951
|
Li DW, Li JH, Wang YD, Li GR. Atorvastatin protects endothelial colony‑forming cells against H2O2‑induced oxidative damage by regulating the expression of annexin A2. Mol Med Rep 2015; 12:7941-8. [PMID: 26497173 PMCID: PMC4758293 DOI: 10.3892/mmr.2015.4440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction and injury are central events in the pathogenesis of ischemic vascular disorders. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the peripheral circulation, where they locate to sites of injured endothelium and are involved in endothelial repair and vascular regeneration. During these processes, EPCs are exposed to oxidative stress, a crucial pathological condition, which occurs during vascular injury and limits the efficacy of EPCs in the repair of injured endothelium. Statins are effective inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and are commonly used to manage and prevent ischemic vascular disease by reducing plasma cholesterol levels. In addition to lowering cholesterol, statins have also been reported to exert pleiotropic actions, including anti-inflammatory and anti-oxidative activities. The present study aimed to investigate the ability of atorvastatin to protect endothelial colony-forming cells (ECFCs), a homogeneous subtype of EPCs, from hydrogen peroxide (H2O2)-induced oxidative damage, and to determine the mechanism underlying this protective action. MTT assay, acridine orange/ethidium bromide staining, reactive oxygen species assay, western blot analysis and tube formation assay were employed. The results demonstrated that H2O2 induced cell death and decreased the tube-forming ability of the ECFCs, in a concentration-dependent manner; however, these effects were partially attenuated following administration of atorvastatin. The reversion of the quantitative and qualitative impairment of the H2O2-treated ECFCs appeared to be mediated by the regulation of annexin A2, as the expression levels of annexin A2 were decreased following treatment with H2O2 and increased following treatment with atorvastatin. These results indicated that annexin A2 may be involved in the H2O2-induced damage of ECFCs, and in the protective activities of atorvastatin in response to oxidative stress.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Ji-Hua Li
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying-Di Wang
- Department of Urinary Surgery, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
952
|
Wang S, Cao W, Xing H, Chen YL, Li Q, Shen T, Jiang C, Zhu D. Activation of ERK pathway is required for 15-HETE-induced angiogenesis in human umbilical vascular endothelial cells. J Recept Signal Transduct Res 2015; 36:225-32. [PMID: 26460784 DOI: 10.3109/10799893.2015.1077865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis plays a critical role in the progression of cardiovascular disease, retinal ischemia, or tumorigenesis. The imbalance of endothelial cell proliferation and apoptosis disturbs the establishment of the vasculogenesis, which is affected by several arachidonic acid metabolites. 15-Hydroxyeicosatetraenoic acid (15-HETE) is one of the metabolites. However, the underlying mechanisms of angiogenesis induced by 15-HETE in human umbilical vascular endothelial cells (HUVECs) are still poorly understood. Since extracellular signal-regulated kinase (ERK) is a critical regulator of cell proliferation, there may be a crosstalk between 15-HETE-regulating angiogenic process and ERK-proliferative effect in HUVECs. To test this hypothesis, we study the effect of 15-HETE on cell proliferation, angiogenesis, and apoptosis using cell viability measurement, cell cycle analysis, western blot, scratch-wound, tube formation assay, and nuclear morphology determination. We found that 15-HETE promoted HUVEC angiogenesis, which were mediated by ERK. Moreover, 15-HETE-induced proliferation and cell cycle transition from the G(0)/G(1) phase to the G(2)/M + S phase. All these effects were reversed after blocking ERK with PD98059 (an ERK inhibitor). In addition, HUVEC apoptosis was relieved by 15-HETE through the ERK pathway. Thus, ERK is necessary for the effects of 15-HETE in the regulation of HUVEC angiogenesis, which may be a novel potential target for the treatment of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Shuang Wang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Weiwei Cao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Hao Xing
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Ying Li Chen
- b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University - Daqing , Daqing, Heilongjiang Province , People's Republic of China , and
| | - Qian Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Tingting Shen
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China
| | - Chun Jiang
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China .,c Department of Biology , Georgia State University , Atlanta , GA , USA
| | - Daling Zhu
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , Nangang District , Harbin, Heilongjiang , People's Republic of China .,b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University - Daqing , Daqing, Heilongjiang Province , People's Republic of China , and
| |
Collapse
|
953
|
Tsukahara T, Tsukahara R, Haniu H, Matsuda Y, Murakami-Murofushi K. Cyclic phosphatidic acid inhibits the secretion of vascular endothelial growth factor from diabetic human coronary artery endothelial cells through peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol 2015; 412:320-9. [PMID: 26007326 DOI: 10.1016/j.mce.2015.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions. The presence of this phospholipid in mildly oxidized low-density lipoprotein (LDL) is likely to be involved in atherogenesis. It has been reported that the activation of peroxisome proliferator-activated receptor gamma plays a key role in developing atherosclerosis. Our previous result indicates that cyclic phosphatidic acid (cPA), one of bioactive lipids, potently suppresses neointima formation by inhibiting the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, the detailed mechanism is still unclear. In this study, to elucidate the mechanism of the cPA-PPARγ axis in the coronary artery endothelium, especially in patients with type 2 diabetes, we investigated the proliferation, migration, and secretion of VEGF in human coronary artery endothelial cells from diabetes patients (D-HCAECs). AGP induced cell growth and migration; however, cPA suppressed the AGP-elicited growth and migration in D-HCAECs. Moreover, AGP increased VEGF secretion from D-HCAECs, and this event was attenuated by cPA. Taken together, these results suggest that cPA suppresses VEGF-stimulated growth and migration in D-HCAECs. These findings could be important for regulatory roles of PPARγ and VEGF in the vascular processes associated with diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Molecular Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ryoko Tsukahara
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan; Science and Education Center, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-861, Japan
| | - Hisao Haniu
- Institue for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoshikazu Matsuda
- Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806, Japan
| | | |
Collapse
|
954
|
Sasaki N, Itakura Y, Toyoda M. Ganglioside GM1 Contributes to the State of Insulin Resistance in Senescent Human Arterial Endothelial Cells. J Biol Chem 2015; 290:25475-86. [PMID: 26338710 PMCID: PMC4646194 DOI: 10.1074/jbc.m115.684274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cells (ECs) play central roles in physiologically important functions of blood vessels and contribute to the maintenance of vascular integrity. Therefore, it is considered that the impairment of EC functions leads to the development of vascular diseases. However, the molecular mechanisms of the EC dysfunctions that accompany senescence and aging have not yet been clarified. The carbohydrate antigens carried by glycoconjugates (e.g. glycoproteins, glycosphingolipids, and proteoglycans) mainly present on the cell surface serve not only as marker molecules but also as functional molecules. In this study, we have investigated the abundance and functional roles of glycosphingolipids in human ECs during senescence and aging. Among glycosphingolipids, ganglioside GM1 was highly expressed in abundance on the surface of replicatively and prematurely senescent ECs and also of ECs derived from an elderly subject. Insulin signaling, which regulates important functions of ECs, is impaired in senescent and aged ECs. Actually, by down-regulating GM1 on senescent ECs and overloading exogenous GM1 onto non-senescent ECs, we showed that an increased abundance of GM1 functionally contributes to the impairment of insulin signaling in ECs. Taken together, these findings provide the first evidence that GM1 increases in abundance on the cell surface of ECs under the conditions of cellular senescence and aging and causes insulin resistance in ECs. GM1 may be an attractive target for the detection, prevention, and therapy of insulin resistance and related vascular diseases, particularly in older people.
Collapse
Affiliation(s)
- Norihiko Sasaki
- From the Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yoko Itakura
- From the Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Masashi Toyoda
- From the Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
955
|
Liao J, Huang W, Liu G. Animal models of coronary heart disease. J Biomed Res 2015; 30:3. [PMID: 26585560 PMCID: PMC5274506 DOI: 10.7555/jbr.30.20150051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/16/2015] [Accepted: 06/27/2015] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular disease, predominantly coronary heart disease and stroke, leads to high morbidity and mortality not only in developed worlds but also in underdeveloped regions. The dominant pathologic foundation for cardiovascular disease is atherosclerosis and as to coronary heart disease, coronary atherosclerosis and resulting lumen stenosis, even total occlusions. In translational research, several animals, such as mice, rabbits and pigs, have been used as disease models of human atherosclerosis and related cardiovascular disorders. However, coronary lesions are either naturally rare or hard to be fast induced in these models, hence, coronary heart disease induction mostly relies on surgical or pharmaceutical interventions with no or limited primary coronary lesions, thus unrepresentative of human coronary heart disease progression and pathology. In this review, we will describe the progress of animal models of coronary heart disease following either spontaneous or diet-accelerated coronary lesions.
Collapse
Affiliation(s)
- Jiawei Liao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
956
|
Walczak M, Suraj J, Kus K, Kij A, Zakrzewska A, Chlopicki S. Towards a comprehensive endothelial biomarkers profiling and endothelium-guided pharmacotherapy. Pharmacol Rep 2015; 67:771-7. [DOI: 10.1016/j.pharep.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
957
|
Induction of Thioredoxin Reductase 1 by Korean Red Ginseng Water Extract Regulates Cytoprotective Effects on Human Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972040. [PMID: 26236385 PMCID: PMC4510250 DOI: 10.1155/2015/972040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Korean Red Ginseng is a popular herbal medicine and is widely used in many food products. KRG has biological benefits related to vascular diseases including diabetes, hypertension, atherosclerosis, and other cardiac diseases and KRG has antioxidant and anti-hyperlipidemic actions. KRG decreases the level of oxidative stress and suppresses proinflammatory cytokines and cell adhesion molecules, thus protecting endothelial dysfunction. Mammalian Thioredoxin reductase 1 is an NADPH-dependent selenoprotein, essential for antioxidant defense and DNA synthesis and repair, that regulates the redox system by modulating redox-sensitive transcription factors and thiol-containing proteins. Here, we show that KRG water extract increases the expression of TrxR1 in human umbilical vein endothelial cells via the p38 and PKC-δ signaling pathways. The induction of TrxR1 expression by KRG was confirmed by Western blot analysis and reverse transcription polymerase chain reaction. However, the increase in TrxR1 expression was abolished by specific silencing of the p38 and PKC-δ genes. In addition, we demonstrated that auranofin, a TrxR1 inhibitor, weakens the protective effect of KRG against H2O2-induced cell death as measured by the terminal transferase dUTP nick end labeling assay. These results suggest that KRG may have protective effects in vascular diseases by upregulating TrxR1 in endothelial cells, thereby inhibiting the generation of reactive oxygen species and cell death.
Collapse
|
958
|
Zhang Y, Sun M, Han Y, Zhai K, Tang Y, Qin X, Cao Z, Yu B, Kou J. The saponin DT-13 attenuates tumor necrosis factor-α-induced vascular inflammation associated with Src/NF-кB/MAPK pathway modulation. Int J Biol Sci 2015; 11:970-81. [PMID: 26157351 PMCID: PMC4495414 DOI: 10.7150/ijbs.11635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/15/2015] [Indexed: 01/20/2023] Open
Abstract
This study aimed to explore the effect of DT-13 (25(R,S)-ruscogenin- 1-O- [β-d-glucopyranosyl- (1→2)][β-d-xylopyranosyl-(1→3)]-β -d- fucopyranoside) on tumor necrosis factor (TNF)-α-induced vascular inflammation and the potential molecular mechanisms. In vitro, DT-13 suppressed TNF-α-induced adhesion and migration of human umbilical vein endothelial cells (HUVECs) by inhibiting the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). DT-13 markedly suppressed NF-кB p65 phosphorylation, and when NF-кB p65 was over-expressed, the inhibitory effect of DT-13 on adhesion molecular decreased. DT-13 also suppressed TNF-α induced luciferase activities of ICAM-1 and VCAM-1 promoter containing NF-κB binding sites. Furthermore, DT-13 markedly suppressed p38 phosphorylation and Src degradation induced by TNF-α, whereas had no significant effect on ERK and JNK activation. In vivo, DT-13 at 4 mg/kg prevented vascular inflammation and the expression of adhesion molecules induced by TNF-α in mice. These findings suggest that DT-13 abrogates vascular inflammation by down-regulating adhesion molecules associated with modulating the NF-кB, p38MAPK, Src signaling pathways, and NF-κB binding site is at least one of the targets of DT-13. This study provides novel information regarding the mechanism by which DT-13 exerts its effects on vascular inflammation, which is important for the onset and progression of various diseases.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Minhui Sun
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yuwei Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Kefeng Zhai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Youmei Tang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xiaoying Qin
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
959
|
Kramkowski K, Leszczynska A, Buczko W. Pharmacological modulation of fibrinolytic response - In vivo and in vitro studies. Pharmacol Rep 2015; 67:695-703. [PMID: 26321270 DOI: 10.1016/j.pharep.2015.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022]
Abstract
Fibrinolysis is an action of converting plasminogen by its activators, like tissue- or urokinase-type plasminogen activators (t-PA, u-PA), to plasmin, which in turn cleaves fibrin, thereby causing clot dissolution and restoration of blood flow. Endothelial cells release t-PA, prostacyclin (PGI2) and nitric oxide (NO), the potent factors playing a crucial role in regulation of the fibrinolytic system. Since blood platelets can release not only prothrombotic, but also antifibrinolytic factors, like plasminogen activator inhibitor type-1 (PAI-1), they are involved in fibrynolysis regulation. Therefore agents enhancing fibrinolysis can be preferred pharmacologicals in many cardiovascular diseases. This review describes mechanisms by which major cardiovascular drugs (renin-angiotensin-aldosterone system inhibitors, statins, adrenergic receptors and calcium channel blockers, aspirin and 1-methylnicotinamide) influence fibrinolysis. The presented data indicate, that the influence of these drugs on endothelium-blood platelets interactions via NO/PGI2 pathway is fundamental for its antithrombotic and profibrinolytic action. We also described new approaches for intravital confocal real-time imaging as a tool useful to investigate mechanisms of thrombus formation and the effects of drugs affecting haemostasis and mechanisms of their action in the circulation.
Collapse
Affiliation(s)
- Karol Kramkowski
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland.
| | | | - Wlodzimierz Buczko
- Department of Pharmacodynamics, Medical University of Białystok, Białystok, Poland; Higher Vocational School, Suwałki, Poland
| |
Collapse
|
960
|
Vasodilatory effect of a novel Rho-kinase inhibitor, DL0805-2, on the rat mesenteric artery and its potential mechanisms. Cardiovasc Drugs Ther 2015; 28:415-24. [PMID: 25086815 DOI: 10.1007/s10557-014-6544-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE In the present study, we investigated the vasodilatory effect of a novel scaffold Rho-kinase inhibitor, DL0805-2, on isolated rat arterial rings including mesenteric, ventral tail, and renal arteries. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings. METHODS A DMT multiwire myograph system was used to test the tension of isolated small arteries. Several drugs were employed to verify the underlying mechanisms. RESULTS DL0805-2 (10(-7)-10(-4) M) inhibited KCl (60 mM)-induced vasoconstriction in three types of small artery rings (pEC50: 5.84 ± 0.03, 5.39 ± 0.03, and 5.67 ± 0.02 for mesenteric, renal, and ventral tail artery rings, respectively). Pre-incubation with DL0805-2 (1, 3, or 10 μM) attenuated KCl (10-60 mM) and angiotensin II (AngII; 10(-6) M)-induced vasoconstriction in mesenteric artery rings. The relaxant effect on the rat mesenteric artery was partially endothelium-dependent (pEC50: 6.02 ± 0.05 for endothelium-intact and 5.72 ± 0.06 for endothelium-denuded). The influx and release of Ca(2+) were inhibited by DL0805-2. In addition, the increased phosphorylation levels of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by AngII were blocked by DL0805-2. However, DL0805-2 had little effect on K(+) channels. CONCLUSIONS The present results demonstrate that DL0805-2 has a vasorelaxant effect on isolated rat small arteries and may exert its action through the endothelium, Ca(2+) channels, and the Rho/ROCK pathway.
Collapse
|
961
|
Kassan M, Ait-Aissa K, Ali M, Trebak M, Matrougui K. Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2404-10. [PMID: 26036345 DOI: 10.1016/j.bbamcr.2015.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
We previously determined that augmented EGFR tyrosine kinase (EGFRtk) impairs vascular function in type 2 diabetic mouse (TD2). Here we determined that EGFRtk causes vascular dysfunction through NADPH oxidase activity in TD2. Mesenteric resistance arteries (MRA) from C57/BL6 and db-/db- mice were mounted in a wired myograph and pre-incubated for 1h with either EGFRtk inhibitor (AG1478) or exogenous EGF. The inhibition of EGFRtk did not affect the contractile response to phenylephrine-(PE) and thromboxane-(U46619) or endothelium-dependent relaxation (EDR) to acetylcholine in MRA from control group. However, in TD2 mice, AG1478 reduced the contractile response to U46619, improved vasodilatation and reduced p22phox-NADPH expression, but had no effect on the contractile response to PE. The incubation of MRA with exogenous EGF potentiated the contractile response to PE in MRA from control and diabetic mice. However, EGF impaired the EDR and potentiated the vasoconstriction to U46619 only in the control group. Interestingly, NADPH oxidase inhibition in the presence of EGF restored the normal contraction to PE and improved the EDR but had no effect on the potentiated contraction to U46619. Vascular function improvement was associated with the rescue of eNOS and Akt and reduction in phosphorylated Rho-kinase, NOX4 mRNA levels, and NADPH oxidase activity. MRA from p47phox-/- mice incubated with EGF potentiated the contraction to U46619 but had no effect to PE or ACh responses. The present study provides evidence that augmented EGFRtk impairs vascular function by NADPH oxidase-dependent mechanism. Therefore, EGFRtk and oxidative stress should be potential targets to treat vascular dysfunction in TD2.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA
| | - Karima Ait-Aissa
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA
| | - Maha Ali
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA; College of Nanoscale Science and Engineering, SUNY, Albany, NY 12203, USA
| | - Mohamed Trebak
- Assiut University, Department of Medical Biochemistry, Faculty of Medicine, Assiut, Egypt
| | - Khalid Matrougui
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA.
| |
Collapse
|
962
|
Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:752610. [PMID: 26089946 PMCID: PMC4451781 DOI: 10.1155/2015/752610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of disability and death worldwide. Research into the disease has led to many compelling hypotheses regarding the pathophysiology of atherosclerotic lesion formation and the resulting complications such as myocardial infarction and stroke. Herbal medicine has been widely used in China as well as other Asian countries for the treatment of cardiovascular diseases for hundreds of years; however, the mechanisms of action of Chinese herbal medicine in the prevention and treatment of atherosclerosis have not been well studied. In this review, we briefly describe the mechanisms of atherogenesis and then summarize the research that has been performed in recent years regarding the effectiveness and mechanisms of antiatherogenic Chinese herbal compounds in an attempt to build a bridge between traditional Chinese medicine and cellular and molecular cardiovascular medicine.
Collapse
|
963
|
Berezin AE, Kremzer AA, Samura TA, Martovitskaya YV, Malinovskiy YV, Oleshko SV, Berezina TA. Predictive value of apoptotic microparticles to mononuclear progenitor cells ratio in advanced chronic heart failure patients. J Cardiol 2015; 65:403-11. [PMID: 25123603 DOI: 10.1016/j.jjcc.2014.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
|
964
|
Scomparin A, Polyak D, Krivitsky A, Satchi-Fainaro R. Achieving successful delivery of oligonucleotides--From physico-chemical characterization to in vivo evaluation. Biotechnol Adv 2015; 33:1294-309. [PMID: 25916823 DOI: 10.1016/j.biotechadv.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
RNA interference is one of the most promising fields in modern medicine to treat several diseases, ranging from cancer to cardiac diseases, passing through viral infections and metabolic pathologies. Since the discovery of the potential therapeutic properties of non-self oligonucleotides, it was clear that it is important to develop delivery systems that are able to increase plasma stability and bestow membrane-crossing abilities to the oligonucleotides in order to reach their cytoplasmic targets. Polymer therapeutics, among other systems, are widely investigated as delivery systems for therapeutic agents, such as oligonucleotides. Physico-chemical characterization of the supramolecular polyplexes obtained upon charge interaction or covalent conjugation between the polymeric carrier and the oligonucleotides is critical. Appropriate characterization is fundamental in order to predict and understand the in vivo silencing efficacy and to avoid undesired side effects and toxicity profile. Shedding light on the physico-chemical and in vitro requirements of a polyplex leads to an efficient in vivo delivery system for RNAi therapeutics. In this review, we will present the most common techniques for characterization of obtained polymer/oligonucleotide polyplexes and an up-to-date state of the art in vivo preclinical and clinical studies. This is the first review to deal with the difficulties in appropriate characterization of small interfering RNA (siRNA) or microRNA (miRNA) polyplexes and conjugates which limit the clinical translation of this promising technology.
Collapse
Affiliation(s)
- Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
965
|
Kagota S, Maruyama K, Iwata S, Tada Y. [Impairment of vasodilation and effects of perivascular adipose tissue in metabolic syndrome]. Nihon Yakurigaku Zasshi 2015; 145:59-64. [PMID: 25747015 DOI: 10.1254/fpj.145.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
966
|
Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P. Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem 2015; 48:562-8. [PMID: 25697107 DOI: 10.1016/j.clinbiochem.2015.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Endothelial-derived microparticles (EMPs) are a novel biological marker of endothelium injury and vasomotion disorders that are involved in pathogenesis of cardiovascular, metabolic, and inflammatory diseases. Circulating levels of EMPs are thought to reflect a balance between cell stimulation, proliferation, apoptosis, and cell death. Increased EMPs may be defined in several cardiovascular diseases, such as stable and unstable coronary artery disease, acute and chronic heart failure, hypertension, arrhythmias, thromboembolism, asymptomatic atherosclerosis as well as renal failure, metabolic disorders (including type two diabetes mellitus, abdominal obesity, metabolic syndrome, insulin resistance) and dyslipidemia. This review highlights the controversial opinions regarding impact of circulating EMPs in major cardiovascular and metabolic diseases and summarizes the perspective implementation of the EMPs in risk stratification models.
Collapse
Affiliation(s)
- Alexander Berezin
- Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | - Anthony Zulli
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Australia
| | - Steve Kerrigan
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel Petrovic
- Department of Histology and Embryology, School of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
967
|
Chen S, Yang J, Xiang H, Chen W, Zhong H, Yang G, Fang T, Deng H, Yuan H, Chen AF, Lu H. Role of sphingosine-1-phosphate receptor 1 and sphingosine-1-phosphate receptor 2 in hyperglycemia-induced endothelial cell dysfunction. Int J Mol Med 2015; 35:1103-8. [PMID: 25673082 DOI: 10.3892/ijmm.2015.2100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
The hyperglycemia-induced production of oxidative stress results in endothelial cell dysfunction. Previous studies have demonstrated that sphingosine-1-phosphate (S1P) regulates an array of biological activities in endothelial cells mediated by sphingosine-1-phosphate receptors (S1PRs). However, the role of S1PR-mediated signaling pathways in hyperglycemia-induced endothelial cell dysfunction is currently unknown. In the present study, we aimed to explore the role of S1PRs in endothelial cell dysfunction. For this purpose, hyperglycemia-induced oxidative stress was examined using human umbilical vein endothelial cells (HUVECs) cultured with either normal (5.6 mM) or high (25 mM) levels of glucose. The levels of reactive oxygen species (ROS) and nitric oxide (NO) were determined by flow cytometric (FCM) analysis and nitrate reductase, respectively. Endothelial morphogenesis assay was performed in three-dimensional Matrigel. The mRNA and protein expression levels of S1PRs in the HUVECs were determined by RT-qPCR and western blot analysis, respectively. In addition, ROS, NO and endothelial morphogenesis assays were conducted using the high glucose-treated endothelial cells transfected with adenoviral vector expressing exogenous S1PR1 gene (pAd-S1PR1) or with adenoviral vector expressing S1PR2-specific shRNA (pAd-shRNA-S1PR2). The expression levels of S1PR1 and S1PR2 in the endothelial cells treated with high levels of glucose decreased and increased, respectively. However, the effects of high levels of glucose on S1PR3 were minimal. In addition, high levels of glucose enhanced ROS generation and markedly reduced NO generation and morphogenetic responses. Nevertheless, all the aforementioned changes were completely reversed by transfection with pAd-S1PR1 or pAd-shRNA-S1PR2, which increased S1PR1 and decreased S1PR2 expression, respectively. It can thus be concluded that S1PR1 and S1PR2 play crucial roles in hyperglycemia-induced endothelial cell dysfunction.
Collapse
Affiliation(s)
- Shuhua Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Yang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hua Zhong
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guoping Yang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Fang
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao Deng
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Yuan
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Alex F Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
968
|
Liu YW, Zuo PY, Zha XN, Chen XL, Zhang R, He XX, Liu CY. Octacosanol Enhances the Proliferation and Migration of Human Umbilical Vein Endothelial Cells via Activation of the PI3K/Akt and MAPK/Erk Pathways. Lipids 2015; 50:241-51. [PMID: 25638063 DOI: 10.1007/s11745-015-3991-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Yu-Wei Liu
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Pei-Yuan Zuo
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Xiang-Nan Zha
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Xing-Lin Chen
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Rong Zhang
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Xiao-Xiao He
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| | - Cheng-Yun Liu
- ; Department of Geriatrics, Union Hospital, Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Avenue Wuhan 430022 People's Republic of China
| |
Collapse
|
969
|
High fat diet exacerbates vascular endothelial dysfunction in rats exposed to continuous hypobaric hypoxia. Biochem Biophys Res Commun 2015; 457:485-91. [PMID: 25603049 DOI: 10.1016/j.bbrc.2015.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 01/28/2023]
Abstract
Independently, a high fat diet and hypoxia are associated with vascular endothelial dysfunction (VED) and often occur concurrently in patients. Nevertheless, the effects of a high fat diet on vascular endothelial function combined with hypoxia, a situation occurring with increasing frequency in many parts of the world, remain largely unknown. We investigated the effects of a high fat diet on vascular endothelial function in rats exposed to continuous hypoxia for 4 weeks. Seventy two male Sprague-Dawley rats were randomly divided into 3 groups: a hypoxia group fed regular chow, a combined hypoxia and high fat diet (HFD) group, and for comparison, rats maintained in normoxia, regular chow conditions were set as baseline (BL) group. The experimental data of BL group were obtained at beginning of hypoxia given in the other groups. Continuous hypoxia was induced in a hypobaric chamber maintained at an altitude of 5000 m. Compared to hypoxic conditions alone, hypoxia plus a HFD prevented adaptive changes in plasma nitric oxide (NOx) levels and caused earlier and more severe changes in aortic endothelial structures. Functionally, hypoxia plus a HFD resulted in impaired endothelium-dependent vasorelaxation responses to acetylcholine and altered the bioavailability of the nitric oxide synthase (NOS) substrate L-Arginine. At the molecular level, hypoxia plus a HFD blunted increases in endothelial NOS (eNOS) mRNA and protein in aortic endothelial tissue. Taken together, our findings demonstrate that in the setting of hypoxia, a high fat diet leads to earlier and more severe VED than hypoxia alone. These data have important implications for populations residing at high-altitude, as dietary patterns shift towards increased fat intake.
Collapse
|
970
|
Altabas V. Diabetes, Endothelial Dysfunction, and Vascular Repair: What Should a Diabetologist Keep His Eye on? Int J Endocrinol 2015; 2015:848272. [PMID: 26089898 PMCID: PMC4452196 DOI: 10.1155/2015/848272] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular complications are the most common complications of diabetes mellitus. A prominent attribute of diabetic cardiovascular complications is accelerated atherosclerosis, considered as a still incurable disease, at least at more advanced stages. The discovery of endothelial progenitor cells (EPCs), able to replace old and injured mature endothelial cells and capable of differentiating into healthy and functional endothelial cells, has offered the prospect of merging the traditional theories on the pathogenesis of atherosclerosis with evolving concepts of vascular biology. The literature supports the notion that EPC alterations are involved in the pathogenesis of vascular diseases in diabetics, but at present many questions remain unanswered. In this review the aspects linking endothelial progenitor cells to the altered vascular biology in diabetes mellitus are discussed.
Collapse
Affiliation(s)
- V. Altabas
- Department for Endocrinology, Diabetes and Metabolic Diseases “Mladen Sekso”, Clinic for Internal Medicine, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- *V. Altabas:
| |
Collapse
|
971
|
Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J, van der Sloot A, van den Hout M, Yokomizo T, van Schaick-Solernó ML, Delwel R, Pimanda JE, van IJcken WFJ, Dzierzak E. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. ACTA ACUST UNITED AC 2014; 212:93-106. [PMID: 25547674 PMCID: PMC4291529 DOI: 10.1084/jem.20140767] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using highly sensitive RNAseq to examine the whole transcriptome of enriched aortic hematopoietic stem cells and endothelial cells, the authors find G-protein–coupled receptor, Gpr56, is required to generate the first HSCs during endothelial to hematopoietic cell transition. Hematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial to hematopoietic cell transition (EHT). Because of small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells (ECs [HECs]), the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs, HECs, and ECs. Gpr56, a G-coupled protein receptor, is one of the most highly up-regulated of the 530 differentially expressed genes. Also, highly up-regulated are hematopoietic transcription factors, including the “heptad” complex of factors. We show that Gpr56 (mouse and human) is a target of the heptad complex and is required for hematopoietic cluster formation during EHT. Our results identify the processes and regulators involved in EHT and reveal the surprising requirement for Gpr56 in generating the first HSCs.
Collapse
Affiliation(s)
- Parham Solaimani Kartalaei
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Tomoko Yamada-Inagawa
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Chris S Vink
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Emma de Pater
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Reinier van der Linden
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Jonathon Marks-Bluth
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anthon van der Sloot
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Mirjam van den Hout
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Tomomasa Yokomizo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - M Lucila van Schaick-Solernó
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Ruud Delwel
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - John E Pimanda
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Wilfred F J van IJcken
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Elaine Dzierzak
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Center for Biomics, and Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
972
|
Génot E, Gligorijevic B. Invadosomes in their natural habitat. Eur J Cell Biol 2014; 93:367-79. [PMID: 25457677 DOI: 10.1016/j.ejcb.2014.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/15/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are small, F-actin-rich protrusions that are located at points of cell-ECM contacts and endow cells with invasive capabilities. So far, they have been identified in human or murine immune (myelomonocytic), vascular and cancer cells. The overarching reason for studying invadosomes is their connection to human disease. For example, macrophages and osteoclasts lacking Wiskott-Aldrich syndrome protein (WASp) are not able to form podosomes, and this leads to altered macrophage chemotaxis and defective bone resorption by osteoclasts. In contrast, the ability of cancer cells to form invadopodia is associated with high invasive and metastatic potentials. While invadosome composition, dynamics and signaling cascades leading to their assembly can be followed easily in in vitro assays, studying their contribution to pathophysiological processes in situ remains challenging. A number of recent papers have started to address this issue and describe invadosomes in situ in mouse models of cancer, cardiovascular disease and angiogenesis. In addition, in vivo invadosome homologs have been reported in developmental model systems such as C. elegans, zebrafish and sea squirt. Comparative analyses among different invasion mechanisms as they happen in their natural habitats, i.e., in situ, may provide an outline of the invadosome evolutionary history, and guide our understanding of the roles of the invasion process in pathophysiology versus development.
Collapse
Affiliation(s)
- Elisabeth Génot
- Université de Bordeaux, F-33000 Bordeaux, France; INSERM U1045, F-33000 Bordeaux, France; European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33 600 Pessac, France.
| | - Bojana Gligorijevic
- Department of Systems & Computational Biology and Albert Einstein College of Medicine, Price Center, 1301 Morris Park Avenue, 10461 Bronx, NY, USA.
| |
Collapse
|
973
|
Abstract
AIM Migraine has been associated with stroke as well as with several non-atherosclerotic vascular conditions leading to discussions about the potential role of endothelium in the etiopathogenesis of migraine and migraine-associated stroke. We present a systematic review of the literature on vascular biomarkers in migraine, including those suggesting endothelial activation and damage. METHODS We conducted a systematic literature search from 1990 to 2013 using multiple research databases with the keywords "migraine," "headache," "vascular," and "biomarkers." We used selected inclusion and exclusion criteria to create a final pool of studies for this review. RESULTS The literature search identified a total of 639 citations of which 129 were included in our review. The final pool of clinical- and population-based studies assessed the level of various biomarkers (e.g. inflammatory, prothrombotic, endothelial activation, endothelial repair) in migraineurs of varying ages, gender, and demographic characteristics. Although for each biomarker there is at least one study suggesting an association with migraine, in many cases the quality of evidence is poor and there are conflicting studies showing no relationship. The results were, therefore, in each case inconclusive. CONCLUSION This systematic review indicated that in migraine populations there are a number of positive vascular biomarker studies, including some involving novel biomarkers such as endothelial microparticles and endothelial precursor cells. These lend insight into possible pathophysiological mechanisms by which migraine may be associated with stroke. More high-quality studies are needed to establish whether a true association between promising vascular biomarkers and migraine exists.
Collapse
|
974
|
The role of statins in chronic heart failure. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2014; 11:301-5. [PMID: 26336439 PMCID: PMC4283888 DOI: 10.5114/kitp.2014.45681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 11/25/2022]
Abstract
The efficacy of statins in reducing morbidity and mortality in patients with documented coronary artery disease is unquestionable. However, in chronic heart failure (CHF), evidence regarding the beneficial effects of statin therapy remains contradictory. Although numerous retrospective studies have demonstrated improved prognosis in CHF patients treated with statins, two randomized trials, GISSI-HF and CORONA, have not confirmed the benefit of rosuvastatin in this group of patients. The benefits of using statins in CHF probably result mostly from their pleiotropic action, including the improvement of endothelial function, the inhibition of neurohormonal activation, and the reduction of proinflammatory activation. On the other hand, it has been recognized that low cholesterol is associated with worse morbidity and mortality in patients with CHF. It appears that it is necessary to conduct further randomized clinical trials using different kinds of statins in different populations of patients with CHF.
Collapse
|
975
|
Janić M, Lunder M, Zupan J, Černe D, Marc J, Drevenšek G, Šabovič M. The low-dose atorvastatin and valsartan combination effectively protects the arterial wall from atherogenic diet-induced impairment in the guinea pig. Eur J Pharmacol 2014; 743:31-6. [PMID: 25261034 DOI: 10.1016/j.ejphar.2014.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 11/25/2022]
Abstract
New preventive strategies for atherosclerosis are needed. In this study, we tested whether a new therapeutic approach consisting of low-dose treatment with a statin and sartan combination could prevent atherogenic diet-induced impairment of the arterial wall in guinea pigs. Twenty-five Dunkin-Hartley guinea pigs were randomly assigned to five experimental groups: 1) normal diet; 2) atherogenic diet (AD); 3) AD + a low-dose atorvastatin and valsartan combination (5mg/kg/day and 2.4mg/kg/day, respectively); 4) AD + low-dose atorvastatin (5mg/kg/day); 5) AD + low-dose valsartan (2.4mg/kg/day). After 8 weeks of treatment, the animals were killed, blood samples collected and thoracic and abdominal aortas isolated. The atherogenic diet significantly impaired maximal thoracic aorta endothelium-dependent relaxation by 40.1% relative to the normal diet. The low-dose combination, compared to the separate drugs, completely preserved thoracic aorta endothelium-dependent relaxation at the level of the group receiving normal diet. This substantial effect was associated with a significant change in the expression of NOS3 (R=0.93; P=0.0002) and IL1b (R=-0.79; P=0.003) genes. In addition, treatment with the low-dose combination or the separate drugs also prevented atherosclerotic plaque formation. We found that treatment with the low-dose atorvastatin and valsartan combination has the capability to completely protect the arterial wall from atherogenic diet-induced damage in the guinea pig model. Further studies evaluating this new therapeutic approach are desirable.
Collapse
Affiliation(s)
- Miodrag Janić
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia.
| | - Mojca Lunder
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia; Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia.
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| | - Darko Černe
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
| | - Gorazd Drevenšek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia.
| | - Mišo Šabovič
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Zaloška cesta 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
976
|
Sáez CG, Pereira-Flores K, Ebensperger R, Panes O, Massardo T, Hidalgo P, Mezzano D, Pereira J. Atorvastatin reduces the proadhesive and prothrombotic endothelial cell phenotype induced by cocaine and plasma from cocaine consumers in vitro. Arterioscler Thromb Vasc Biol 2014; 34:2439-48. [PMID: 25234816 DOI: 10.1161/atvbaha.114.304535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Cocaine consumption is a risk factor for vascular ischemic complications. Although endothelial dysfunction and accelerated atherosclerosis have been observed in cocaine consumers, the mechanisms underlying their pathogenesis are not fully understood. This study aimed at identifying the effects of atorvastatin in relation to a proadhesive and prothrombotic phenotype induced by cocaine and plasma from chronic cocaine users on endothelial cells. APPROACH AND RESULTS Human umbilical vein endothelial cells were exposed to either cocaine or platelet-free plasma (PFP) from chronic cocaine consumers in the presence or absence of 10 μmol/L of atorvastatin. Atorvastatin significantly reduced the enhanced platelet adhesion that was induced by cocaine and PFP from chronic cocaine consumers, as well as the release of the von Willebrand factor. Atorvastatin also avoided striking alterations on cell monolayer structure triggered by both stimuli and enhanced NO reduction because of cocaine stimulation through disrupting interactions between endothelial nitric oxide synthase (eNOS) and caveolin-1, thus increasing eNOS bioavailability. Cocaine-increased tissue factor-dependent procoagulant activity and reactive oxygen species generation were not counteracted by atorvastatin. Although monocyte chemoattractant protein-1 levels were not significantly higher than controls either under cocaine or PFP stimulation, atorvastatin completely avoided monocyte chemoattractant protein-1 release in both conditions. Platelets stimulated with cocaine or PFP did not express P-selectin, glycoprotein IIb/IIIa, or CD40L and failed to adhere to resting human umbilical vein endothelial cell. CONCLUSIONS Cocaine and patient plasma equally induced a proadhesive and prothrombotic phenotype in endothelial cells, except for von Willebrand Factor release, which was only induced by PFP from chronic cocaine consumers. Atorvastatin improved endothelial cell function by reducing cocaine-induced and PFP from chronic cocaine consumer-induced effects on platelet adhesion, cell architecture, and NO production.
Collapse
Affiliation(s)
- Claudia G Sáez
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.).
| | - Karla Pereira-Flores
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.)
| | - Roberto Ebensperger
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.)
| | - Olga Panes
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.)
| | - Teresa Massardo
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.)
| | - Patricia Hidalgo
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.)
| | - Diego Mezzano
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.)
| | - Jaime Pereira
- From the Hematology-Oncology Department, Faculty of Medicine (C.G.S., K.P.-F., O.P., P.H., D.M., J.P.) and Pharmacy Department, Chemistry Faculty (R.E.), Pontificia Universidad Católica de Chile, Santiago, Chile; and Nuclear Medicine Section, Medicine Department, University of Chile Clinical Hospital, Santiago, Chile (T.M.).
| |
Collapse
|
977
|
Su KH, Lee KI, Shyue SK, Chen HY, Wei J, Lee TS. Implication of transient receptor potential vanilloid type 1 in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. Int J Biol Sci 2014; 10:990-6. [PMID: 25210497 PMCID: PMC4159690 DOI: 10.7150/ijbs.9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022] Open
Abstract
14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca2+ influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca2+. Removal of extracellular Ca2+, pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca2+ level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca2+ or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca2+ influx, NO production and angiogenesis.
Collapse
Affiliation(s)
- Kuo-Hui Su
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Kuan-I Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Song-Kun Shyue
- 2. Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Hsiang-Ying Chen
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Jeng Wei
- 3. Heart Center, Cheng-Hsin General Hospital, Taipei, 11221 Taiwan
| | - Tzong-Shyuan Lee
- 1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221 Taiwan
| |
Collapse
|
978
|
Lenna S, Han R, Trojanowska M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 2014; 66:530-7. [PMID: 25130181 DOI: 10.1002/iub.1292] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
Prolonged perturbation of the endoplasmic reticulum (ER) leads to ER stress and unfolded protein response (UPR) and contributes to the pathogenesis of various chronic disorders. This review focuses on the role of ER stress and UPR in endothelial cells and the relevance of these processes to vascular diseases. Chronic activation of ER stress and UPR pathways in endothelial cells leads to increased oxidative stress and inflammation and often results in cell death. Because endothelial cells play a pivotal role in maintaining vascular homeostasis, various pathological conditions interfering with this homeostasis including homocysteinemia, hyperlipidemia, high glucose, insulin resistance, disturbed blood flow, and oxidative stress can lead to endothelial dysfunction in part through the activation of ER stress. We discuss recently discovered aspects of the role of ER stress/UPR in those pathological conditions. We also summarize recent findings implicating ER stress and UPR in systemic hypertension as well as pulmonary arterial hypertension. Finally, this review will highlight a novel role of UPR mediators in the process of angiogenesis.
Collapse
Affiliation(s)
- Stefania Lenna
- Arthritis Center, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
979
|
Xin H, Deng K, Fu M. Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction. SCIENCE CHINA. LIFE SCIENCES 2014; 57:836-44. [PMID: 25104457 PMCID: PMC7089175 DOI: 10.1007/s11427-014-4703-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative and migratory capacity of endothelial cells, as well as control of leukocyte trafficking. Endothelial dysfunction is an early step in vascular inflammatory diseases such as atherosclerosis, diabetic vascular complications, sepsis-induced or severe virus infection-induced organ injuries. The expressions of inflammatory cytokines and vascular adhesion molecules induced by various stimuli, such as modified lipids, smoking, advanced glycation end products and bacteria toxin, significantly contribute to the development of endothelial dysfunction. The transcriptional regulation of inflammatory cytokines and vascular adhesion molecules has been well-studied. However, the regulation of those gene expressions at post-transcriptional level is emerging. RNA-binding proteins have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level in microRNA-dependent or independent manners. This review summarizes the latest insights into the roles of RNA-binding proteins in controlling vascular endothelial cell functions and their contribution to the pathogenesis of vascular inflammatory diseases.
Collapse
Affiliation(s)
- HongBo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031 China
| | - KeYu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031 China
| | - MinGui Fu
- Institute of Translational Medicine, Nanchang University, Nanchang, 330031 China
| |
Collapse
|
980
|
Firasat S, Hecker M, Binder L, Asif AR. Advances in endothelial shear stress proteomics. Expert Rev Proteomics 2014; 11:611-9. [DOI: 10.1586/14789450.2014.933673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
981
|
Peng N, Meng N, Wang S, Zhao F, Zhao J, Su L, Zhang S, Zhang Y, Zhao B, Miao J. An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E⁻/⁻ mice. Sci Rep 2014; 4:5519. [PMID: 24980430 PMCID: PMC4076681 DOI: 10.1038/srep05519] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) inhibits mammalian target of rapamycin (mTOR) and induces autophagy and apoptosis in vascular endothelial cells (VECs) that play very critical roles for the cardiovascular homostasis. We recently defined 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) as a new activator of mTOR. Therefore, we hypothesized that 3BDO had a protective role in VECs and thus stabilized atherosclerotic lesions in apolipoprotein E-/- (apoE-/-) mice. Our results showed that oxLDL inhibited the activity of mTOR and increased the protein level of autophagy-related 13 (ATG13) and its dephosphorylation, thus inducing autophagy in human umbilical vein endothelial cells (HUVECs). All of these effects were strongly inhibited by 3BDO. In vivo experiments confirmed that 3BDO activated mTOR and decreased the protein level of ATG13 in the plaque endothelium of apoE-/- mice. Importantly, 3BDO did not affect the activity of mTOR and autophagy in macrophage cell line RAW246.7 and vascular smooth muscle cells of apoE-/- mice, but suppressed plaque endothelial cell death and restricted atherosclerosis development in the mice. 3BDO protected VECs by activating mTOR and thus stabilized atherosclerotic lesions in apoE-/- mice.
Collapse
Affiliation(s)
- Nan Peng
- 1] Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China [2]
| | - Ning Meng
- 1] School of Biological Science and Technology, University of Jinan, Jinan 250022, China [2] Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China [3]
| | - ShengQing Wang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fei Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - ShangLi Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - JunYing Miao
- 1] Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China [2] The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, China
| |
Collapse
|
982
|
Booth R, Noh S, Kim H. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. LAB ON A CHIP 2014; 14:1880-90. [PMID: 24718713 DOI: 10.1039/c3lc51304a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vascular endothelial cells (VECs), which line blood vessels and are key to understanding pathologies and treatments of various diseases, experience highly variable wall shear stress (WSS) in vivo (1-60 dyn cm(-2)), imposing numerous effects on physiological and morphological functions. Previous flow-based systems for studying these effects have been limited in range, and comprehensive information on VEC functions at the full spectrum of WSS has not been available yet. To allow rapid characterization of WSS effects, we developed the first multiple channel microfluidic platform that enables a wide range (~15×) of homogeneous WSS conditions while simultaneously allowing trans-monolayer assays, such as permeability and trans-endothelial electrical resistance (TEER) assays, as well as cell morphometry and protein expression assays. Flow velocity/WSS distributions between channels were predicted with COMSOL simulations and verified by measurement using an integrated microflow sensor array. Biomechanical responses of the brain microvascular endothelial cell line bEnd.3 to the full natural spectrum of WSS were investigated with the platform. Under increasing WSS conditions ranging from 0 to 86 dyn cm(-2), (1) permeabilities of FITC-conjugated dextran and propidium iodide decreased, respectively, at rates of 4.06 × 10(-8) and 6.04 × 10(-8) cm s(-1) per dyn cm(-2); (2) TEER increased at a rate of 0.8 Ω cm(2) per dyn cm(-2); (3) increased alignment of cells along the flow direction under increasing WSS conditions; and finally (4) increased protein expression of both the tight junction component ZO-1 (~5×) and the efflux transporter P-gp (~6×) was observed at 86 dyn cm(-2) compared to static controls via western blot. We conclude that the presented microfluidic platform is a valid approach for comprehensively assaying cell responses to fluidic WSS.
Collapse
Affiliation(s)
- R Booth
- Department of Bioengineering, University of Utah, SMBB-3100, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
983
|
Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2014. [PMID: 24738065 DOI: 10.1155/2014/598271.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.
Collapse
|
984
|
Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence? BIOMED RESEARCH INTERNATIONAL 2014; 2014:598271. [PMID: 24738065 PMCID: PMC3971506 DOI: 10.1155/2014/598271] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.
Collapse
|