10401
|
Dai D, Jayarama Bhat D, Liu J, Chukeatirote E, Zhao R, Hyde KD. Bambusicola,a New Genus from Bamboo with Asexual and Sexual Morphs. CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss3.2012.363] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10402
|
Nattawut R, Jariya S, Sayanh S, Narumol P, E. B. Gareth. Phylogeny of the Appendaged Coelomycete Genera:Pseudorobillarda, Robillarda, andXepiculopsisBased on Nuclear Ribosomal DNA Sequences. CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss3.2012.319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10403
|
Freshwater ascomycetes: Coniochaeta gigantospora sp. nov. based on morphological and molecular data. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-012-0181-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10404
|
Udayanga D, Liua X, Mckenzie EH, Chukeatirote E, Hyde KD. Multi-locus Phylogeny Reveals Three new Species of Diaporthe from Thailand. CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss3.2012.295] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10405
|
Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. THE NEW PHYTOLOGIST 2012; 195:844-856. [PMID: 22758207 DOI: 10.1111/j.1469-8137.2012.04215.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bryophytes are a dominant vegetation component of the boreal forest, but little is known about their associated fungal communities, including seasonal variation within them. Seasonal variation in the fungal biomass and composition of fungal communities associated with three widespread boreal bryophytes was investigated using HPLC assays of ergosterol and amplicon pyrosequencing of the internal transcribed spacer 2 (ITS2) region of rDNA. The bryophyte phyllosphere community was dominated by Ascomycota. Fungal biomass did not decline appreciably in winter (P=0.272). Significant host-specific patterns in seasonal variation of biomass were detected (P=0.003). Although seasonal effects were not the primary factors structuring community composition, collection date significantly explained (P=0.001) variation not attributed to locality, host, and tissue. Community homogenization and a reduction in turnover occurred with the onset of frost events and subzero air and soil temperatures. Fluctuations in the relative abundance of particular fungal groups seem to reflect the nature of their association with mosses, although conclusions are drawn with caution because of potential methodological bias. The moss-associated fungal community is dynamic, exhibiting seasonal turnover in composition and relative abundance of different fungal groups, and significant fungal biomass is present year-round, suggesting a winter-active fungal community.
Collapse
Affiliation(s)
- Marie L Davey
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432 Ås, Norway
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Einar Heegaard
- Norwegian Forest and Landscape Institute, Fanaflaten 4, NO-5244 Fana, Norway
| | - Rune Halvorsen
- Department of Botany, Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
| | - Mikael Ohlson
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432 Ås, Norway
| | - Håvard Kauserud
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
10406
|
Zhang H, Hyde KD, Mckenzie EH, Bahkali AH, Zhou D. Sequence Data Reveals Phylogenetic Affinities ofAcrocalymma aquaticasp. nov.,Aquasubmersa mircensisgen. et sp. nov. andClohesyomyces aquaticus(Freshwater Coelomycetes). CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss3.2012.333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10407
|
Zhang Y, Maharachchikumbura SSN, McKenzie EH, Hyde KD. A Novel Species of Pestalotiopsis Causing Leaf Spots of Trachycarpus Fortunei. CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss3.2012.311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10408
|
|
10409
|
|
10410
|
Wijayawardene NN, Udayanga D, Mckenzie EH, Wang Y, Hyde KD. The Future of Coelomycete Studies. CRYPTOGAMIE MYCOL 2012. [DOI: 10.7872/crym.v33.iss3.2012.381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10411
|
Broders KD, Boraks A, Sanchez AM, Boland GJ. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests. Ecol Evol 2012; 2:2114-27. [PMID: 23139872 PMCID: PMC3488664 DOI: 10.1002/ece3.332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 12/03/2022] Open
Abstract
The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America.
Collapse
Affiliation(s)
- K D Broders
- Department of Biological Sciences, University of New Hampshire 46 College Rd, Durham, New Hampshire, 03824 ; School of Environmental Sciences, University of Guelph Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
10412
|
A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0198-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10413
|
|
10414
|
Zhao Q, Feng B, Yang ZL, Dai YC, Wang Z, Tolgor B. New species and distinctive geographical divergences of the genus Sparassis (Basidiomycota): evidence from morphological and molecular data. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0853-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10415
|
Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD. A phylogenetic and taxonomic re-evaluation of the Bipolaris - Cochliobolus - Curvularia Complex. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0189-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10416
|
Yuan HS. Antrodiella chinensis sp. nov., a Chinese representative of the Antrodiella americana complex. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0852-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10417
|
|
10418
|
Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the Fertile Crescent. Fungal Genet Biol 2012; 49:882-95. [PMID: 22922546 DOI: 10.1016/j.fgb.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/25/2012] [Accepted: 08/01/2012] [Indexed: 11/22/2022]
Abstract
The origin of the fungal wheat pathogen Phaeosphaeria nodorum remains unclear despite earlier intensive global population genetic and phylogeographical studies. We sequenced 1683 bp distributed across three loci in 355 globally distributed Phaeosphaeria isolates, including 74 collected in Iran near the center of origin of wheat. We identified nine phylogenetically distinct clades, including two previously unknown species tentatively named P1 and P2 collected in Iran. Coalescent analysis indicates that P1 and P2 are sister species of P. nodorum and the other Phaeosphaeria species identified in our analysis. Two species, P. nodorum and P. avenaria f. sp. tritici 1 (Pat1), comprised ~85% of the sampled isolates, making them the dominant wheat-infecting pathogens within the species complex. We designed a PCR-RFLP assay to distinguish P. nodorum from Pat1. Approximately 4% of P. nodorum and Pat1 isolates showed evidence of hybridization. Measures of private allelic richness at SSR and sequence loci suggest that the center of origin of P. nodorum coincides with its host in the Fertile Crescent. We hypothesize that the origin of this species complex is also in the Fertile Crescent, with four species out of nine found exclusively in the Iranian collections.
Collapse
|
10419
|
Abstract
Species of Penicillium section Citrina have a worldwide distribution and occur commonly in soils. The section is here delimited using a combination of phenotypic characters and sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA (ITS) and partial RPB2 sequences. Species assigned to section Citrina share the production of symmetrically biverticillate conidiophores, flask shaped phialides (7.0–9.0 μm long) and relatively small conidia (2.0–3.0 μm diam). Some species can produce greyish-brown coloured cleistothecia containing flanged ascospores. In the present study, more than 250 isolates presumably belonging to section Citrina were examined using a combined analysis of phenotypic and physiological characters, extrolite profiles and ITS, β-tubulin and/or calmodulin sequences. Section Citrina includes 39 species, and 17 of those are described here as new. The most important phenotypic characters for distinguishing species are growth rates and colony reverse colours on the agar media CYA, MEA and YES; shape, size and ornamentation of conidia and the production of sclerotia or cleistothecia. Temperature-growth profiles were made for all examined species and are a valuable character characters for species identification. Species centered around P. citrinum generally have a higher maximum growth temperature (33–36 °C) than species related to P. westlingii (27–33 °C). Extrolite patterns and partial calmodulin and β-tubulin sequences can be used for sequence based identification and resolved all species. In contrast, ITS sequences were less variable and only 55 % of the species could be unambiguously identified with this locus.
Collapse
Affiliation(s)
- J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
10420
|
Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 2012; 70:159-83. [PMID: 22308048 PMCID: PMC3233910 DOI: 10.3114/sim.2011.70.04] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
UNLABELLED The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified in Talaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticilliumsensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. For detailed phylogenetic analysis of species relationships, the ITS region (incl. 5.8S nrDNA) was sequenced for the available type strains and/or representative isolates of Talaromyces and related biverticillate anamorphic species. Extrolite profiles were compiled for all type strains and many supplementary cultures. All evidence supports our conclusions that Penicillium subgenus Biverticillium is distinct from other subgenera in Penicillium and should be taxonomically unified with the Talaromyces species that reside in the same clade. Following the concepts of nomenclatural priority and single name nomenclature, we transfer all accepted species of Penicillium subgenus Biverticillium to Talaromyces. A holomorphic generic diagnosis for the expanded concept of Talaromyces, including teleomorph and anamorph characters, is provided. A list of accepted Talaromyces names and newly combined Penicillium names is given. Species of biotechnological and medical importance, such as P. funiculosum and P. marneffei, are now combined in Talaromyces. Excluded species and taxa that need further taxonomic study are discussed. An appendix lists other generic names, usually considered synonyms of Penicillium sensu lato that were considered prior to our adoption of the name Talaromyces. TAXONOMIC NOVELTIES Taxonomic novelties:New species - Talaromyces apiculatus Samson, Yilmaz & Frisvad, sp. nov. New combinationsand names - Talaromyces aculeatus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. albobiverticillius (H.-M. Hsieh, Y.-M. Ju & S.-Y. Hsieh) Samson, Yilmaz, Frisvad & Seifert, T. allahabadensis (B.S. Mehrotra & D. Kumar) Samson, Yilmaz & Frisvad, T. aurantiacus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, & Frisvad, T. boninensis (Yaguchi & Udagawa) Samson, Yilmaz, & Frisvad, T. brunneus (Udagawa) Samson, Yilmaz & Frisvad, T. calidicanius (J.L. Chen) Samson, Yilmaz & Frisvad, T. cecidicola (Seifert, Hoekstra & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. coalescens (Quintan.) Samson, Yilmaz & Frisvad, T. dendriticus (Pitt) Samson, Yilmaz, Frisvad & Seifert, T. diversus (Raper & Fennell) Samson, Yilmaz & Frisvad, T. duclauxii (Delacr.) Samson, Yilmaz, Frisvad & Seifert, T. echinosporus (Nehira) Samson, Yilmaz & Frisvad, comb. nov. T. erythromellis (A.D. Hocking) Samson, Yilmaz, Frisvad & Seifert, T. funiculosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. islandicus (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. loliensis (Pitt) Samson, Yilmaz & Frisvad, T. marneffei (Segretain, Capponi & Sureau) Samson, Yilmaz, Frisvad & Seifert, T. minioluteus (Dierckx) Samson, Yilmaz, Frisvad & Seifert, T. palmae (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. panamensis (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. paucisporus (Yaguchi, Someya & Udagawa) Samson & Houbraken T. phialosporus (Udagawa) Samson, Yilmaz & Frisvad, T. piceus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. pinophilus (Hedgcock) Samson, Yilmaz, Frisvad & Seifert, T. pittii (Quintan.) Samson, Yilmaz, Frisvad & Seifert, T. primulinus (Pitt) Samson, Yilmaz & Frisvad, T. proteolyticus (Kamyschko) Samson, Yilmaz & Frisvad, T. pseudostromaticus (Hodges, G.M. Warner, Rogerson) Samson, Yilmaz, Frisvad & Seifert, T. purpurogenus (Stoll) Samson, Yilmaz, Frisvad & Seifert, T. rademirici (Quintan.) Samson, Yilmaz & Frisvad, T. radicus (A.D. Hocking & Whitelaw) Samson, Yilmaz, Frisvad & Seifert, T. ramulosus (Visagie & K. Jacobs) Samson, Yilmaz, Frisvad & Seifert, T. rubicundus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, Frisvad & Seifert, T. rugulosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. sabulosus (Pitt & A.D. Hocking) Samson, Yilmaz & Frisvad, T. siamensis (Manoch & C. Ramírez) Samson, Yilmaz & Frisvad, T. sublevisporus (Yaguchi & Udagawa) Samson, Yilmaz & Frisvad, T. variabilis (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. varians (G. Sm.) Samson, Yilmaz & Frisvad, T. verruculosus (Peyronel) Samson, Yilmaz, Frisvad & Seifert, T. viridulus Samson, Yilmaz & Frisvad.
Collapse
Affiliation(s)
- R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10421
|
Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 2012; 70:1-51. [PMID: 22308045 PMCID: PMC3233907 DOI: 10.3114/sim.2011.70.01] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit. Thermoascus and Paecilomyces, both members of Thermoascaceae, also form ascospores lacking a furrow or slit, but are differentiated from Trichocomaceae by the production of asci from croziers and their thermotolerant or thermophilic nature. Phylogenetic analysis shows that Penicillium is polyphyletic. The genus is re-defined and a monophyletic genus for both anamorphs and teleomorphs is created (Penicillium sensu stricto). The genera Thysanophora, Eupenicillium, Chromocleista, Hemicarpenteles and Torulomyces belong in Penicilliums. str. and new combinations for the species belonging to these genera are proposed. Analysis of Penicillium below genus rank revealed the presence of 25 clades. A new classification system including both anamorph and teleomorph species is proposed and these 25 clades are treated here as sections. An overview of species belonging to each section is presented.
Collapse
Affiliation(s)
- J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
10422
|
|
10423
|
De Laender F, Verschuren D, Bindler R, Thas O, Janssen CR. Biodiversity of freshwater diatom communities during 1000 years of metal mining, land use, and climate change in central Sweden. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9097-9105. [PMID: 22827476 DOI: 10.1021/es3015452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We subjected a unique set of high-quality paleoecological data to statistical modeling to examine if the biological richness and evenness of freshwater diatom communities in the Falun area, a historical copper (Cu) mining region in central Sweden, was negatively influenced by 1000 years of metal exposure. Contrary to ecotoxicological predictions, we found no negative relation between biodiversity and the sedimentary concentrations of eight metals. Strikingly, our analysis listed metals (Co, Fe, Cu, Zn, Cd, Pb) or the fractional land cover of cultivated crops, meadow, and herbs indicating land disturbance as potentially promoting biodiversity. However, correlation between metal- and land-cover trends prevented concluding which of these two covariate types positively affected biodiversity. Because historical aqueous metal concentrations--inferred from solid-water partitioning--approached experimental toxicity thresholds for freshwater algae, positive effects of metal mining on biodiversity are unlikely. Instead, the positive relationship between biodiversity and historical land-cover change can be explained by the increasing proportion of opportunistic species when anthropogenic disturbance intensifies. Our analysis illustrates that focusing on the direct toxic effects of metals alone may yield inaccurate environmental assessments on time scales relevant for biodiversity conservation.
Collapse
Affiliation(s)
- F De Laender
- Laboratory of Environmental Toxicology and Applied Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Plateaustraat 22, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
10424
|
|
10425
|
|
10426
|
A new species of Pseudocercospora and new record of Bartheletia paradoxa on leaves of Ginkgo biloba. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0849-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10427
|
Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0190-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10428
|
First human case of pulmonary fungal ball due to a Perenniporia species (a basidiomycete). J Clin Microbiol 2012; 50:3786-91. [PMID: 22895039 DOI: 10.1128/jcm.01863-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perenniporia species are basidiomycetes, resupinate shelf fungi responsible for white rot decay of wood. Here, we report for the first time an intracavitary pulmonary fungal ball due to a species of Perenniporia that has not been recognized so far as a human pathogen. The fungus was identified by sequencing of the partial ribosomal operon of a culture from a clinical specimen.
Collapse
|
10429
|
Singh P, Raghukumar C, Verma AK, Meena RM. Differentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCC#PY13. Extremophiles 2012; 16:777-85. [DOI: 10.1007/s00792-012-0474-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
|
10430
|
Molecular characterization of basidiomycetes associated with the decayed mangrove tree Xylocarpus granatum in Thailand. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0195-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10431
|
Danks M, Lebel T, Vernes K, Andrew N. Truffle-like fungi sporocarps in a eucalypt-dominated landscape: patterns in diversity and community structure. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0193-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10432
|
Rakotoniriana EF, Scauflaire J, Rabemanantsoa C, Urveg-Ratsimamanga S, Corbisier AM, Quetin-Leclercq J, Declerck S, Munaut F. Colletotrichum gigasporum sp. nov., a new species of Colletotrichum producing long straight conidia. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0847-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10433
|
Schmitt I, Otte J, Parnmen S, Sadowska-Deś A, Luecking R, Lumbsch T. A new circumscription of the genus Varicellaria (Pertusariales, Ascomycota). MycoKeys 2012. [DOI: 10.3897/mycokeys.4.3545] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10434
|
Réblová M, Réblová K. RNA secondary structure, an important bioinformatics tool to enhance multiple sequence alignment: a case study (Sordariomycetes, Fungi). Mycol Prog 2012. [DOI: 10.1007/s11557-012-0836-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10435
|
Identification of Hortaea werneckii Isolated from Mangrove Plant Aegiceras comiculatum Based on Morphology and rDNA Sequences. Mycopathologia 2012; 174:457-66. [DOI: 10.1007/s11046-012-9568-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
|
10436
|
Sutton DA, Marín Y, Thompson EH, Wickes BL, Fu J, García D, Swinford A, de Maar T, Guarro J. Isolation and characterization of a new fungal genus and species, Aphanoascella galapagosensis, from carapace keratitis of a Galapagos tortoise (Chelonoidis nigra microphyes). Med Mycol 2012; 51:113-20. [PMID: 22852752 DOI: 10.3109/13693786.2012.701767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new fungal genus and species, Aphanoascella galapagosensis, recovered from carapace keratitis in a Galapagos tortoise residing in a south Texas zoological collection, is characterized and described. The presence of a pale peridium composed of textura epidermoidea surrounded by scarce Hülle cell-like chlamydospores, and the characteristic reticulate ascospores with an equatorial rim separates it from other genera within the Onygenales. The phylogenetic tree inferred from the analysis of D1/D2 sequences demonstrates that this fungus represents a new lineage within that order. As D1/D2 and ITS sequence data also shows a further separation of Aphanoascus spp. into two monophyletic groups, we propose to retain the generic name Keratinophyton for species whose ascospores are pitted and display a conspicuous equatorial rim, and thereby propose new combinations in this genus for four Aphanoascus species.
Collapse
Affiliation(s)
- D A Sutton
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10437
|
Schnittler M, Novozhilov YK, Carvajal E, Spiegel FW. Myxomycete diversity in the Tarim basin and eastern Tian-Shan, Xinjiang Prov., China. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0186-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10438
|
Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0192-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10439
|
Below-ground ectomycorrhizal communities: the effect of small scale spatial and short term temporal variation. Symbiosis 2012. [DOI: 10.1007/s13199-012-0179-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10440
|
The genus Phylloporus (Boletaceae, Boletales) from China: morphological and multilocus DNA sequence analyses. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0184-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10441
|
He SH, Li HJ. Veluticeps microspora sp. nov. and V. ambigua new to Asia with a preliminary phylogenetic study on the genus. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0842-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10442
|
Molitor D, Liermann JC, Berkelmann-Löhnertz B, Buckel I, Opatz T, Thines E. Phenguignardic acid and guignardic acid, phytotoxic secondary metabolites from Guignardia bidwellii. JOURNAL OF NATURAL PRODUCTS 2012; 75:1265-1269. [PMID: 22779915 DOI: 10.1021/np2008945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bioactivity-guided isolation led to the identification of phenguignardic acid (2), a new phytotoxic secondary metabolite from submerged cultures of grape black rot fungus, Guignardia bidwellii. The compound is structurally related to guignardic acid (1), a dioxolanone moiety-containing metabolite isolated previously from Guignardia species. However, in contrast to guignardic acid, which is presumably synthesized from deamination products of valine and phenylalanine, the biochemical precursor for the biosynthesis of the new phytotoxin appears to be exclusively phenylalanine. Guignardic acid was also found in extracts of cultures from Guignardia bidwellii. The phytotoxic activities of both compounds were assessed in plant assays using either detached vine leaves or intact plants. Antimicrobial and cytotoxic activities of phenguignardic acid were determined.
Collapse
Affiliation(s)
- Daniel Molitor
- Department Environment and Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann , 41 Rue du Brill, L-4422 Belvaux, Luxembourg
| | | | | | | | | | | |
Collapse
|
10443
|
Magain N, Sérusiaux E. A further new species in the lichen genus Arctomia: A. borbonica from Reunion (Mascarene archipelago). MycoKeys 2012. [DOI: 10.3897/mycokeys.4.2809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10444
|
Foulongne-Oriol M, Spataro C, Moinard M, Cabannes D, Callac P, Savoie JM. Development of polymorphic microsatellite markers issued from pyrosequencing technology for the medicinal mushroom Agaricus subrufescens. FEMS Microbiol Lett 2012; 334:119-26. [PMID: 22734866 DOI: 10.1111/j.1574-6968.2012.02627.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022] Open
Abstract
The recently described procedure of microsatellite-enriched library pyrosequencing was used to isolate microsatellite loci in the gourmet and medicinal mushroom Agaricus subrufescens. Three hundred and five candidate loci containing at least one simple sequence repeats (SSR) locus and for which primers design was successful, were obtained. From a subset of 95 loci, 35 operational and polymorphic SSR markers were developed and characterized on a sample of 14 A. subrufescens genotypes from diverse origins. These SubSSR markers each displayed from two to 10 alleles with an average of 4.66 alleles per locus. The observed heterozygosity ranged from 0 to 0.71. Several multiplex combinations can be set up, making it possible to genotype up to six markers easily and simultaneously. Cross-amplification in some closely congeneric species was successful for a subset of loci. The 35 microsatellite markers developed here provide a highly valuable molecular tool to study genetic diversity and reproductive biology of A. subrufescens.
Collapse
|
10445
|
Danielsen L, Thürmer A, Meinicke P, Buée M, Morin E, Martin F, Pilate G, Daniel R, Polle A, Reich M. Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2012; 2:1935-48. [PMID: 22957194 PMCID: PMC3433996 DOI: 10.1002/ece3.305] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 01/18/2023] Open
Abstract
Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.
Collapse
|
10446
|
Voglmayr H, Rossman AY, Castlebury LA, Jaklitsch WM. Multigene phylogeny and taxonomy of the genus Melanconiella (Diaporthales). FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0175-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10447
|
Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol Prog 2012. [DOI: 10.1007/s11557-012-0835-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10448
|
Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 2012; 78:6483-90. [PMID: 22773628 DOI: 10.1128/aem.01651-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.
Collapse
|
10449
|
Phellinus castanopsidis sp. nov. (Hymenochaetaceae) from southern China, with preliminary phylogeny based on rDNA sequences. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0839-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10450
|
Pleurostomophora ochracea, a novel agent of human eumycetoma with yellow grains. J Clin Microbiol 2012; 50:2987-94. [PMID: 22760037 DOI: 10.1128/jcm.01470-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first yellow-grain fungal mycetoma, in a 60-year-old man from Central Sudan, is reported. Morphological and phylogenetic analysis of the ribosomal small subunit (SSU), large subunit (LSU), internal transcribed spacer (ITS), β-tubulin (BT2), actin (ACT1), and elongation factor (TEF1) genes revealed that the isolate deviated from any known agent of mycetoma; it clustered in the genus Pleurostoma (anamorph genus, Pleurostomophora) in the order Calosphaeriales. The novel species, here named Pleurostomophora ochracea, is characterized by phenotypic features. The species proved to be highly susceptible to itraconazole, ketoconazole, posaconazole, and voriconazole, but not to fluconazole. The fungus was inhibited by caspofungin at 8 μg/ml, while no inhibition was found with 5-flucytosine (MIC > 64 μg/ml). Compared to other members of the genus Pleurostomophora, P. ochracea is slow growing, with a relatively high optimum growth temperature (36 to 37°C). This is the first case of a yellow-grain fungal mycetoma; yellow grains are otherwise of bacterial nature. Our case emphasizes that identification of mycetoma agents by the color of the grain only is not sufficient and may lead to inappropriate therapy.
Collapse
|