| | | | | | | | | |
Collapse
|
982
|
Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O'Donnell K. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 2002; 99:9278-83. [PMID: 12080147 PMCID: PMC123131 DOI: 10.1073/pnas.142307199] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filamentous fungi within the Fusarium graminearum species complex (Fg complex) are the primary etiological agents of Fusarium head blight (scab) of wheat and barley. Scab is an economically devastating plant disease that greatly limits grain yield and quality. In addition, scabby grain is often contaminated with trichothecene mycotoxins that act as virulence factors on some hosts, and pose a serious threat to animal health and food safety. Strain-specific differences in trichothecene metabolite profiles (chemotypes) are not well correlated with the Fg complex phylogeny based on genealogical concordance at six single-copy nuclear genes. To examine the basis for this discord between species and toxin evolution, a 19-kb region of the trichothecene gene cluster was sequenced in 39 strains chosen to represent the global genetic diversity of species in the Fg complex and four related species of Fusarium. Phylogenetic analyses demonstrated that polymorphism within these virulence-associated genes is transspecific and appears to have been maintained by balancing selection acting on chemotype differences that originated in the ancestor of this important group of plant pathogens. Chemotype-specific differences in selective constraint and evidence of adaptive evolution within trichothecene genes are also reported.
Collapse
Affiliation(s)
- Todd J Ward
- Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|