951
|
Chen DF, Gong BD, Xie Q, Ben QW, Liu J, Yuan YZ. MicroRNA155 is induced in activated CD4 + T cells of TNBS-induced colitis in mice. World J Gastroenterol 2010; 16:854-61. [PMID: 20143464 PMCID: PMC2825332 DOI: 10.3748/wjg.v16.i7.854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of microRNA155 (miRNA155) in trinitrobenzene sulphonic acid (TNBS)-induced colitis and the relationship between miRNA155 and tumor necrosis factor (TNF) expressions.
METHODS: In TNBS colitis mice, miRNA155 and TNF mRNA expressions were measured in colons and CD4+ T cells of draining lymph nodes (LNs). CD4+ T cells were cultured in vitro with or without anti-CD3/CD28 antibody, and the expressions of miRNA155 and TNF mRNA in cells and TNF concentration in culture media were examined.
RESULTS: miRNA155 and TNF mRNA expressions in colons and in cells of LNs were significantly increased in TNBS colitis compared with controls. In TNBS colitis, miRNA155 and TNF mRNA expressions in CD4+ T cells of LNs and TNF concentration in CD4+ T cells culture media increased compared with controls. When cultured with anti-CD3/CD28 antibody, miRNA155 and TNF mRNA expressions in CD4+ T cells and TNF concentration in the CD4+ T cells culture media were significantly higher than those cultured without anti-CD3/CD28 antibody. Following analysis using the Pearson’s correlation coefficient, miRNA155 expression had a significant positive correlation with either TNF mRNA expression in CD4+ T cells (r = 0.860, P < 0.05) or TNF concentration in CD4+ T cells culture media (r = 0.892, P < 0.05).
CONCLUSION: miRNA155 is induced in colons and activated CD4+ T cells in TNBS colitis, and the levels of miRNA155 and TNF expressions have a significant positive correlation.
Collapse
|
952
|
Jennewein C, von Knethen A, Schmid T, Brüne B. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA destabilization. J Biol Chem 2010; 285:11846-53. [PMID: 20164187 DOI: 10.1074/jbc.m109.066399] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) gained considerable interest as a therapeutic target during chronic inflammatory diseases. Remarkably, the pathogenesis of diseases such as multiple sclerosis or Alzheimer is associated with impaired PPARgamma expression. Considering that regulation of PPARgamma expression during inflammation is largely unknown, we were interested in elucidating underlying mechanisms. To this end, we initiated an inflammatory response by exposing primary human macrophages to lipopolysaccharide (LPS) and observed a rapid decline of PPARgamma1 expression. Because promoter activities were not affected by LPS, we focused on mRNA stability and noticed a decreased mRNA half-life. As RNA stability is often regulated via 3'-untranslated regions (UTRs), we analyzed the impact of the PPARgamma-3'-UTR by reporter assays using specific constructs. LPS significantly reduced luciferase activity of the pGL3-PPARgamma-3'-UTR, suggesting that PPARgamma1 mRNA is destabilized. Deletion or mutation of a potential microRNA-27a/b (miR-27a/b) binding site within the 3'-UTR restored luciferase activity. Moreover, inhibition of miR-27b, which was induced upon LPS exposure, partially reversed PPARgamma1 mRNA decay, whereas miR-27b overexpression decreased PPARgamma1 mRNA content. In addition, LPS further reduced this decay. The functional relevance of miR-27b-dependent PPARgamma1 decrease was proven by inhibition or overexpression of miR-27b, which affected LPS-induced expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFalpha) and interleukin (IL)-6. We provide evidence that LPS-induced miR-27b contributes to destabilization of PPARgamma1 mRNA. Understanding molecular mechanisms decreasing PPARgamma might help to better appreciate inflammatory diseases.
Collapse
Affiliation(s)
- Carla Jennewein
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | | | | | | |
Collapse
|
953
|
Abstract
MicroRNAs are a class of small non-coding RNAs that are found in plants, animals, and some viruses. They modulate the gene function at the post-transcriptional level and act as a fine tuner of various processes, such as development, proliferation, cell signaling, and apoptosis. They are associated with different types and stages of cancer. Recent studies have shown the involvement of microRNAs in liver diseases caused by various factors, such as Hepatitis C, Hepatitis B, metabolic disorders, and by drug abuse. This review highlights the role of microRNAs in liver diseases and their potential use as therapeutic molecules.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, LRB 215, Worcester, MA 01605, USA
| | | | | |
Collapse
|
954
|
Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 2010; 6:e1000764. [PMID: 20169186 PMCID: PMC2820531 DOI: 10.1371/journal.ppat.1000764] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/13/2010] [Indexed: 01/02/2023] Open
Abstract
We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts. Short RNAs derived from invading viruses with RNA genomes are important components of antiviral immunity in plants, worms and flies. The regulated generation of these short RNAs, and their engagement by the immune apparatus, is essential for inhibiting viral growth in these organisms. Mammals have the necessary protein components to generate these viral-derived short RNAs (“vsRNAs”), raising the question of whether vsRNAs in mammals are a general feature of infections with RNA viruses. Our work with Hepatitis C, Polio, Dengue, Vesicular Stomatitis, and West Nile viruses in a broad host repertoire demonstrates the generality of RNA virus-derived vsRNA production, and the ability of the cellular short RNA apparatus to engage these vsRNAs in mammalian cells. Detailed analyses of vsRNA and host-derived short RNA populations demonstrate both common and virus-specific features of the interplay between viral infection and short RNA populations. The vsRNA populations described in this work represent a novel dimension in both viral pathogenesis and host response.
Collapse
|
955
|
|
956
|
Miranda RC, Pietrzykowski AZ, Tang Y, Sathyan P, Mayfield D, Keshavarzian A, Sampson W, Hereld D. MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 2010; 34:575-87. [PMID: 20102566 DOI: 10.1111/j.1530-0277.2009.01126.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ethanol exerts complex effects on human physiology and health. Ethanol is not only addictive, but it is also a fetal teratogen, an adult neurotoxin, and an etiologic agent in hepatic and cardiovascular disease, inflammation, bone loss, and fracture susceptibility. A large number of genes and signaling mechanisms have been implicated in ethanol's deleterious effects leading to the suggestion that ethanol is a "dirty drug." An important question is, are there cellular "master-switches" that can explain these pleiotropic effects of ethanol? MicroRNAs (miRNAs) have been recently identified as master regulators of the cellular transcriptome and proteome. miRNAs play an increasingly appreciated and crucial role in shaping the differentiation and function of tissues and organs in both health and disease. This critical review discusses new evidence showing that ethanol-sensitive miRNAs are indeed regulatory master-switches. More specifically, miRNAs control the development of tolerance, a crucial component of ethanol addiction. Other drugs of abuse also target some ethanol-sensitive miRNAs suggesting that common biochemical mechanisms underlie addiction. This review also discusses evidence that miRNAs mediate several ethanol pathologies, including disruption of neural stem cell proliferation and differentiation in the exposed fetus, gut leakiness that contributes to endotoxemia and alcoholic liver disease, and possibly also hepatocellular carcinomas and other gastrointestinal cancers. Finally, this review provides a perspective on emerging investigations into potential roles of miRNAs as mediators of ethanol's effects on inflammation and fracture healing, as well as the potential for miRNAs as diagnostic biomarkers and as targets for therapeutic interventions for alcohol-related disorders.
Collapse
Affiliation(s)
- Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Ctr., College Station, Texas 77843-1114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
957
|
Holmstrøm K, Pedersen AW, Claesson MH, Zocca MB, Jensen SS. Identification of a microRNA signature in dendritic cell vaccines for cancer immunotherapy. Hum Immunol 2010; 71:67-73. [PMID: 19819280 DOI: 10.1016/j.humimm.2009.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/22/2009] [Accepted: 10/02/2009] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) exposed to tumor antigens followed by treatment with T(h)1-polarizing differentiation signals have paved the way for the development of DC-based cancer vaccines. Critical parameters for assessment of the optimal functional state of DCs and prediction of the vaccine potency of activated DCs have in the past been based on measurements of differentiation surface markers like HLA-DR, CD80, CD83, CD86, and CCR7 and the level of secreted cytokines like interleukin-12p70. However, the level of these markers does not provide a complete picture of the DC phenotype and may be insufficient for prediction of clinical outcome for DC-based therapy. We therefore looked for additional biomarkers by investigating the differential expression of microRNAs (miRNAs) in mature DCs relative to immature DCs. A microarray-based screening revealed that 12 miRNAs were differentially expressed in the two DC phenotypes. Of these, four miRNAs, hsa-miR-155, hsa-miR-146a, hsa-miR-125a-5p, and hsa-miR-29a, were validated by real-time polymerase chain reaction and northern blotting. The matured DCs from 12 individual donors were divided into two groups of highly and less differentiated DCs, respectively. A pronounced difference at the level of miRNA induction between these two groups was observed, suggesting that quantitative evaluation of selected miRNAs potentially can predict the immunogenicity of DC vaccines.
Collapse
|
958
|
Luo X, Tsai LM, Shen N, Yu D. Evidence for microRNA-mediated regulation in rheumatic diseases. Ann Rheum Dis 2010; 69 Suppl 1:i30-36. [PMID: 19995741 DOI: 10.1136/ard.2009.117218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
MicroRNA (miRNA), a group of short non-coding RNA of approximately 20-22 nucleotides modulating the stability and translational efficiency of target messenger RNA, present an important new layer controlling gene expression. Hundreds to a thousand miRNA have been identified and are predicted to regulate at least one-third of protein-coding transcripts in the mammalian genome. This study reviews the recent advances reinforcing the awareness that miRNA are key players in rheumatic diseases by regulating major pathogenic molecules, such as tumour necrosis factor, central signal pathways, such as type I interferon pathway and critical immunoregulatory cells, such as regulatory T cells. In animals, blockade of miRNA maturation by the deletion of Dicer or Drasha, interference with miRNA function by the mutation of Roquin and the altered expression of individual miRNA (miR-146a) or miRNA cluster (miR-17-92) all lead to the development of autoimmune diseases. Growing evidence also reveals the differential expression of certain immunity-regulating miRNA in rheumatoid patients. The features of miRNA-mediated regulation, the direction of future miRNA study in rheumatic diseases and the application of miRNA in diagnosis, therapy and prognosis will also be briefly discussed.
Collapse
Affiliation(s)
- X Luo
- Joint Molecular Rheumatology Laboratory of the Institute ofHealth Sciences and Shanghai Renji Hospital, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
959
|
Rajabi H, Jin C, Ahmad R, McClary AC, Joshi MD, Kufe D. MUCIN 1 ONCOPROTEIN EXPRESSION IS SUPPRESSED BY THE miR-125b ONCOMIR. Genes Cancer 2010; 1:62-68. [PMID: 20729973 PMCID: PMC2923812 DOI: 10.1177/1947601909357933] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The MUC1 oncoprotein is overexpressed in most human breast cancers by mechanisms that are incompletely understood. The microRNA, miR-125b, is downregulated in breast cancer cells. The present studies demonstrate that the MUC1 3'UTR contains a site for binding of the miR-125b seed region. The results show that the MUC1 3'UTR suppresses luciferase expression and that this effect is abrogated by mutation or deletion of the miR-125b binding site. Expression of an anti-sense miR-125b in BT-549 breast cancer cells was associated with induction of MUC1 protein, but not MUC1 mRNA, levels. The anti-sense miR-125b also increased BT-549 cell growth by a MUC1-dependent mechanism. In addition, overexpression of exogenous miR-125b downregulated MUC1 protein, and not MUC1 transcripts, in ZR-75-1 breast cancer cells. Silencing of MUC1 in ZR-75-1 cells with a siRNA has been shown to promote DNA damage-induced apoptosis. In concert with these observations, miR-125b-induced decreases in MUC1 levels increased the apoptotic response of ZR-75-1 cells to cisplatin treatment. These findings indicate that miR-125b suppresses translation of the MUC1 oncoprotein and that miR-125b thereby functions as a tumor suppressor in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
960
|
Liu G, Huang Y, Lu X, Lu M, Huang X, Li W, Jiang M. Identification and Characteristics of microRNAs with Altered Expression Patterns in a Rat Model of Abdominal Aortic Aneurysms. TOHOKU J EXP MED 2010; 222:187-93. [DOI: 10.1620/tjem.222.187] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| | - Ying Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| | - Min Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| | - Xintian Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| | - Weimin Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| | - Mier Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
- The Vascular Center, Shanghai Jiao Tong University School of Medicine
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
961
|
Tili E, Croce CM, Michaille JJ. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 2009; 28:264-84. [PMID: 19811312 DOI: 10.1080/08830180903093796] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs are short non-coding RNAs that posttranscriptionally modulate the expression of multiple target genes and are thus implicated in a wide array of cellular and developmental processes. miR-155 is processed from BIC, a non-coding transcript highly expressed in both activated B and T cells and in monocytes/macrophages. miR-155 levels change dynamically during both hematopoietic lineage differentiation and the course of the immune response. Different mouse models developed recently indicate that miR-155 plays a critical role during hematopoiesis and regulates lymphocyte homeostasis and tolerance. A moderate increase of miR-155 levels is observed in many types of malignancies of B cell or myeloid origin, and transgenic over-expression of miR-155 in mice results in cancer. While the high levels of miR-155 reached transiently during the course of the immune response remain unharmful for the organism, the reason why a moderate up-regulation of miR-155 can lead to cancer remains obscure. As prolonged exposure to inflammation can lead to cancer, the permanent up-regulation of miR-155 might be a link between the two. Therefore, designing miR-155 based therapies will require a better understanding of the molecular basis of its action as well as of how miR-155 levels are regulated in a cell-specific manner.
Collapse
Affiliation(s)
- Esmerina Tili
- Ohio State University, Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
962
|
Abstract
MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology.
Collapse
Affiliation(s)
- Jun Liu
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA
| | | | | |
Collapse
|
963
|
MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009; 31:965-73. [PMID: 20005135 DOI: 10.1016/j.immuni.2009.09.019] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/18/2009] [Accepted: 09/24/2009] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) contribute to both neuronal and immune cell fate, but their involvement in intertissue communication remained unexplored. The brain, via vagal secretion of acetylcholine (ACh), suppresses peripheral inflammation by intercepting cytokine production; therefore, we predicted that microRNAs targeting acetylcholinesterase (AChE) can attenuate inflammation. Here, we report that inflammatory stimuli induced leukocyte overexpression of the AChE-targeting miR-132. Injected locked nucleic acid (LNA)-modified anti-miR-132 oligonucleotide depleted miR-132 amounts while elevating AChE in mouse circulation and tissues. In transfected cells, a mutated 3'UTR miR-132 binding site increased AChE mRNA expression, whereas cells infected with a lentivirus expressing pre-miR-132 showed suppressed AChE. Transgenic mice overexpressing 3'UTR null AChE showed excessive inflammatory mediators and impaired cholinergic anti-inflammatory regulation, in spite of substantial miR-132 upregulation in brain and bone marrow. Our findings identify the AChE mRNA-targeting miR-132 as a functional regulator of the brain-to-body resolution of inflammation, opening avenues for study and therapeutic manipulations of the neuro-immune dialog.
Collapse
|
964
|
Abstract
MicroRNAs are a class of small non-coding RNAs that are found in plants, animals, and some viruses. They modulate the gene function at the post-transcriptional level and act as a fine tuner of various processes, such as development, proliferation, cell signaling, and apoptosis. They are associated with different types and stages of cancer. Recent studies have shown the involvement of microRNAs in liver diseases caused by various factors, such as Hepatitis C, Hepatitis B, metabolic disorders, and by drug abuse. This review highlights the role of microRNAs in liver diseases and their potential use as therapeutic molecules.
Collapse
|
965
|
Abstract
Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is noted for its transforming potential. Yet, it also acts as a cytostatic and growth-relenting factor in Burkitt's lymphoma (BL) cells. The underlying molecular mechanisms of the growth inhibitory property of LMP1 have remained largely unknown. In this study, we show that LMP1 negatively regulates a major oncogene, TCL1, in diffuse large B-cell lymphoma (DLBCL) and BL cells. MicroRNA (miR) profiling of LMP1 transfectants showed that among others, miR-29b, is upregulated. LMP1 diminished TCL1 by inducing miR-29b through C-terminus activation region 1 (CTAR1) and CTAR2. miR-29b locked nucleic acid (LNA) antisense oligonucleotide transfection into LMP1-expressing cells reduced miR-29b expression and consequently reconstituted TCL1, suggesting that LMP1 negatively regulates TCL1 through miR-29b upregulation. The miR-29b increase by LMP1 was due to an increase in the cluster pri-miR-29b1-a transcription, derived from human chromosome 7. Using pharmacological inhibitors, we found that p38 mitogen-activated protein kinase-activating function of LMP1 is important for this effect. The ability of LMP1 to negatively regulate TCL1 through miR-29b might underlie its B-cell lymphoma growth antagonistic property. As LMP1 is also important for B-cell transformation, we suggest that the functional dichotomy of this viral protein may depend on a combination of levels of its expression, lineage and differentiation of the target cells and regulation of miRs, which then directs the outcome of the cellular response.
Collapse
|
966
|
NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 2009; 5:e1000681. [PMID: 19997496 PMCID: PMC2778997 DOI: 10.1371/journal.ppat.1000681] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/05/2009] [Indexed: 12/21/2022] Open
Abstract
Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes). Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-κB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-κB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-κB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general. MicroRNAs (miRNAs) are newly identified small non-coding RNAs that regulate gene expression at the posttranscriptional level. While much of our understanding of the cellular processes modulated by miRNAs has come from studies on development and tumorigenesis, the role of miRNAs in immune responses is now being gradually uncovered. Nevertheless, whether miRNA-mediated posttranscriptional gene regulation is involved in the fine-tuning of epithelial cell immune responses against pathogen infection remains undefined. Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelium. TLR/NF-κB-mediated innate immune responses by epithelial cells are critical to the host's defense to infection. Using an in vitro model of human cryptosporidiosis, we show here differential alterations in the miRNA expression profile in biliary epithelial cells following C. parvum infection. Promoter binding of NF-κB p65 subunit accounts for the upregulation of a panel of miRNA genes in cells infected by C. parvum. Importantly, functional inhibition of several NF-κB p65-dependent miRNAs in epithelial cells increases C. parvum infection burden. Our findings suggest that host epithelial cells activate NF-κB signaling to regulate miRNA expression in response to C. parvum infection. Moreover, NF-κB-mediated miRNA expression is involved in epithelial anti-microbial defense. Our study provides new insights into epithelial cell immunoregulation.
Collapse
|
967
|
Schetter AJ, Heegaard NHH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 2009; 31:37-49. [PMID: 19955394 DOI: 10.1093/carcin/bgp272] [Citation(s) in RCA: 490] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation and infection are major causes of cancer. There are continued improvements to our understanding of the molecular connections between inflammation and cancer. Key mediators of inflammation-induced cancer include nuclear factor kappa B, reactive oxygen and nitrogen species, inflammatory cytokines, prostaglandins and specific microRNAs. The collective activity of these mediators is largely responsible for either a pro-tumorigenic or anti-tumorigenic inflammatory response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. As our understanding grows, inflammatory mediators will provide opportunities to develop novel diagnostic and therapeutic strategies. In this review, we provide a general overview of the connection between inflammation, microRNAs and cancer and highlight how our improved understanding of these connections may provide novel preventive, diagnostic and therapeutic strategies to reduce the health burden of cancer.
Collapse
Affiliation(s)
- Aaron J Schetter
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
968
|
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4:399-418. [PMID: 19655259 PMCID: PMC2773116 DOI: 10.1007/s11481-009-9164-4] [Citation(s) in RCA: 680] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/30/2009] [Indexed: 01/14/2023]
Abstract
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain's innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed.
Collapse
Affiliation(s)
- Carol A Colton
- Division of Neurology, Duke University Medical Center, Durham, 27710 NC, USA.
| |
Collapse
|
969
|
Suárez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 184:21-5. [PMID: 19949084 DOI: 10.4049/jimmunol.0902369] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) pair with target sequences in the 3' untranslated region of mRNAs to posttranscriptionally repress gene expression. In this study, we report that TNF-mediated induction of endothelial adhesion molecules can be regulated by miRNAs that are induced by TNF. Specifically, E-selectin and ICAM-1 are targets of TNF-induced miRNAs miR-31 and miR-17-3p, respectively. Specific antagonism of these TNF-induced miRNAs increased neutrophil adhesion to cultured endothelial cells. Conversely, transfections with mimics of these miRNAs decreased neutrophil adhesion to endothelial cells. These data suggest that miRNAs provide negative feedback control of inflammation.
Collapse
Affiliation(s)
- Yajaira Suárez
- Department of Immunobiology and Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06520-8089, USA.
| | | | | | | |
Collapse
|
970
|
Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q, Johnson DS, Chen Y, O'Neill LAJ. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2009; 11:141-7. [PMID: 19946272 DOI: 10.1038/ni.1828] [Citation(s) in RCA: 784] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/21/2009] [Indexed: 11/09/2022]
Abstract
The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.
Collapse
|
971
|
Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2009; 106:5282-7. [PMID: 19946272 DOI: 10.1073/pnas.0810909106] [Citation(s) in RCA: 458] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.
Collapse
|
972
|
Abstract
Every cellular process is likely to be regulated by microRNAs, and an aberrant microRNA expression signature is a hallmark of several diseases, including cancer. MicroRNA expression profiling has indeed provided evidence of the association of these tiny molecules with tumor development and progression. An increasing number of studies have then demonstrated that microRNAs can function as potential oncogenes or oncosuppressor genes, depending on the cellular context and on the target genes they regulate. Here we review our current knowledge about the involvement of microRNAs in cancer and their potential as diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Marilena V Iorio
- Molecular Biology Unit, Department of Experimental Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale Tumori, Milano, Italy
| | | |
Collapse
|
973
|
Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 2009; 47:168-80. [PMID: 19851078 DOI: 10.1159/000250095] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic modulation plays a key role in atherosclerosis and is classically defined as a switch from a 'contractile' phenotype to a 'synthetic' phenotype, whereby genes that define the contractile SMC phenotype are suppressed and proliferation and/or migratory mechanisms are induced. There is also evidence that SMCs may take on a 'proinflammatory' phenotype, whereby SMCs secrete cytokines and express cell adhesion molecules, e.g. IL-8, IL-6, and VCAM-1, respectively, which may functionally regulate monocyte and macrophage adhesion and other processes during atherosclerosis. Factors that drive the inflammatory phenotype are not limited to cytokines but also include hemodynamic forces imposed on the blood vessel wall and intimate interaction of endothelial cells with SMCs, as well as changes in matrix composition in the vessel wall. However, it is critical to recognize that our understanding of the complex interaction of these multiple signal inputs has only recently begun to shed light on mechanisms that regulate the inflammatory SMC phenotype, primarily through models that attempt to recreate this environment ex vivo. The goal of this review is to summarize our current knowledge in this area and identify some of the key unresolved challenges and questions requiring further study.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, La., USA
| | | | | | | |
Collapse
|
974
|
Nahid MA, Pauley KM, Satoh M, Chan EKL. miR-146a is critical for endotoxin-induced tolerance: IMPLICATION IN INNATE IMMUNITY. J Biol Chem 2009; 284:34590-9. [PMID: 19840932 PMCID: PMC2787321 DOI: 10.1074/jbc.m109.056317] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The human toll-like receptor 4 (TLR4) pathway is activated in response to lipopolysaccharide (LPS), and subsequent signal transductions lead to the production of cytokines such as tumor necrosis factor-α (TNF-α) by innate immune cells. Defects in innate immune response may contribute to the overproduction of TNF-α leading to systemic inflammation and diseases. Thus, the innate immune response needs to be tightly regulated by elaborate mechanisms to control its onset and termination. LPS tolerance is a state of hyporesponsiveness to subsequent LPS challenge and is achieved by monocytic cells after prolonged exposure to LPS. In this report, kinetics of endotoxin-responsive microRNAs expression analysis revealed a unique pattern of gradual increase for miR-146a starting 4 h after LPS stimulation in THP-1 cells and continued up to 35-fold over 24 h. Conversely, TNF-α increased up to 4 h and then decreased gradually implicating a negative correlation with miR-146a progression. The characteristic up-regulation of miR-146a toward subsequent LPS challenge in THP-1 cells was studied. Strikingly, microRNA expression analysis during the tolerized state of THP-1 cells showed only miR-146a overexpression suggesting its important role in LPS tolerance. In addition, LPS tolerance was dependent on a LPS-priming dose and associated miR-146a up-regulation. LPS-tolerized cells were observed to regain responsiveness in TNF-α production 22 h after LPS removal correlating with a decrease in miR-146a level. Transfection of miR-146a into THP-1 cells mimicked LPS priming, whereas transfection of miR-146a inhibitor largely abolished LPS tolerance. Thus our studies demonstrated that miR-146a is critical for the in vitro monocytic cell-based endotoxin tolerance.
Collapse
Affiliation(s)
- Md A Nahid
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
975
|
Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, Nicoloso MS, Barbarotto E, Popa M, Stanciulea O, Fernandez MH, Tulbure D, Bueso-Ramos CE, Negrini M, Calin GA. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One 2009; 4:e7405. [PMID: 19823581 PMCID: PMC2756627 DOI: 10.1371/journal.pone.0007405] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The physiopathology of sepsis continues to be poorly understood, and despite recent advances in its management, sepsis is still a life-threatening condition with a poor outcome. If new diagnostic markers related to sepsis pathogenesis will be identified, new specific therapies might be developed and mortality reduced. Small regulatory non-coding RNAs, microRNAs (miRNAs), were recently linked to various diseases; the aim of our prospective study was to identify miRNAs that can differentiate patients with early-stage sepsis from healthy controls and to determine if miRNA levels correlate with the severity assessed by the Sequential Organ Failure Assessment (SOFA) score. METHODOLOGY/PRINCIPAL FINDINGS By using genome-wide miRNA profiling by microarray in peripheral blood leukocytes, we found that miR-150, miR-182, miR-342-5p, and miR-486 expression profiles differentiated sepsis patients from healthy controls. We also proved by quantitative reverse transcription-polymerase chain reaction that miR-150 levels were significantly reduced in plasma samples of sepsis patients and correlated with the level of disease severity measured by the SOFA score, but were independent of the white blood counts (WBC). We found that plasma levels of tumor necrosis factor alpha, interleukin-10, and interleukin-18, all genes with sequence complementarity to miR-150, were negatively correlated with the plasma levels of this miRNA. Furthermore, we identified that the plasma levels ratio for miR-150/interleukin-18 can be used for assessing the severity of the sepsis. CONCLUSIONS/SIGNIFICANCE We propose that miR-150 levels in both leukocytes and plasma correlate with the aggressiveness of sepsis and can be used as a marker of early sepsis. Furthermore, we envision miR-150 restoration as a future therapeutic option in sepsis patients.
Collapse
Affiliation(s)
- Catalin Vasilescu
- Department of Surgery, Fundeni Clinical Hospital, Bucharest, Romania
| | - Simona Rossi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Stefan Tudor
- Department of Surgery, Fundeni Clinical Hospital, Bucharest, Romania
| | - Angelo Veronese
- Department of Experimental and Diagnostic Medicine, Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara, Italy
| | - Manuela Ferracin
- Department of Experimental and Diagnostic Medicine, Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara, Italy
| | - Milena S. Nicoloso
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Elisa Barbarotto
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Monica Popa
- Department of Surgery, Fundeni Clinical Hospital, Bucharest, Romania
| | - Oana Stanciulea
- Department of Surgery, Fundeni Clinical Hospital, Bucharest, Romania
| | - Michael H. Fernandez
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dan Tulbure
- Department of Anesthesiology, Fundeni Clinical Hospital, Bucharest, Romania
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Massimo Negrini
- Department of Experimental and Diagnostic Medicine, Interdepartmental Center for Cancer Research, University of Ferrara, Ferrara, Italy
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
976
|
Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 2009; 219:214-221. [PMID: 19593777 DOI: 10.1002/path.2586] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 05/25/2009] [Indexed: 12/12/2022]
Abstract
Small non-coding microRNAs (miRNAs) contribute to cancer development and progression, and are differentially expressed in normal tissues and cancers. However, the specific role of miRNAs in the metastatic process is still unknown. To seek a specific miRNA expression signature characterizing the metastatic phenotype of solid tumours, we performed a miRNA microarray analysis on 43 paired primary tumours (ten colon, ten bladder, 13 breast, and ten lung cancers) and one of their related metastatic lymph nodes. We identified a metastatic cancer miRNA signature comprising 15 overexpressed and 17 underexpressed miRNAs. Our results were confirmed by qRT-PCR analysis. Among the miRNAs identified, some have a well-characterized association with cancer progression, eg miR-10b, miR-21, miR-30a, miR-30e, miR-125b, miR-141, miR-200b, miR-200c, and miR-205. To further support our data, we performed an immunohistochemical analysis for three well-defined miRNA gene targets (PDCD4, DHFR, and HOXD10 genes) on a small series of paired colon, breast, and bladder cancers, and one of their metastatic lymph nodes. We found that the immunohistochemical expression of these targets significantly follows the corresponding miRNA deregulation. Our results suggest that specific miRNAs may be directly involved in cancer metastasis and that they may represent a novel diagnostic tool in the characterization of metastatic cancer gene targets.
Collapse
Affiliation(s)
- Raffaele Baffa
- Department of Urology, Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
977
|
Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 2009; 42:1316-29. [PMID: 19800023 DOI: 10.1016/j.biocel.2009.09.016] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are an important class of non-coding small RNAs that possess a large range of biological activities in a variety of organisms and are linked to human diseases such as cancer. Initially, miRNAs were thought to act solely as negative regulators of gene expression and exert their effects by binding to regions within the 3'UTR of their target protein-coding messenger RNAs (mRNAs) in a sequence dependent manner. However, recent data reveals that miRNA regulation entails a far more complex system of post-transcriptional control than initially appreciated. An evolving consensus has emerged of how miRNAs can repress as well as activate gene expression by interacting with complementary regions found in the promoter, coding region, as well as the 3'UTR of their mRNA targets. Furthermore, miRNAs are extensively regulated at the levels of miRNA promoter transcription, methylation, miRNA processing, RNA editing, and miRNA-target interactions. This review will discuss new insights into miRNA-based mechanisms and the role specific DNA- and RNA-binding factors play in fine-tuning gene expression in both negative and positive ways by directing miRNA biogenesis and activity. We will also discuss the influence that cellular context and environmental cues have on miRNA function. In the future, a clear understanding of miRNA regulation will be essential when understanding the role miRNAs play during animal development and in maintaining adult homeostasis as well as exploring the use of small RNAs for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Kimberly Breving
- Department of Microbiology and Molecular Cell Biology, 700 West Olney Road, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
978
|
Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA. Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells. FEBS Lett 2009; 583:3349-55. [PMID: 19786024 DOI: 10.1016/j.febslet.2009.09.038] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 12/21/2022]
Abstract
We have previously reported that IL-beta-induced miR-146a and miR-146b expression negatively regulates IL-8 and RANTES release in human alveolar A549 epithelial cells. To determine the intracellular pathways that regulate this response, we demonstrate IL-1beta-induced activation of the nuclear factor (NF)-kappaB, extracellular regulated kinase (ERK)-1/2, c-jun N-terminal kinase (JNK)-1/2 and p38 mitogen activated kinase (MAP) kinase pathways. Subsequent pharmacological studies show that IL-1beta-induced miR-146a, IL-8 and RANTES production was regulated via NF-kappaB and JNK-1/2 whilst miR-146b expression was mediated via MEK-1/2 and JNK-1/2. These divergent intracellular pathways likely explain the differential expression and biological action of the miR-146 isoforms.
Collapse
Affiliation(s)
- Mark M Perry
- Airways Disease, National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
| | | | | | | | | |
Collapse
|
979
|
Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30:475-87. [PMID: 19781994 DOI: 10.1016/j.it.2009.07.009] [Citation(s) in RCA: 1008] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 02/06/2023]
Abstract
Prior exposure of innate immune cells like monocytes/macrophages to minute amounts of endotoxin cause them to become refractory to subsequent endotoxin challenge, a phenomenon called "endotoxin tolerance". Clinically, this state is associated with monocytes/macrophages in sepsis patients where they contribute to "immunosuppression" and mortality. The molecular mechanisms underlying endotoxin tolerance remain elusive. The recent appreciation of inflammation as a self-regulating process, the relative contribution of MyD88 versus TRIF signaling pathways in inducing activation or tolerance, plasticity of NF-kappaB function and the role of chromatin modification and microRNAs in LPS-induced gene reprogramming urges a re-evaluation of endotoxin tolerance. This review integrates these new findings into an up-to-date account of endotoxin tolerance, its molecular basis and clinical implications in different pathologies.
Collapse
Affiliation(s)
- Subhra K Biswas
- Singapore Immunology Network, Biomedical Sciences Institutes, Agency for Science, Technology and Research, #04-01 Immunos, 8A Biomedical Drive, 138648 Singapore.
| | | |
Collapse
|
980
|
Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2009; 16:142-65. [DOI: 10.1093/humupd/dmp034] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
981
|
Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 2009; 10:443. [PMID: 19765282 PMCID: PMC2762473 DOI: 10.1186/1471-2164-10-443] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/18/2009] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs are the major class of gene-regulating molecules playing diverse roles through sequence complementarity to target mRNAs at post-transcriptional level. Tightly regulated expression and interaction of a multitude of genes for ovarian folliculogenesis could be regulated by these miRNAs. Identification of them is the first step towards understanding miRNA-guided gene regulation in different biological functions. Despite increasing efforts in miRNAs identification across various species and diverse tissue types, little is known about bovine ovarian miRNAs. Here, we report the identification and characterization of miRNAs expressed in the bovine ovary through cloning, expression analysis and target prediction. Results The miRNA library (5'-independent ligation cloning method), which was constructed from bovine ovary in this study, revealed cloning of 50 known and 24 novel miRNAs. Among all identified miRNAs, 38 were found to be new for bovine and were derived from 43 distinct loci showing characteristic secondary structure. While 22 miRNAs precursor loci were found to be well conserved in more than one species, 16 were found to be bovine specific. Most of the miRNAs were cloned multiple times, in which let-7a, let-7b, let-7c, miR-21, miR-23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 11 times, respectively. Expression analysis of all new and some annotated miRNAs in different intra-ovarian structures and in other multiple tissues showed that some were present ubiquitously while others were differentially expressed among different tissue types. Bta-miR-29a was localized in the follicular cells at different developmental stages in the cyclic ovary. Bio-informatics prediction, screening and Gene Ontology analysis of miRNAs targets identified several biological processes and pathways underlying the ovarian function. Conclusion Results of this study suggest the presence of miRNAs in the bovine ovary, thereby elucidate their potential role in regulating diverse molecular and physiological pathways underlying the ovarian functionality. This information will give insights into bovine ovarian miRNAs, which can be further characterized for their role in follicular development and female fertility as well.
Collapse
Affiliation(s)
- Md Munir Hossain
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
982
|
Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. J Virol 2009; 83:12009-17. [PMID: 19759154 DOI: 10.1128/jvi.01182-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The oncogenic microRNA miR-155 is upregulated by several oncogenic viruses. The precursor of miR-155, termed bic, was first observed to cooperate with myc in chicken B-cell lymphomas induced by avian leukosis proviral integrations. We identified another oncogenic retrovirus, reticuloendotheliosis virus strain T (REV-T), that upregulates miR-155 in chicken embryo fibroblasts. We also observed very high levels of miR-155 in REV-T-induced B-cell lymphomas. To study the role of miR-155 in these tumors, we identified JARID2/Jumonji, a cell cycle regulator and part of a histone methyltransferase complex, as a target of miR-155. The overexpression of miR-155 decreased levels of endogenous JARID2 mRNA. We confirmed that miR-155 directly targets both human and chicken JARID2 by assaying the repression of reporters containing the JARID2 3'-untranslated regions. Further, the overexpression of a sponge complementary to miR-155 in a tumor cell line increased endogenous JARID2 mRNA levels. The overexpression of JARID2 in chicken fibroblasts led to decreased cell numbers and an increase in apoptotic cells. The overexpression of miR-155 rescued cells undergoing cytopathic effect caused by infection with subgroup B avian retroviruses. Therefore, we propose that miR-155 has a prosurvival function that is mediated through the downregulation of targets including JARID2.
Collapse
|
983
|
Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 2009; 15:806-12. [PMID: 19702585 DOI: 10.1111/j.1469-0691.2009.02960.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infection by Helicobacter pylori is a major risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. H. pylori possesses a set of virulence factors, including the CagA effector, which interferes with intracellular signalling pathways and mediates phenotypic alterations, strongly evoking neoplasic transformation. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression involved in development, cell proliferation and immune responses. miRNAs are frequently altered in cancers, revealing their functions as oncogenes or tumour suppressors. However, the role, if any, that miRNAs play in the host cell responses to H. pylori remains unknown. This review considers the possible involvement of some miRNAs, including miR-146, miR-155, miR-21, miR-27a, miR-106-93-25 and miR-221-222 clusters and the miR-200 family in H. pylori-induced infection and gastric cancers. Further exploration of miRNA-mediated gene silencing, taking into account the relationship between host targets and bacterial effectors, will most certainly bring new insights into the control of gene expression in human gastric cells chronically infected by H. pylori.
Collapse
Affiliation(s)
- C Belair
- INSERM U869, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | |
Collapse
|
984
|
Ruggiero T, Trabucchi M, De Santa F, Zupo S, Harfe BD, McManus MT, Rosenfeld MG, Briata P, Gherzi R. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J 2009; 23:2898-908. [PMID: 19423639 DOI: 10.1096/fj.09-131342] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The importance of post-transcriptional mechanisms for the regulation of the homoeostasis of the immune system and the response to challenge by microorganisms is becoming increasingly appreciated. We investigated the contribution of microRNAs (miRNAs) to macrophage activation induced by lipopolysaccharide (LPS). We first observed that Dicer knockout in bone marrow-derived macrophages (BMDMs) increases the LPS-induced expression of some inflammation mediators. miRNA microarray analysis in BMDMs revealed that LPS significantly induces the expression of a single miRNA, miR-155, and this induction depends on enhanced miR-155 maturation from its precursors. The single-strand RNA-binding protein KH-type splicing regulatory protein (KSRP) binds to the terminal loop of miR-155 precursors and promotes their maturation. Both inhibition of miR-155 and KSRP knockdown enhance the LPS-induced expression of select inflammation mediators, and the effect of KSRP knockdown is reverted by mature miR-155. Our studies unveil the existence of an LPS-dependent post-transcriptional regulation of miR-155 biogenesis. Once induced, miR-155 finely tunes the expression of select inflammation mediators in response to LPS.
Collapse
Affiliation(s)
- Tina Ruggiero
- RNA Technology Laboratory, Centro Biotecnologie Avanzate, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
985
|
Pottier N, Maurin T, Chevalier B, Puisségur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B, Barbry P, Mari B. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 2009; 4:e6718. [PMID: 19701459 PMCID: PMC2726943 DOI: 10.1371/journal.pone.0006718] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury.
Collapse
Affiliation(s)
- Nicolas Pottier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- EA2679, Faculté de Médecine H. Warembourg, Pôle Recherche, Lille, France
| | - Thomas Maurin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Benoit Chevalier
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Marie-Pierre Puisségur
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Kevin Lebrigand
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Karine Robbe-Sermesant
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Thomas Bertero
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | | | - Elisabeth Courcot
- EA2679, Faculté de Médecine H. Warembourg, Pôle Recherche, Lille, France
| | - Géraldine Rios
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Sandra Fourre
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | | | - Brice Marcet
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Bruno Cardinaud
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- * E-mail: (PB); (BM)
| | - Bernard Mari
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, France
- University of Nice Sophia-Antipolis, Nice, France
- * E-mail: (PB); (BM)
| |
Collapse
|
986
|
Valeri N, Vannini I, Fanini F, Calore F, Adair B, Fabbri M. Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 2009; 20:573-80. [PMID: 19697081 DOI: 10.1007/s00335-009-9206-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/06/2009] [Indexed: 02/08/2023]
Abstract
Cancer is a genetic and epigenetic disease. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been shown to be deregulated in many diseases including cancer. An intertwined connection between epigenetics and miRNAs has been supported by the recent identification of a specific subgroup of miRNAs called "epi-miRNAs" that can directly and indirectly modulate the activity of the epigenetic machinery. The complexity of this connection is enhanced by the epigenetic regulation of miRNA expression that generates a fine regulatory feedback loop. This review focuses on how epigenetics affects the miRNome and how the recently identified epi-miRNAs regulate the epigenome in human cancers, ultimately contributing to human carcinogenesis.
Collapse
Affiliation(s)
- Nicola Valeri
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
987
|
Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis C. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31:220-31. [PMID: 19699171 PMCID: PMC2865583 DOI: 10.1016/j.immuni.2009.06.024] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 05/02/2009] [Accepted: 06/24/2009] [Indexed: 12/23/2022]
Abstract
MicroRNAs regulated by lipopolysaccharide (LPS) target genes that contribute to the inflammatory phenotype. Here, we showed that the protein kinase Akt1, which is activated by LPS, positively regulated miRNAs let-7e and miR-181c but negatively regulated miR-155 and miR-125b. In silico analyses and transfection studies revealed that let-7e repressed Toll-like receptor 4 (TLR4), whereas miR-155 repressed SOCS1, two proteins critical for LPS-driven TLR signaling, which regulate endotoxin sensitivity and tolerance. As a result, Akt1(-/-) macrophages exhibited increased responsiveness to LPS in culture and Akt1(-/-) mice did not develop endotoxin tolerance in vivo. Overexpression of let-7e and suppression of miR-155 in Akt1(-/-) macrophages restored sensitivity and tolerance to LPS in culture and in animals. These results indicate that Akt1 regulates the response of macrophages to LPS by controlling miRNA expression.
Collapse
Affiliation(s)
- Ariadne Androulidaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | - Dimitrios Iliopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alicia Arranz
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | - Christina Doxaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | - Steffen Schworer
- Molecular Oncology Research Institute, TUFTS Medical Center, Boston, MA 02111, USA
| | - Vassiliki Zacharioudaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
- Graduate program on Molecular Basis of Human Disease, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | - Andrew N. Margioris
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | - Philip N. Tsichlis
- Molecular Oncology Research Institute, TUFTS Medical Center, Boston, MA 02111, USA
| | - Christos Tsatsanis
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| |
Collapse
|
988
|
Wang X, Zhao Q, Matta R, Meng X, Liu X, Liu CG, Nelin LD, Liu Y. Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J Biol Chem 2009; 284:27123-34. [PMID: 19651781 DOI: 10.1074/jbc.m109.051235] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible nitric-oxide (NO) synthase (iNOS) plays a critical role in the eradication of intracellular pathogens. However, the excessive production of NO by iNOS has also been implicated in the pathogenesis of septic shock syndrome. Previously, we have demonstrated that mice deficient in mitogen-activated protein kinase phosphatase-1 (MKP-1) exhibit exaggerated inflammatory responses and rapidly succumb to lipopolysaccharide (LPS). In response to LPS, MKP-1(-/-) mice produce greater amounts of inflammatory cytokines and NO than do wild-type mice, and the MKP-1(-/-) mice exhibit severe hypotension. To understand the molecular basis for the increase in NO production, we studied the role of MKP-1 in the regulation of iNOS expression. We found that LPS challenge elicited a stronger iNOS induction in MKP-1 knock-out mice than in wild-type mice. Likewise, LPS treatment also resulted in greater iNOS expression in macrophages from MKP-1(-/-) mice than in macrophages from wild-type mice. Both accelerated gene transcription and enhanced mRNA stability contribute to the increases in iNOS expression in LPS-stimulated MKP-1(-/-) macrophages. We found that STAT-1, a transcription factor known to mediate iNOS induction by interferon-gamma, was more potently activated by LPS in MKP-1(-/-) macrophages than in wild-type cells. MicroRNA array analysis indicated that microRNA (miR)-155 expression was increased in MKP-1-deficient macrophages compared with wild-type macrophages. Transfection of miR-155 attenuated the expression of Suppressor of Cytokine Signal (SOCS)-1 and enhanced the expression of iNOS. Our results suggest that MKP-1 may negatively regulate iNOS expression by controlling the expression of miR-155 and consequently the STAT pathway via SOCS-1.
Collapse
Affiliation(s)
- Xianxi Wang
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
989
|
Garofalo M, Condorelli GL, Croce CM, Condorelli G. MicroRNAs as regulators of death receptors signaling. Cell Death Differ 2009; 17:200-8. [PMID: 19644509 DOI: 10.1038/cdd.2009.105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Death receptors, belonging to the TNF receptor superfamily, induce apoptosis through two different pathways, one involving the effector caspases directly (type I cells or mitochondria-independent death), the other one amplifying the death signal through the mitochondrial pathway (type II cells or mitochondria-dependent death). MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate the stability or translational efficiency of targeted messenger RNAs. MiRNAs are involved in many cellular processes that are altered in cancer, such as differentiation, proliferation and apoptosis. In this review we will discuss recent findings implicating miRNAs as regulators of death receptors and pro- and antiapoptotic genes involved in programmed cell death pathways.
Collapse
Affiliation(s)
- M Garofalo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
990
|
Abstract
The advent of microRNA has potentially uncovered a new level of complexity to be considered for every biological process. Through the modulation of transcription and translation, microRNA alter the basal state of cells and the outcome of stimulatory events. The exact effect of the microRNA network and individual microRNA on cellular processes is only just starting to be dissected. In the immune system, microRNA appear to have a key role in the early differentiation and effector differentiation of B cells. In T cells, microRNA have been shown to be key regulators of the lineage induction pathways, and to have a strong role in the induction, function and maintenance of the regulatory T-cell lineage. MicroRNA are also important for regulating the differentiation of dendritic cells and macrophages via toll-like receptors, with responsibilities in suppressing effector function before activation and enhancing function after stimulation. In addition to regulating key processes in the immune system, microRNA may also represent an archaic immune system themselves. Small interfering RNA of viral origin has been shown to function as an intracellular mediator in the suppression of viral infection in eukaryotes as diverse as plants, insects, nematodes and fungi, and there is growing evidence that endogenous mammalian microRNA can have similar impacts. In this article we speculate that the anti-viral function of microRNA drove the expression of different subsets of microRNA in different cellular lineages, which may have, in turn, led to the myriad of roles microRNA play in lineage differentiation and stability.
Collapse
Affiliation(s)
- Li-Fan Lu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
991
|
Molecular profiling of CD3-CD4+ T cells from patients with the lymphocytic variant of hypereosinophilic syndrome reveals targeting of growth control pathways. Blood 2009; 114:2969-83. [PMID: 19608752 DOI: 10.1182/blood-2008-08-175091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clonal CD3(-)CD4(+) T-cell population characterizing lymphocytic variant hypereosinophilic syndrome (L-HES) persists for years, with a subgroup of patients ultimately progressing to T lymphoma. The molecular changes associated with the premalignant clone and the emergence of malignant subclones are unknown, precluding the development of targeted therapy for this HES variant. In this study, we used whole genome arrays to examine gene expression in the CD3(-)CD4(+) T cells and found that 850 genes were differentially regulated during chronic disease compared with CD3(+)CD4(+) T cells from healthy donors. Changes in the expression of 349 genes were altered in association with the clinical progression from chronic L-HES to T lymphoma in 1 patient, with 87 of 349 genes representing further changes in genes whose expression was altered in all chronic disease patients (87 of 850). Array analysis after CD2/CD28-mediated activation revealed that the major gene expression changes observed in the CD3(-)CD4(+) T cells do not reflect activation induced alterations but rather pathways involved in T-cell homeostasis, including transforming growth factor-beta signaling, apoptosis, and T-cell maturation, signaling, and migration. Examination of microRNA expression in the CD3(-)CD4(+) T cells from patients with chronic disease identified 23 microRNAs that changed significantly, among which miR-125a further decreased in association with one patient's evolution to T lymphoma.
Collapse
|
992
|
Worm J, Stenvang J, Petri A, Frederiksen KS, Obad S, Elmén J, Hedtjärn M, Straarup EM, Hansen JB, Kauppinen S. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 2009; 37:5784-92. [PMID: 19596814 PMCID: PMC2761263 DOI: 10.1093/nar/gkp577] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jesper Worm
- Santaris Pharma, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
993
|
Dolganiuc A, Petrasek J, Kodys K, Catalano D, Mandrekar P, Velayudham A, Szabo G. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 2009. [PMID: 19572984 DOI: 10.1111/j.1530-0277.2009.01007.x;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alcoholic and nonalcoholic steatohepatitis are leading causes of liver diseases worldwide. While of different etiology, these share common pathophysiological mechanisms and feature abnormal fat metabolism, inflammation and fibrosis. MicroRNAs (miRNA) are highly conserved noncoding RNAs that control gene expression at the post-transcriptional level either via the degradation of target mRNAs or the inhibition of translation. Each miRNA controls the expression of multiple targets; miRNAs have been linked to regulation of lipid metabolism and inflammation. METHODS We fed Lieber-DeCarli alcohol or methionine-choline-deficient (MCD) diets to C57Bl6 and analyzed livers for histopathology, cytokines by ELISA, alanine aminotransferase (ALT) by biochemical assay, and microRNA profile by microarray. RESULTS Both Lieber-DeCarli and MCD diets lead to development of liver steatosis, liver injury, indicated by increased ALT, and elevated levels of serum TNFalpha, suggesting that animal models portray the pathophysiological features of alcoholic and nonalcoholic fatty liver, respectively. We identified that Lieber-deCarli diet up-regulated 1% and down-regulated 1% of known miRNA; MCD diet up-regulated 3% and down-regulated 1% of known miRNA, compared to controls. Of miRNAs that changed expression levels, 5 miRNAs were common in alcoholic and nonalcoholic fatty livers: the expression of both miR-705 and miR-1224 was increased after Lieber-DeCarli or MCD diet feeding. In contrast, miR-182, miR-183, and miR-199a-3p were down-regulated in Lieber-deCarli feeding, while MCD diet lead to their up-regulation, compared to corresponding controls. CONCLUSIONS Our findings indicate etiology-specific changes in miRNA expression profile during steatohepatitis models, which opens new avenues for research in the pathophysiology of alcoholic and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | | | | | | | | | |
Collapse
|
994
|
Fabbri M, Croce CM, Calin GA. MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk Lymphoma 2009; 50:160-70. [DOI: 10.1080/10428190802535114] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
995
|
Dolganiuc A, Petrasek J, Kodys K, Catalano D, Mandrekar P, Velayudham A, Szabo G. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 2009; 33:1704-10. [PMID: 19572984 DOI: 10.1111/j.1530-0277.2009.01007.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcoholic and nonalcoholic steatohepatitis are leading causes of liver diseases worldwide. While of different etiology, these share common pathophysiological mechanisms and feature abnormal fat metabolism, inflammation and fibrosis. MicroRNAs (miRNA) are highly conserved noncoding RNAs that control gene expression at the post-transcriptional level either via the degradation of target mRNAs or the inhibition of translation. Each miRNA controls the expression of multiple targets; miRNAs have been linked to regulation of lipid metabolism and inflammation. METHODS We fed Lieber-DeCarli alcohol or methionine-choline-deficient (MCD) diets to C57Bl6 and analyzed livers for histopathology, cytokines by ELISA, alanine aminotransferase (ALT) by biochemical assay, and microRNA profile by microarray. RESULTS Both Lieber-DeCarli and MCD diets lead to development of liver steatosis, liver injury, indicated by increased ALT, and elevated levels of serum TNFalpha, suggesting that animal models portray the pathophysiological features of alcoholic and nonalcoholic fatty liver, respectively. We identified that Lieber-deCarli diet up-regulated 1% and down-regulated 1% of known miRNA; MCD diet up-regulated 3% and down-regulated 1% of known miRNA, compared to controls. Of miRNAs that changed expression levels, 5 miRNAs were common in alcoholic and nonalcoholic fatty livers: the expression of both miR-705 and miR-1224 was increased after Lieber-DeCarli or MCD diet feeding. In contrast, miR-182, miR-183, and miR-199a-3p were down-regulated in Lieber-deCarli feeding, while MCD diet lead to their up-regulation, compared to corresponding controls. CONCLUSIONS Our findings indicate etiology-specific changes in miRNA expression profile during steatohepatitis models, which opens new avenues for research in the pathophysiology of alcoholic and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | | | | | | | | | |
Collapse
|
996
|
Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 2009; 48:569-82. [PMID: 19396866 PMCID: PMC2726991 DOI: 10.1002/gcc.20666] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Altered microRNA (miRNA) expression profiles have been observed in numerous malignancies, including oral squamous cell carcinoma (OSCC). However, their role in disease is not entirely clear. Several genetic aberrations are characteristic of OSCC, with amplification of chromosomal band 11q13 and loss of distal 11q being among the most prevalent. It is not known if the expression levels of miRNAs in these regions are altered or whether they play a role in disease. We hypothesize that the expression of miRNAs mapping to 11q are altered in OSCC because of loss or amplification of chromosomal material, and that this contributes to the development and progression of OSCC. We found that miR-125b and miR-100 are down-regulated in OSCC tumor and cell lines, and that transfecting cells with exogenous miR-125b and miR-100 significantly reduced cell proliferation and modified the expression of target and nontarget genes, including some that are overexpressed in radioresistant OSCC cells. In conclusion, the down-regulation of miR-125b and miR-100 in OSCC appears to play an important role in the development and/or progression of disease and may contribute to the loss of sensitivity to ionizing radiation.
Collapse
Affiliation(s)
- Brian J. Henson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Samsiddhi Bhattacharjee
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Dawn M. O’Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| |
Collapse
|
997
|
Tsitsiou E, Lindsay MA. microRNAs and the immune response. Curr Opin Pharmacol 2009; 9:514-20. [PMID: 19525145 PMCID: PMC2742742 DOI: 10.1016/j.coph.2009.05.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/04/2009] [Indexed: 12/21/2022]
Abstract
Although the immune response is predominantly controlled at the transcriptional level, microRNA-mediated RNA interference is emerging as an important regulatory mechanism that operates at the translation level. Specifically, recent studies indicate that those miRNAs that are selectively and/or highly expressed in immune cells including the miR-17-92 cluster, miR-150, miR-155, miR-181 and miR-223 have a 'permissive' function in the maturation, proliferation and differentiation of myeloid and lymphoid cells. Importantly, these actions of miRNAs often involve interactions with transcription factors. In contrast, the rapid and transient induction of miR-9, miR-146a and miR-155 has been speculated to negatively regulate the acute responses following activation of innate immune through down-regulation of proteins involved in the receptor-induced signalling pathways.
Collapse
Affiliation(s)
- Eleni Tsitsiou
- NIHR Respiratory Translational Research Facility, University of Manchester, 2nd Floor Education and Research Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK
| | | |
Collapse
|
998
|
Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia 2009; 11:167-76. [PMID: 19177201 DOI: 10.1593/neo.08980] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 01/21/2023] Open
Abstract
Hodgkin lymphoma (HL) is derived from preapoptotic germinal center B cells, although a general loss of B cell phenotype is noted. Using quantitative reverse transcription-polymerase chain reaction and miRNA microarray, we determined the microRNA (miRNA) profile of HL and compared this with the profile of a panel of B-cell non-Hodgkin lymphomas. The two methods showed a strong correlation for the detection of miRNA expression levels. The HL-specific miRNA included miR-17-92 cluster members, miR-16, miR-21, miR-24, and miR-155. Using a large panel of cell lines, we found differential expression between HL and other B-cell lymphoma-derived cell lines for 27 miRNA. A significant down-regulation in HL compared to non-Hodgkin lymphoma was observed only for miR-150. Next, we performed target gene validation of predicted target genes for miR-155, which is highly expressed in HL and is differentially expressed between HL and Burkitt lymphoma. Using luciferase reporter assays, we validated 11 predicted miR-155 target genes in three different HL cell lines. We demonstrated that AGTR1, FGF7, ZNF537, ZIC3, and IKBKE are true miR-155 target genes in HL.
Collapse
|
999
|
Pauley KM, Cha S, Chan EKL. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009; 32:189-94. [PMID: 19303254 PMCID: PMC2717629 DOI: 10.1016/j.jaut.2009.02.012] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/11/2009] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (UTR) of specific messenger RNAs (mRNAs) for degradation or translational repression. miRNA-mediated gene regulation is critical for normal cellular functions such as the cell cycle, differentiation, and apoptosis, and as much as one-third of human mRNAs may be miRNA targets. Emerging evidence has demonstrated that miRNAs play a vital role in the regulation of immunological functions and the prevention of autoimmunity. Here we review the many newly discovered roles of miRNA regulation in immune functions and in the development of autoimmunity and autoimmune disease. Specifically, we discuss the involvement of miRNA regulation in innate and adaptive immune responses, immune cell development, T regulatory cell stability and function, and differential miRNA expression in rheumatoid arthritis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Kaleb M Pauley
- Department of Oral Surgery & Diagnostic Sciences, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | |
Collapse
|
1000
|
Soares AR, Pereira PM, Santos B, Egas C, Gomes AC, Arrais J, Oliveira JL, Moura GR, Santos MAS. Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics 2009; 10:195. [PMID: 19397817 PMCID: PMC2684549 DOI: 10.1186/1471-2164-10-195] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/27/2009] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a new class of small RNAs of approximately 22 nucleotides in length that control eukaryotic gene expression by fine tuning mRNA translation. They regulate a wide variety of biological processes, namely developmental timing, cell differentiation, cell proliferation, immune response and infection. For this reason, their identification is essential to understand eukaryotic biology. Their small size, low abundance and high instability complicated early identification, however cloning/Sanger sequencing and new generation genome sequencing approaches overcame most technical hurdles and are being used for rapid miRNA identification in many eukaryotes. Results We have applied 454 DNA pyrosequencing technology to miRNA discovery in zebrafish (Danio rerio). For this, a series of cDNA libraries were prepared from miRNAs isolated at different embryonic time points and from fully developed organs. Each cDNA library was tagged with specific sequences and was sequenced using the Roche FLX genome sequencer. This approach retrieved 90% of the 192 miRNAs previously identified by cloning/Sanger sequencing and bioinformatics. Twenty five novel miRNAs were predicted, 107 miRNA star sequences and also 41 candidate miRNA targets were identified. A miRNA expression profile built on the basis of pyrosequencing read numbers showed high expression of most miRNAs throughout zebrafish development and identified tissue specific miRNAs. Conclusion This study increases the number of zebrafish miRNAs from 192 to 217 and demonstrates that a single DNA mini-chip pyrosequencing run is effective in miRNA identification in zebrafish. This methodology also produced sufficient information to elucidate miRNA expression patterns during development and in differentiated organs. Moreover, some zebrafish miRNA star sequences were more abundant than their corresponding miRNAs, suggesting a functional role for the former in gene expression control in this vertebrate model organism.
Collapse
Affiliation(s)
- Ana R Soares
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|