1001
|
Mulepati S, Orr A, Bailey S. Crystal structure of the largest subunit of a bacterial RNA-guided immune complex and its role in DNA target binding. J Biol Chem 2012; 287:22445-9. [PMID: 22621933 DOI: 10.1074/jbc.c112.379503] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prokaryotes make use of small RNAs encoded by CRISPR (clustered regularly interspaced short palindromic repeat) loci to provide immunity against bacteriophage or plasmid invasion. In Escherichia coli, the CRISPR-associated complex for antiviral defense (Cascade) utilizes these RNAs to target foreign DNA for destruction. CasA, the largest subunit of Cascade, is essential for its function. Here we report the crystal structure of Thermus thermophilus CasA. The structure is composed of two domains that are arranged in a chair-like conformation with a novel fold forming the larger N-terminal domain. Docking of the crystal structure into cryo-electron microscopy maps reveals two loops in CasA that likely have important functions in DNA target binding. Finally, DNA binding experiments show that CasA is essential for binding of Cascade to DNA target.
Collapse
Affiliation(s)
- Sabin Mulepati
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1002
|
Pride DT, Salzman J, Relman DA. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses. Environ Microbiol 2012; 14:2564-76. [PMID: 22583485 DOI: 10.1111/j.1462-2920.2012.02775.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome.
Collapse
Affiliation(s)
- David T Pride
- Departments of Pathology and Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA 92093-0612, USA.
| | | | | |
Collapse
|
1003
|
Swarts DC, Mosterd C, van Passel MWJ, Brouns SJJ. CRISPR interference directs strand specific spacer acquisition. PLoS One 2012; 7:e35888. [PMID: 22558257 PMCID: PMC3338789 DOI: 10.1371/journal.pone.0035888] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/28/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference. RESULTS We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A co-occurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner. CONCLUSIONS The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster--in our case the first acquired spacer--and spacers acquired thereafter, possibly through the use of specific DNA degradation products of the CRISPR interference machinery by the CRISPR adaptation machinery. This loop enables a rapid expansion of the spacer repertoire against an actively present DNA element that is already targeted, amplifying the CRISPR interference effect.
Collapse
Affiliation(s)
- Daan C. Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Cas Mosterd
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Mark W. J. van Passel
- Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Stan J. J. Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
1004
|
Sashital DG, Wiedenheft B, Doudna JA. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 2012; 46:606-15. [PMID: 22521690 PMCID: PMC3397241 DOI: 10.1016/j.molcel.2012.03.020] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 12/26/2022]
Abstract
In bacterial and archaeal CRISPR immune pathways, DNA sequences from invading bacteriophage or plasmids are integrated into CRISPR loci within the host genome, conferring immunity against subsequent infections. The ribonucleoprotein complex Cascade utilizes RNAs generated from these loci to target complementary "nonself" DNA sequences for destruction, while avoiding binding to "self" sequences within the CRISPR locus. Here we show that CasA, the largest protein subunit of Cascade, is required for nonself target recognition and binding. Combining a 2.3 Å crystal structure of CasA with cryo-EM structures of Cascade, we have identified a loop that is required for viral defense. This loop contacts a conserved three base pair motif that is required for nonself target selection. Our data suggest a model in which the CasA loop scans DNA for this short motif prior to target destabilization and binding, maximizing the efficiency of DNA surveillance by Cascade.
Collapse
Affiliation(s)
- Dipali G Sashital
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
1005
|
Weinberger AD, Sun CL, Pluciński MM, Denef VJ, Thomas BC, Horvath P, Barrangou R, Gilmore MS, Getz WM, Banfield JF. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput Biol 2012; 8:e1002475. [PMID: 22532794 PMCID: PMC3330103 DOI: 10.1371/journal.pcbi.1002475] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022] Open
Abstract
Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This 'trailer-end conservation' occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. 'Trailer-end clonality' occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining 'trailer-end conservation,' we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-mediated immunity against viruses reemerging from lysogeny or migration.
Collapse
Affiliation(s)
- Ariel D. Weinberger
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Departments of Ophthalmology and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine L. Sun
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Mateusz M. Pluciński
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Vincent J. Denef
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Brian C. Thomas
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | | | - Rodolphe Barrangou
- DuPont Nutrition and Health, Madison, Wisconsin, United States of America
| | - Michael S. Gilmore
- Departments of Ophthalmology and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Microbial Sciences Initiative, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wayne M. Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Jillian F. Banfield
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| |
Collapse
|
1006
|
|
1007
|
Ellinger P, Arslan Z, Wurm R, Tschapek B, MacKenzie C, Pfeffer K, Panjikar S, Wagner R, Schmitt L, Gohlke H, Pul Ü, Smits SHJ. The crystal structure of the CRISPR-associated protein Csn2 from Streptococcus agalactiae. J Struct Biol 2012; 178:350-62. [PMID: 22531577 DOI: 10.1016/j.jsb.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 12/22/2022]
Abstract
The prokaryotic immune system, CRISPR, confers an adaptive and inheritable defense mechanism against invasion by mobile genetic elements. Guided by small CRISPR RNAs (crRNAs), a diverse family of CRISPR-associated (Cas) proteins mediates the targeting and inactivation of foreign DNA. Here, we demonstrate that Csn2, a Cas protein likely involved in spacer integration, forms a tetramer in solution and structurally possesses a ring-like structure. Furthermore, co-purified Ca(2+) was found important for the DNA binding property of Csn2, which contains a helicase fold, with highly conserved DxD and RR motifs found throughout Csn2 proteins. We could verify that Csn2 binds ds-DNA. In addition molecular dynamics simulations suggested a Csn2 conformation that can "sit" on the DNA helix and binds DNA in a groove on the outside of the ring.
Collapse
Affiliation(s)
- Philipp Ellinger
- Institute of Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1008
|
Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 2012; 7:e33802. [PMID: 22479446 PMCID: PMC3316494 DOI: 10.1371/journal.pone.0033802] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/22/2012] [Indexed: 12/26/2022] Open
Abstract
Background Metaviriomes, the viral genomes present in an environment, have been studied by direct sequencing of the viral DNA or by cloning in small insert libraries. The short reads generated by both approaches make it very difficult to assemble and annotate such flexible genomic entities. Many environmental viruses belong to unknown groups or prey on uncultured and little known cellular lineages, and hence might not be present in databases. Methodology and Principal Findings Here we have used a different approach, the cloning of viral DNA into fosmids before sequencing, to obtain natural contigs that are close to the size of a viral genome. We have studied a relatively low diversity extreme environment: saturated NaCl brines, which simplifies the analysis and interpretation of the data. Forty-two different viral genomes were retrieved, and some of these were almost complete, and could be tentatively identified as head-tail phages (Caudovirales). Conclusions and Significance We found a cluster of phage genomes that most likely infect Haloquadratum walsbyi, the square archaeon and major component of the community in these hypersaline habitats. The identity of the prey could be confirmed by the presence of CRISPR spacer sequences shared by the virus and one of the available strain genomes. Other viral clusters detected appeared to prey on the Nanohaloarchaea and on the bacterium Salinibacter ruber, covering most of the diversity of microbes found in this type of environment. This approach appears then as a viable alternative to describe metaviriomes in a much more detailed and reliable way than by the more common approaches based on direct sequencing. An example of transfer of a CRISPR cluster including repeats and spacers was accidentally found supporting the dynamic nature and frequent transfer of this peculiar prokaryotic mechanism of cell protection.
Collapse
|
1009
|
Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol 2012; 194:2491-500. [PMID: 22408157 DOI: 10.1128/jb.00206-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) elements and cas (CRISPR-associated) genes are widespread in Bacteria and Archaea. The CRISPR/Cas system operates as a defense mechanism against mobile genetic elements (i.e., viruses or plasmids). Here, we investigate seven CRISPR loci in the genome of the crenarchaeon Thermoproteus tenax that include spacers with significant similarity not only to archaeal viruses but also to T. tenax genes. The analysis of CRISPR RNA (crRNA) transcription reveals transcripts of a length between 50 and 130 nucleotides, demonstrating the processing of larger crRNA precursors. The organization of identified cas genes resembles CRISPR/Cas subtype I-A, and the core cas genes are shown to be arranged on two polycistronic transcripts: cascis (cas4, cas1/2, and csa1) and cascade (csa5, cas7, cas5a, cas3, cas3', and cas8a2). Changes in the environmental parameters such as UV-light exposure or high ionic strength modulate cas gene transcription. Two reconstitution protocols were established for the production of two discrete multipartite Cas protein complexes that correspond to their operonic gene arrangement. These data provide insights into the specialized mechanisms of an archaeal CRISPR/Cas system and allow selective functional analyses of Cas protein complexes in the future.
Collapse
|
1010
|
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2012; 45:273-97. [PMID: 22060043 DOI: 10.1146/annurev-genet-110410-132430] [Citation(s) in RCA: 592] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria and archaea have evolved defense and regulatory mechanisms to cope with various environmental stressors, including virus attack. This arsenal has been expanded by the recent discovery of the versatile CRISPR-Cas system, which has two novel features. First, the host can specifically incorporate short sequences from invading genetic elements (virus or plasmid) into a region of its genome that is distinguished by clustered regularly interspaced short palindromic repeats (CRISPRs). Second, when these sequences are transcribed and precisely processed into small RNAs, they guide a multifunctional protein complex (Cas proteins) to recognize and cleave incoming foreign genetic material. This adaptive immunity system, which uses a library of small noncoding RNAs as a potent weapon against fast-evolving viruses, is also used as a regulatory system by the host. Exciting breakthroughs in understanding the mechanisms of the CRISPR-Cas system and its potential for biotechnological applications and understanding evolutionary dynamics are discussed.
Collapse
Affiliation(s)
- Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
1011
|
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) are essential components of nucleic-acid-based adaptive immune systems that are widespread in bacteria and archaea. Similar to RNA interference (RNAi) pathways in eukaryotes, CRISPR-mediated immune systems rely on small RNAs for sequence-specific detection and silencing of foreign nucleic acids, including viruses and plasmids. However, the mechanism of RNA-based bacterial immunity is distinct from RNAi. Understanding how small RNAs are used to find and destroy foreign nucleic acids will provide new insights into the diverse mechanisms of RNA-controlled genetic silencing systems.
Collapse
|
1012
|
Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 2012; 45:303-13. [PMID: 22227115 PMCID: PMC3381847 DOI: 10.1016/j.molcel.2011.12.013] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/15/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endonucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a protospacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.
Collapse
Affiliation(s)
| | | | | | | | - Kim Brugger
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK
| | | | - Julia Reimann
- Institute of Structural Molecular Biology and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Giuseppe Cannone
- EASIH, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | | | - Sonja-Verena Albers
- Institute of Structural Molecular Biology and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | - Laura Spagnolo
- EASIH, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
1013
|
Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CVC, Graveley BR, Terns RM, Terns MP. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 2012; 45:292-302. [PMID: 22227116 DOI: 10.1016/j.molcel.2011.10.023] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/07/2011] [Accepted: 10/27/2011] [Indexed: 12/26/2022]
Abstract
Small RNAs target invaders for silencing in the CRISPR-Cas pathways that protect bacteria and archaea from viruses and plasmids. The CRISPR RNAs (crRNAs) contain sequence elements acquired from invaders that guide CRISPR-associated (Cas) proteins back to the complementary invading DNA or RNA. Here, we have analyzed essential features of the crRNAs associated with the Cas RAMP module (Cmr) effector complex, which cleaves targeted RNAs. We show that Cmr crRNAs contain an 8 nucleotide 5' sequence tag (also found on crRNAs associated with other CRISPR-Cas pathways) that is critical for crRNA function and can be used to engineer crRNAs that direct cleavage of novel targets. We also present data that indicate that the Cmr complex cleaves an endogenous complementary RNA in Pyrococcus furiosus, providing direct in vivo evidence of RNA targeting by the CRISPR-Cas system. Our findings indicate that the CRISPR RNA-Cmr protein pathway may be exploited to cleave RNAs of interest.
Collapse
Affiliation(s)
- Caryn R Hale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1014
|
Abstract
Acquisition of foreign DNA can be of advantage or disadvantage to the host cell. New DNAs can increase the fitness of an organism to certain environmental conditions; however, replication and maintenance of incorporated nucleotide sequences can be a burden for the host cell. These circumstances have resulted in the development of certain cellular mechanisms limiting horizontal gene transfer, including the immune system of vertebrates or RNA interference mechanisms in eukaryotes. Also, in prokaryotes, specific systems have been characterized, which are aimed especially at limiting the invasion of bacteriophage DNA, for example, adsorption inhibition, injection blocking, restriction/modification, or abortive infection. Quite recently, another distinct mechanism limiting horizontal transfer of genetic elements has been identified in procaryotes and shown to protect microbial cells against exogenous nucleic acids of phage or plasmid origin. This system has been termed CRISPR/cas and consists of two main components: (i) the CRISPR (clustered, regularly interspaced short palindromic regions) locus and (ii) cas genes, encoding CRISPR-associated (Cas) proteins. In simplest words, the mechanism of CRISPR/cas activity is based on the active integration of small fragments (proto-spacers) of the invading DNAs (phage or plasmids) into microbial genomes, which are subsequently transcribed into short RNAs that direct the degradation of foreign invading DNA elements. In this way, the host organism acquires immunity toward mobile elements carrying matching sequences. The CRISPR/cas system is regarded as one of the earliest defense system that has evolved in prokaryotic organisms. It is inheritable, but at the same time is unstable when regarding the evolutionary scale. Comparative sequence analyses indicate that CRISPR/cas systems play an important role in the evolution of microbial genomes and their predators, bacteriophages.
Collapse
|
1015
|
Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 2011; 3:143-62. [PMID: 22224556 DOI: 10.1146/annurev-food-022811-101134] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria have been widely used as starter cultures in the food industry, notably for the fermentation of milk into dairy products such as cheese and yogurt. Lactic acid bacteria used in food manufacturing, such as lactobacilli, lactococci, streptococci, Leuconostoc, pediococci, and bifidobacteria, are selectively formulated based on functional characteristics that provide idiosyncratic flavor and texture attributes, as well as their ability to withstand processing and manufacturing conditions. Unfortunately, given frequent viral exposure in industrial environments, starter culture selection and development rely on defense systems that provide resistance against bacteriophage predation, including restriction-modification, abortive infection, and recently discovered CRISPRs (clustered regularly interspaced short palindromic repeats). CRISPRs, together with CRISPR-associated genes (cas), form the CRISPR/Cas immune system, which provides adaptive immunity against phages and invasive genetic elements. The immunization process is based on the incorporation of short DNA sequences from virulent phages into the CRISPR locus. Subsequently, CRISPR transcripts are processed into small interfering RNAs that guide a multifunctional protein complex to recognize and cleave matching foreign DNA. Hypervariable CRISPR loci provide insights into the phage and host population dynamics, and new avenues for enhanced phage resistance and genetic typing and tagging of industrial strains.
Collapse
|
1016
|
Abstract
The recently discovered CRISPR-Cas adaptive immune system is present in almost all archaea and many bacteria. It consists of cassettes of CRISPR repeats that incorporate spacers homologous to fragments of viral or plasmid genomes that are employed as guide RNAs in the immune response, along with numerous CRISPR-associated (cas) genes that encode proteins possessing diverse, only partially characterized activities required for the action of the system. Here, we investigate the evolution of the cas genes and show that they evolve under purifying selection that is typically much weaker than the median strength of purifying selection affecting genes in the respective genomes. The exceptions are the cas1 and cas2 genes that typically evolve at levels of purifying selection close to the genomic median. Thus, although these genes are implicated in the acquisition of spacers from alien genomes, they do not appear to be directly involved in an arms race between bacterial and archaeal hosts and infectious agents. These genes might possess functions distinct from and additional to their role in the CRISPR-Cas-mediated immune response. Taken together with evidence of the frequent horizontal transfer of cas genes reported previously and with the wide-spread microscale recombination within these genes detected in this work, these findings reveal the highly dynamic evolution of cas genes. This conclusion is in line with the involvement of CRISPR-Cas in antiviral immunity that is likely to entail a coevolutionary arms race with rapidly evolving viruses. However, we failed to detect evidence of strong positive selection in any of the cas genes.
Collapse
|
1017
|
Garrett RA, Vestergaard G, Shah SA. Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 2011; 19:549-56. [PMID: 21945420 DOI: 10.1016/j.tim.2011.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 12/26/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence for exchange of functional modules between archaeal systems that is likely to contribute to their diversity, particularly of their nucleic acid targeting and cleavage functions. The molecular constraints that limit such exchange are considered. We also summarize mechanisms underlying the dynamic nature of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
1018
|
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011; 39:9275-82. [PMID: 21813460 PMCID: PMC3241640 DOI: 10.1093/nar/gkr606] [Citation(s) in RCA: 543] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elements that subsequently direct the specific cleavage of invasive homologous DNA sequences. Here, we show that the S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli and provide heterologous protection against plasmid transformation and phage infection. We show that interference is sequence-specific, and that mutations in the vicinity or within the proto-spacer adjacent motif (PAM) allow plasmids to escape CRISPR-encoded immunity. We also establish that cas9 is the sole cas gene necessary for CRISPR-encoded interference. Furthermore, mutation analysis revealed that interference relies on the Cas9 McrA/HNH- and RuvC/RNaseH-motifs. Altogether, our results show that active CRISPR/Cas systems can be transferred across distant genera and provide heterologous interference against invasive nucleic acids. This can be leveraged to develop strains more robust against phage attack, and safer organisms less likely to uptake and disseminate plasmid-encoded undesirable genetic elements.
Collapse
Affiliation(s)
- Rimantas Sapranauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
1019
|
Abstract
Intergenic regions of prokaryotic genomes carry multiple copies of terminal inverted repeat (TIR) sequences, the nonautonomous miniature inverted-repeat transposable element (MITE). In addition, there are the repetitive extragenic palindromic (REP) sequences that fold into a small stem loop rich in G–C bonding. And the clustered regularly interspaced short palindromic repeats (CRISPRs) display similar small stem loops but are an integral part of a complex genetic element. Other classes of repeats such as the REP2 element do not have TIRs but show other signatures. With the current availability of a large number of whole-genome sequences, many new repeat elements have been discovered. These sequences display diverse properties. Some show an intimate linkage to integrons, and at least one encodes a small RNA. Many repeats are found fused with chromosomal open reading frames, and some are located within protein coding sequences. Small repeat units appear to work hand in hand with the transcriptional and/or post-transcriptional apparatus of the cell. Functionally, they are multifaceted, and this can range from the control of gene expression, the facilitation of host/pathogen interactions, or stimulation of the mammalian immune system. The CRISPR complex displays dramatic functions such as an acquired immune system that defends against invading viruses and plasmids. Evolutionarily, mobile repeat elements may have influenced a cycle of active versus inactive genes in ancestral organisms, and some repeats are concentrated in regions of the chromosome where there is significant genomic plasticity. Changes in the abundance of genomic repeats during the evolution of an organism may have resulted in a benefit to the cell or posed a disadvantage, and some present day species may reflect a purification process. The diverse structure, eclectic functions, and evolutionary aspects of repeat elements are described.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, NY, USA.
| |
Collapse
|
1020
|
Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 2011; 6:38. [PMID: 21756346 PMCID: PMC3150331 DOI: 10.1186/1745-6150-6-38] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/14/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, diverse and rapidly evolving Cas (CRISPR-associated) proteins, several of which form the Cascade complex involved in the processing of CRISPR transcripts and cleavage of the target DNA. Comparative analysis of the Cas protein sequences and structures led to the classification of the CRISPR-Cas systems into three Types (I, II and III). RESULTS A detailed comparison of the available sequences and structures of Cas proteins revealed several unnoticed homologous relationships. The Repeat-Associated Mysterious Proteins (RAMPs) containing a distinct form of the RNA Recognition Motif (RRM) domain, which are major components of the CRISPR-Cas systems, were classified into three large groups, Cas5, Cas6 and Cas7. Each of these groups includes many previously uncharacterized proteins now shown to adopt the RAMP structure. Evidence is presented that large subunits contained in most of the CRISPR-Cas systems could be homologous to Cas10 proteins which contain a polymerase-like Palm domain and are predicted to be enzymatically active in Type III CRISPR-Cas systems but inactivated in Type I systems. These findings, the fact that the CRISPR polymerases, RAMPs and Cas2 all contain core RRM domains, and distinct gene arrangements in the three types of CRISPR-Cas systems together provide for a simple scenario for origin and evolution of the CRISPR-Cas machinery. Under this scenario, the CRISPR-Cas system originated in thermophilic Archaea and subsequently spread horizontally among prokaryotes. CONCLUSIONS Because of the extreme diversity of CRISPR-Cas systems, in-depth sequence and structure comparison continue to reveal unexpected homologous relationship among Cas proteins. Unification of Cas protein families previously considered unrelated provides for improvement in the classification of CRISPR-Cas systems and a reconstruction of their evolution. OPEN PEER REVIEW This article was reviewed by Malcolm White (nominated by Purficacion Lopez-Garcia), Frank Eisenhaber and Igor Zhulin. For the full reviews, see the Reviewers' Comments section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
1021
|
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 2011; 108:10098-103. [PMID: 21646539 DOI: 10.1073/pnas.1104144108] [Citation(s) in RCA: 561] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas resistance carry point mutations in protospacers, though not all protospacer mutations lead to escape. Here, we show that in the case of Escherichia coli subtype CRISPR/Cas system, the requirements for crRNA matching are strict only for a seven-nucleotide seed region of a protospacer immediately following the essential protospacer-adjacent motif. Mutations in the seed region abolish CRISPR/Cas mediated immunity by reducing the binding affinity of the crRNA-guided Cascade complex to protospacer DNA. We propose that the crRNA seed sequence plays a role in the initial scanning of invader DNA for a match, before base pairing of the full-length spacer occurs, which may enhance the protospacer locating efficiency of the E. coli Cascade complex. In agreement with this proposal, single or multiple mutations within the protospacer but outside the seed region do not lead to escape. The relaxed specificity of the CRISPR/Cas system limits escape possibilities and allows a single crRNA to effectively target numerous related viruses.
Collapse
|
1022
|
Rezzonico F, Smits THM, Duffy B. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 2011; 77:3819-29. [PMID: 21460108 PMCID: PMC3127596 DOI: 10.1128/aem.00177-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/24/2011] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, Swiss National Competence Center for Fire Blight, CH-8820 Wädenswil, Switzerland
| | - Theo H. M. Smits
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, Swiss National Competence Center for Fire Blight, CH-8820 Wädenswil, Switzerland
| | - Brion Duffy
- Agroscope Changins-Wädenswil ACW, Plant Protection Division, Swiss National Competence Center for Fire Blight, CH-8820 Wädenswil, Switzerland
| |
Collapse
|
1023
|
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR-Cas systems and Cas proteins. Three major types of CRISPR-Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR-Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a 'polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR-cas loci.
Collapse
|
1024
|
Abstract
Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs - small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway.
Collapse
|
1025
|
Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders APL, Dickman MJ, Doudna JA, Boekema EJ, Heck AJR, van der Oost J, Brouns SJJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 2011; 18:529-36. [PMID: 21460843 DOI: 10.1038/nsmb.2019] [Citation(s) in RCA: 429] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 01/24/2011] [Indexed: 12/17/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA(1)B(2)C(6)D(1)E(1)) and a 61-nucleotide CRISPR RNA (crRNA) with 5'-hydroxyl and 2',3'-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.
Collapse
Affiliation(s)
- Matthijs M Jore
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1026
|
Abstract
CRISPR (cluster of regularly interspaced palindromic repeats)/Cas and CRISPR/Cmr systems of Sulfolobus, targeting DNA and RNA respectively of invading viruses or plasmids are complex and diverse. We address their classification and functional diversity, and the wide sequence diversity of RAMP (repeat-associated mysterious protein)-motif containing proteins encoded in Cmr modules. Factors influencing maintenance of partially impaired CRISPR-based systems are discussed. The capacity for whole CRISPR transcripts to be generated despite the uptake of transcription signals within spacer sequences is considered. Targeting of protospacer regions of invading elements by Cas protein-crRNA (CRISPR RNA) complexes exhibit relatively low sequence stringency, but the integrity of protospacer-associated motifs appears to be important. Different mechanisms for circumventing or inactivating the immune systems are presented.
Collapse
|
1027
|
Anderson RE, Brazelton WJ, Baross JA. Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiol Ecol 2011; 77:120-33. [DOI: 10.1111/j.1574-6941.2011.01090.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
1028
|
Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 2011. [PMID: 21343909 DOI: 10.1038/emboj.2011.41.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.
Collapse
Affiliation(s)
- Tomas Sinkunas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
1029
|
Al-Attar S, Westra ER, van der Oost J, Brouns SJ. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 2011; 392:277-89. [DOI: 10.1515/bc.2011.042] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractMany prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' ‘immunological memory’. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.
Collapse
|
1030
|
Manica A, Zebec Z, Teichmann D, Schleper C. In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 2011; 80:481-91. [PMID: 21385233 DOI: 10.1111/j.1365-2958.2011.07586.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems are found widespread in bacterial and archaeal genomes and exhibit considerable diversity. However, closer insights into the action of most of the CRISPR modules have remained elusive in particular in Archaea as a result of the lack of suitable in vivo test systems. Here we demonstrate CRISPR/Cas-based immune defence in the hyperthermophilic archaeon Sulfolobus solfataricus. Recombinant variants of the SSV1 virus containing a gene of the conjugative plasmid pNOB8 that represents a target for a corresponding CRISPR spacer in the chromosome were tested in transfection experiments. Almost 100% immunity against the recombinant virus was observed when the chromosomal CRISPR spacer matched perfectly to the protospacer. Different from bacterial systems immunity was still detected, albeit at decreased levels, when mutations distinguished target and spacer. CRISPR/Cas targeting was independent of the transcription of the target gene. Furthermore, a mini-CRISPR locus introduced on the viral DNA with spacers targeting the (non-essential) chromosomal beta-galactosidase gene was unstable in host cells and triggered recombination with the indigenous CRISPR locus. Our experiments demonstrate in vivo activity of CRISPR/Cas in archaea for the first time and suggest that - unlike the recently demonstrated in vitro cleavage of RNA in Pyrococcus- DNA is targeted in this archaeon.
Collapse
Affiliation(s)
- Andrea Manica
- University of Vienna, Department of Genetics in Ecology, Althanstr. 14, 1090-Vienna, Austria
| | | | | | | |
Collapse
|
1031
|
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 2011; 30:1335-42. [PMID: 21343909 DOI: 10.1038/emboj.2011.41] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/01/2011] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.
Collapse
|
1032
|
Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RSG, Lalitha P, Zegans ME, O'Toole GA. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. MICROBIOLOGY (READING, ENGLAND) 2011; 157:430-7. [PMID: 21081758 PMCID: PMC3090132 DOI: 10.1099/mic.0.045732-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of 122 Pseudomonas aeruginosa clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that Yersinia subtype CRISPR regions (33 %) were more prevalent than the Escherichia CRISPR region subtype (6 %) in these P. aeruginosa clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic P. aeruginosa bacteriophage. We next assessed the ability of the more prevalent Yersinia subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and cas genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and cas gene studies.
Collapse
Affiliation(s)
- K. C. Cady
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - A. S. White
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - J. H. Hammond
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - M. D. Abendroth
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | - P. Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - M. E. Zegans
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Surgery, Dartmouth Medical School, Lebanon, NH 03766, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
1033
|
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2011; 468:67-71. [PMID: 21048762 DOI: 10.1038/nature09523] [Citation(s) in RCA: 1555] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/20/2010] [Indexed: 01/06/2023]
Abstract
Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.
Collapse
|
1034
|
Pride DT, Sun CL, Salzman J, Rao N, Loomer P, Armitage GC, Banfield JF, Relman DA. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res 2011; 21:126-36. [PMID: 21149389 PMCID: PMC3012920 DOI: 10.1101/gr.111732.110] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/28/2010] [Indexed: 01/06/2023]
Abstract
Viruses may play an important role in the evolution of human microbial communities. Clustered regularly interspaced short palindromic repeats (CRISPRs) provide bacteria and archaea with adaptive immunity to previously encountered viruses. Little is known about CRISPR composition in members of human microbial communities, the relative rate of CRISPR locus change, or how CRISPR loci differ between the microbiota of different individuals. We collected saliva from four periodontally healthy human subjects over an 11- to 17-mo time period and analyzed CRISPR sequences with corresponding streptococcal repeats in order to improve our understanding of the predominant features of oral streptococcal adaptive immune repertoires. We analyzed a total of 6859 CRISPR bearing reads and 427,917 bacterial 16S rRNA gene sequences. We found a core (ranging from 7% to 22%) of shared CRISPR spacers that remained stable over time within each subject, but nearly a third of CRISPR spacers varied between time points. We document high spacer diversity within each subject, suggesting constant addition of new CRISPR spacers. No greater than 2% of CRISPR spacers were shared between subjects, suggesting that each individual was exposed to different virus populations. We detect changes in CRISPR spacer sequence diversity over time that may be attributable to locus diversification or to changes in streptococcal population structure, yet the composition of the populations within subjects remained relatively stable. The individual-specific and traceable character of CRISPR spacer complements could potentially open the way for expansion of the domain of personalized medicine to the oral microbiome, where lineages may be tracked as a function of health and other factors.
Collapse
Affiliation(s)
- David T Pride
- Department of Pathology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
1035
|
Biggs PJ, Collins LJ. RNA networks in prokaryotes I: CRISPRs and riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:209-20. [PMID: 21915791 DOI: 10.1007/978-1-4614-0332-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
As with eukaryotes, prokaryotes employ a variety of mechanisms to allow the various types of RNA to interact and perform complex functions as a network. This chapter will detail prokaryotic molecular systems, such as riboswitches and CRISPRs, to show how they perform unique functions within the cell. These systems can interact with each other to gain a higher level of control and here we highlight some examples of such interactions including the cleavage of certain riboswitches by RNaseP, and endoribonuclease cleavage of pre-crRNAs in the CRISPR system. Thanks to such insights, we are beginning to get a glimpse of the prokaryotic RNA infrastructure, just as we have done with eukaryotes.
Collapse
Affiliation(s)
- Patrick J Biggs
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
1036
|
Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 2011; 79:484-502. [PMID: 21219465 PMCID: PMC3071548 DOI: 10.1111/j.1365-2958.2010.07465.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Natalia Beloglazova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Robert Flick
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Chris Graham
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Tatiana Skarina
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Alla Gagarinova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Oxana Pogoutse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Greg Brown
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrew Binkowski
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Aled M. Edwards
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Alexander F. Yakunin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| |
Collapse
|
1037
|
Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 2010; 64:475-93. [PMID: 20528693 DOI: 10.1146/annurev.micro.112408.134123] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins is a widespread system across bacteria and archaea that causes interference against foreign nucleic acids. The CRISPR/Cas system acts in at least two general stages: the adaptation stage, where the cell acquires new spacer sequences derived from foreign DNA, and the interference stage, which uses the recently acquired spacers to target and cleave invasive nucleic acid. The CRISPR/Cas system participates in a constant evolutionary battle between phages and bacteria through addition or deletion of spacers in host cells and mutations or deletion in phage genomes. This review describes the recent progress made in this fast-expanding field.
Collapse
Affiliation(s)
- Hélène Deveau
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale, Université Laval, Quebec City, Quebec, G1V 0A6, Canada.
| | | | | |
Collapse
|
1038
|
Mojica FJM, Díez-Villaseñor C. The on-off switch of CRISPR immunity against phages in Escherichia coli. Mol Microbiol 2010; 77:1341-5. [PMID: 20860086 DOI: 10.1111/j.1365-2958.2010.07326.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Francisco J M Mojica
- Universidad de Alicante, Division de Microbiologia, Dpto. Fisiologia, Genetica y Microbiologia, Apartado 99, Alicante 03080, Spain.
| | | |
Collapse
|
1039
|
Shah SA, Garrett RA. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol 2010; 162:27-38. [PMID: 20863886 DOI: 10.1016/j.resmic.2010.09.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022]
Abstract
CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between closely related organisms where they may be subjected to strong selective pressure. It is likely that this process occurs primarily via conjugative plasmids or chromosomal conjugation. It is inferred that interdomain transfer between archaea and bacteria has occurred, albeit very rarely, despite the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons. No homologous proteins are identifiable at a sequence level between eukaryal siRNA proteins and those of archaeal or bacterial CRISPR/Cas and Cmr modules.
Collapse
Affiliation(s)
- Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, DK2200 Copenhagen N, Denmark
| | | |
Collapse
|
1040
|
Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, Severinov K. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 2010; 77:1367-79. [PMID: 20624226 PMCID: PMC2939963 DOI: 10.1111/j.1365-2958.2010.07265.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co-overexpression of Cas genes and a CRISPR cassette engineered to target a λ-phage), no natural phage resistance due to CRISPR system function was observed in this best-studied organism and no E. coli CRISPR spacer matches sequences of well-studied E. coli phages. To better understand the apparently 'silent'E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.
Collapse
Affiliation(s)
- Ksenia Pougach
- Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
1041
|
Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 2010; 26:335-40. [PMID: 20598393 PMCID: PMC2910793 DOI: 10.1016/j.tig.2010.05.008] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/26/2022]
Abstract
The recently discovered prokaryotic immune system known as CRISPR (clustered regularly interspaced short palindromic repeats) is based on small RNAs ('spacers') that restrict phage and plasmid infection. It has been hypothesized that CRISPRs can also regulate self gene expression by utilizing spacers that target self genes. By analyzing CRISPRs from 330 organisms we found that one in every 250 spacers is self-targeting, and that such self-targeting occurs in 18% of all CRISPR-bearing organisms. However, complete lack of conservation across species, combined with abundance of degraded repeats near self-targeting spacers, suggests that self-targeting is a form of autoimmunity rather than a regulatory mechanism. We propose that accidental incorporation of self nucleic acids by CRISPR can incur an autoimmune fitness cost, and this could explain the abundance of degraded CRISPR systems across prokaryotes.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Omri Wurtzel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
1042
|
Aklujkar M, Lovley DR. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol Biol 2010; 10:230. [PMID: 20667132 PMCID: PMC2923632 DOI: 10.1186/1471-2148-10-230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/28/2010] [Indexed: 11/21/2022] Open
Abstract
Background Pelobacter carbinolicus, a bacterium of the family Geobacteraceae, cannot reduce Fe(III) directly or produce electricity like its relatives. How P. carbinolicus evolved is an intriguing problem. The genome of P. carbinolicus contains clustered regularly interspaced short palindromic repeats (CRISPR) separated by unique spacer sequences, which recent studies have shown to produce RNA molecules that interfere with genes containing identical sequences. Results CRISPR spacer #1, which matches a sequence within hisS, the histidyl-tRNA synthetase gene of P. carbinolicus, was shown to be expressed. Phylogenetic analysis and genetics demonstrated that a gene paralogous to hisS in the genomes of Geobacteraceae is unlikely to compensate for interference with hisS. Spacer #1 inhibited growth of a transgenic strain of Geobacter sulfurreducens in which the native hisS was replaced with that of P. carbinolicus. The prediction that interference with hisS would result in an attenuated histidyl-tRNA pool insufficient for translation of proteins with multiple closely spaced histidines, predisposing them to mutation and elimination during evolution, was investigated by comparative genomics of P. carbinolicus and related species. Several ancestral genes with high histidine demand have been lost or modified in the P. carbinolicus lineage, providing an explanation for its physiological differences from other Geobacteraceae. Conclusions The disappearance of multiheme c-type cytochromes and other genes typical of a metal-respiring ancestor from the P. carbinolicus lineage may be the consequence of spacer #1 interfering with hisS, a condition that can be reproduced in a heterologous host. This is the first successful co-introduction of an active CRISPR spacer and its target in the same cell, the first application of a chimeric CRISPR construct consisting of a spacer from one species in the context of repeats of another species, and the first report of a potential impact of CRISPR on genome-scale evolution by interference with an essential gene.
Collapse
Affiliation(s)
- Muktak Aklujkar
- University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
1043
|
Smirnov GB. Repeats in bacterial genome: Evolutionary considerations. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2010. [DOI: 10.3103/s0891416810020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
1044
|
Touchon M, Rocha EPC. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 2010; 5:e11126. [PMID: 20559554 PMCID: PMC2886076 DOI: 10.1371/journal.pone.0011126] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/25/2010] [Indexed: 11/30/2022] Open
Abstract
Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.
Collapse
Affiliation(s)
- Marie Touchon
- Département Génomes et Génétique, Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.
| | | |
Collapse
|
1045
|
Abstract
Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.
Collapse
Affiliation(s)
- Simon J Labrie
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
1046
|
Abstract
The past is never dead. It's not even past William Faulkner (1951)
Bacteria can acquire heritable immunity to viral (phage) enemies by incorporating phage DNA into their own genome. This mechanism of anti-viral defence, known by the acronym CRISPR, simultaneously stores detailed information about current and past enemies and the evolved resistance to them. As a high-resolution genetic marker that is intimately tied with the host–pathogen interaction, the CRISPR system offers a unique, and relatively untapped, opportunity to study epidemiological and coevolutionary dynamics in microbial communities that were previously neglected because they could not be cultured in the laboratory. We briefly review the molecular mechanisms of CRISPR-mediated host–pathogen resistance, before assessing their potential importance for coevolution in nature, and their utility as a means of studying coevolutionary dynamics through metagenomics and laboratory experimentation.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
1047
|
Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 2010; 37:7-19. [PMID: 20129051 DOI: 10.1016/j.molcel.2009.12.033] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/11/2009] [Accepted: 12/23/2009] [Indexed: 01/23/2023]
Abstract
All cellular systems evolve ways to combat predators and genomic parasites. In bacteria and archaea, numerous resistance mechanisms have developed against phage. Our understanding of this defensive repertoire has recently been expanded to include the CRISPR system of clustered, regularly interspaced short palindromic repeats. In this remarkable pathway, short sequence tags from invading genetic elements are actively incorporated into the host's CRISPR locus to be transcribed and processed into a set of small RNAs that guide the destruction of foreign genetic material. Here we review the inner workings of this adaptable and heritable immune system and draw comparisons to small RNA-guided defense mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Fedor V Karginov
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
1048
|
Pul Ü, Wurm R, Arslan Z, Geißen R, Hofmann N, Wagner R. Identification and characterization ofE. coliCRISPR-caspromoters and their silencing by H-NS. Mol Microbiol 2010; 75:1495-512. [DOI: 10.1111/j.1365-2958.2010.07073.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
1049
|
Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM. Diversity of CRISPR loci in Escherichia coli. MICROBIOLOGY-SGM 2010; 156:1351-1361. [PMID: 20133361 DOI: 10.1099/mic.0.036046-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) and CAS (CRISPR-associated sequence) proteins are constituents of a novel genetic barrier that limits horizontal gene transfer in prokaryotes by means of an uncharacterized mechanism. The fundamental discovery of small RNAs as the guides of the defence apparatus arose as a result of Escherichia coli studies. However, a survey of the system diversity in this species in order to further contribute to the understanding of the CRISPR mode of action has not yet been performed. Here we describe two CRISPR/CAS systems found in E. coli, following the analysis of 100 strains representative of the species' diversity. Our results substantiate different levels of activity between loci of both CRISPR types, as well as different target preferences and CRISPR relevances for particular groups of strains. Interestingly, the data suggest that the degeneration of one CRISPR/CAS system in E. coli ancestors could have been brought about by self-interference.
Collapse
Affiliation(s)
- C Díez-Villaseñor
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Spain
| | | | | | | |
Collapse
|
1050
|
Abstract
Microbes rely on diverse defense mechanisms that allow them to withstand viral predation and exposure to invading nucleic acid. In many Bacteria and most Archaea, clustered regularly interspaced short palindromic repeats (CRISPR) form peculiar genetic loci, which provide acquired immunity against viruses and plasmids by targeting nucleic acid in a sequence-specific manner. These hypervariable loci take up genetic material from invasive elements and build up inheritable DNA-encoded immunity over time. Conversely, viruses have devised mutational escape strategies that allow them to circumvent the CRISPR/Cas system, albeit at a cost. CRISPR features may be exploited for typing purposes, epidemiological studies, host-virus ecological surveys, building specific immunity against undesirable genetic elements, and enhancing viral resistance in domesticated microbes.
Collapse
|