11251
|
Quantitative proteomic analysis reveals high interference on protein expression of H9c2 cells activated with glucose and cardiotonic steroids. J Proteomics 2019; 211:103536. [PMID: 31629057 DOI: 10.1016/j.jprot.2019.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023]
Abstract
In recent decades, the incidence of death and morbidity due to diabetes has increased worldwide, causing a high social and economic impact. Diabetes is a major cause of blindness, kidney failure, heart attack, stroke and lower limb amputation. However, the molecular mechanisms that make the heart and kidneys the main targets of diabetes are not completely understood. To better understand the complex biochemical mechanism of diabetic cardiomyopathy, we investigated the effects of hyperglycemia with concomitant digoxin and ouabain stimulation in H9c2 cells. Total extracted proteins were analyzed by label-free LC-MS/MS, quantified by Scaffold software and validated by parallel reaction monitoring (PRM) methodology. Here, we show that the eukaryotic initiation factors (Eifs) and elongation factors (Eefs) Eif3f, Eef2 and Eif4a1 are overexpressed following cardiotonic steroid (CTS) stimulation. Similarly, the expression of four 14-3-3 proteins that play a key role in cardiac ventricular compaction was altered after CTS stimulation. In total, the expression of nine protein groups was altered in response to the stimulation of H9c2 cells. Here, the biological consequences of these changes are discussed in depth. SIGNIFICANCE: Hyperglycemia is the main physiological condition that provokes tissue and vascular injuries in heart of diabetic patients. However, the changings at large scale in the expression of proteins of cardiomyocytes generated by this condition was not yet studied. Here we report for the first time the altered biosynthesis of nine groups of proteins of H9c2 cells activated by high glucose concentrations and by cardiotonic steroids (CTS). Furthermore, the increased biosynthesis of Eifs, Eefs and 14-3-3 protein groups by CTS, which play a crucial role in cardiomyopathies are original data reported in this work. These findings not only enhance our knowledge concerning to the effects of hyperglycemia and CTS on H9c2 cells but also indicate potential molecular targets to interfere in diabetes cardiomyopathy progression.
Collapse
|
11252
|
Cheng S, Yu X. Bioinformatics analyses of publicly available NEPCa datasets. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:327-340. [PMID: 31763364 PMCID: PMC6872473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Gene expression profiles are valuable resources for the identification of key players that driver disease progression. However, neuroendocrine prostate cancer (NEPCa) specimens are rare, limiting research on this aggressive disease. In this study, we generated a 12-gene signature of NEPCa and used this signature to differentiate NEPCa from prostate adenocarcinoma (AdPCa) samples in publicly available datasets. From these samples, we identified genes that were differentially expressed in NEPCa and AdPCa. Gene ontology and network analyses revealed key players in the pathogenesis of NEPCa, including E2Fs, members of MHC class II, and factors involved in neuron differentiation, neurogenesis, and stem cell signaling. In conclusion, we identified a 12-gene signature of NEPCa and found pathways that are important for the pathologic development of NEPCa.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Biochemistry and Molecular Biology, LSU Health-Shreveport Shreveport, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health-Shreveport Shreveport, USA
| |
Collapse
|
11253
|
Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput Biol 2019; 15:e1007179. [PMID: 31609984 PMCID: PMC6812855 DOI: 10.1371/journal.pcbi.1007179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/24/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Determining which proteins interact together is crucial to a systems-level understanding of the cell. Recently, algorithms based on Direct Coupling Analysis (DCA) pairwise maximum-entropy models have allowed to identify interaction partners among paralogous proteins from sequence data. This success of DCA at predicting protein-protein interactions could be mainly based on its known ability to identify pairs of residues that are in contact in the three-dimensional structure of protein complexes and that coevolve to remain physicochemically complementary. However, interacting proteins possess similar evolutionary histories. What is the role of purely phylogenetic correlations in the performance of DCA-based methods to infer interaction partners? To address this question, we employ controlled synthetic data that only involve phylogeny and no interactions or contacts. We find that DCA accurately identifies the pairs of synthetic sequences that share evolutionary history. While phylogenetic correlations confound the identification of contacting residues by DCA, they are thus useful to predict interacting partners among paralogs. We find that DCA performs as well as phylogenetic methods to this end, and slightly better than them with large and accurate training sets. Employing DCA or phylogenetic methods within an Iterative Pairing Algorithm (IPA) allows to predict pairs of evolutionary partners without a training set. We further demonstrate the ability of these various methods to correctly predict pairings among real paralogous proteins with genome proximity but no known direct physical interaction, illustrating the importance of phylogenetic correlations in natural data. However, for physically interacting and strongly coevolving proteins, DCA and mutual information outperform phylogenetic methods. We finally discuss how to distinguish physically interacting proteins from proteins that only share a common evolutionary history. Many biologically important protein-protein interactions are conserved over evolutionary time scales. This leads to two different signals that can be used to computationally predict interactions between protein families and to identify specific interaction partners. First, the shared evolutionary history leads to highly similar phylogenetic relationships between interacting proteins of the two families. Second, the need to keep the interaction surfaces of partner proteins biophysically compatible causes a correlated amino-acid usage of interface residues. Employing simulated data, we show that the shared history alone can be used to detect partner proteins. Similar accuracies are achieved by algorithms comparing phylogenetic relationships and by methods based on Direct Coupling Analysis (DCA), which are primarily known for their ability to detect the second type of signal. Using natural sequence data, we show that in cases with shared evolutionary history but without known physical interactions, both methods work with similar accuracy, while for some physically interacting systems, DCA and mutual information outperform phylogenetic methods. We propose methods allowing both to predict interactions between protein families and to find interacting partners among paralogs.
Collapse
|
11254
|
Luo X, Xu S, Zhong Y, Tu T, Xu Y, Li X, Wang B, Yang F. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis. Oncol Lett 2019; 18:6171-6179. [PMID: 31788092 PMCID: PMC6865749 DOI: 10.3892/ol.2019.10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to identify differentially regulated genes between the peritumoral brain zone (PBZ) and tumor core (TC) of glioblastoma (GBM), to elucidate the underlying molecular mechanisms and provide a target for the treatment of tumors. The GSE13276 and GSE116520 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) for the PBZ and TC were obtained using the GEO2R tool. The bioinformatics and evolutionary genomics online tool Venn was used to identify common DEGs between the two datasets. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to analyze enriched pathways of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The Search Tool for the Retrieval of Interacting Genes/Proteins online tool was used to construct a protein-protein interaction (PPI) network of DEGs. Hub genes were identified using Cytohubba, a plug-in for Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was utilized to perform survival analysis. In total, 75 DEGs, including 12 upregulated and 63 downregulated genes, were identified. In the GO term analysis, these DEGs were mainly enriched in ‘regulation of angiogenesis’ and ‘central nervous system development’. Furthermore, in the KEGG pathway analysis, the DEGs were mainly enriched in ‘bladder cancer’ and ‘endocytosis’. When filtering the results of the PPI network analysis using Cytohubba, a total of 10 hub genes, including proteolipid protein 1, myelin associated oligodendrocyte basic protein, contactin 2, myelin oligodendrocyte glycoprotein, myelin basic protein, myelin associated glycoprotein, SRY-box transcription factor 10, C-X-C motif chemokine ligand 8 (CXCL8), vascular endothelial growth factor A (VEGFA) and plasmolipin, were identified. These hub genes were further subjected to GO term and KEGG pathway analysis, and were revealed to be enriched in ‘central nervous system development’, ‘bladder cancer’ and ‘rheumatoid arthritis’. These hub genes were used to perform survival analysis using the GEPIA database, and it was determined that VEGFA and CXCL8 were significantly associated with a reduction in the overall survival of patients with GBM. In conclusion, the results suggest that the recurrence of GBM is associated with high gene expression levels VEGFA and CXCL8, and the development of the central nervous system.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yali Zhong
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R. China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Youlin Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xianglong Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
11255
|
Biological Network Approaches and Applications in Rare Disease Studies. Genes (Basel) 2019; 10:genes10100797. [PMID: 31614842 PMCID: PMC6827097 DOI: 10.3390/genes10100797] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Network biology has the capability to integrate, represent, interpret, and model complex biological systems by collectively accommodating biological omics data, biological interactions and associations, graph theory, statistical measures, and visualizations. Biological networks have recently been shown to be very useful for studies that decipher biological mechanisms and disease etiologies and for studies that predict therapeutic responses, at both the molecular and system levels. In this review, we briefly summarize the general framework of biological network studies, including data resources, network construction methods, statistical measures, network topological properties, and visualization tools. We also introduce several recent biological network applications and methods for the studies of rare diseases.
Collapse
|
11256
|
Zhang GL, Pan LL, Huang T, Wang JH. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer 2019; 10:5883-5890. [PMID: 31737124 PMCID: PMC6843882 DOI: 10.7150/jca.32267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The previous cancer studies were difficult to reproduce since the tumor tissues were analyzed directly. But the tumor tissues were actually a mixture of different cancer cells. The transcriptome of single-cell was much robust than the transcriptome of a mixed tissue. The single-cell transcriptome had much smaller variance. In this study, we analyzed the single-cell transcriptome of 272 colorectal cancer (CRC) epithelial cells and 160 normal epithelial cells and identified 342 discriminative transcripts using advanced machine learning methods. The most discriminative transcripts were LGALS4, PHGR1, C15orf48, HEPACAM2, PERP, FABP1, FCGBP, MT1G, TSPAN1 and CKB. We further clustered the 342 transcripts into two categories. The upregulated transcripts in CRC epithelial cells were significantly enriched in Ribosome, Protein processing in endoplasmic reticulum, Antigen processing and presentation and p53 signaling pathway. The downregulated transcripts in CRC epithelial cells were significantly enriched in Mineral absorption, Aldosterone-regulated sodium reabsorption and Oxidative phosphorylation pathways. The biological analysis of the discriminative transcripts revealed the possible mechanism of colorectal cancer.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Le-Lin Pan
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Hai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
11257
|
Wu G, Zhang Z, Tang Q, Liu L, Liu W, Li Q, Wang Q. Study of FABP's interactome and detecting new molecular targets in clear cell renal cell carcinoma. J Cell Physiol 2019; 235:3776-3789. [PMID: 31602654 DOI: 10.1002/jcp.29272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Guangzhen Wu
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Zhiwei Zhang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Qizhen Tang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Lei Liu
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Wei Liu
- Department of Nursing The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Quanlin Li
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Qifei Wang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
11258
|
Zhou C, Zhu C, Fu H, Li X, Chen L, Lin Y, Lai Z, Guo Y. Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLoS One 2019; 14:e0223609. [PMID: 31600284 PMCID: PMC6786557 DOI: 10.1371/journal.pone.0223609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Superoxide dismutases (SODs), as a family of metalloenzymes related to the removal of reactive oxygen species (ROS), have not previously been investigated at genome-wide level in tea plant. In this study, 10 CsSOD genes were identified in tea plant genome, including 7 Cu/Zn-SODs (CSDs), 2 Fe-SODs (FSDs) and one Mn-SOD (MSD), and phylogenetically classified in three subgroups, respectively. Physico-chemical characteristic, conserved motifs and potential protein interaction analyses about CsSOD proteins were carried out. Exon-intron structures and codon usage bias about CsSOD genes were also examined. Exon-intron structures analysis revealed that different CsSOD genes contained various number of introns. On the basis of the prediction of regulatory miRNAs of CsSODs, a modification 5’ RNA ligase-mediated (RLM)-RACE was performed and validated that csn-miR398a-3p-1 directly cleaves CsCSD4. By prediction of cis-acting elements, the expression patterns of 10 CsSOD genes and their regulatory miRNAs were detected under cold, drought, exogenous methyl jasmonate (MeJA) and gibberellin (GA3) treatments. The results showed that most of CsSODs except for CsFSD2 were induced under cold stress and CsCSDs may play primary roles under drought stress; exogenous GA3 and MeJA could also stimulated/inhibited distinct CsSODs at different stages. In addition, we found that csn-miR398a-3p-1 negatively regulated the expression of CsCSD4 may be a crucial regulatory mechanism under cold stress. This study provides a certain basis for the studies about stress resistance in tea plants, even provide insight into comprehending the classification, evolution, diverse functions and influencing factors of expression patterns for CsSOD genes.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haifeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaozhen Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Tea Science of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
11259
|
Joshi K, Meena S, Meena LS. Analysis of predicted amino acid biosynthesis in Rv3344c in Mycobacterium tuberculosis H 37 Rv using bioinformatics tools. Biotechnol Appl Biochem 2019; 67:213-223. [PMID: 31596006 DOI: 10.1002/bab.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/05/2019] [Indexed: 11/10/2022]
Abstract
According to World Health Organization (WHO) report, Mycobacterium tuberculosis H37 Rv (M. tuberculosis) affects one-third population of the world. Emergence of effective treatment/research against this disease is need of the hour. Therefore, we present some important aspects of Rv3344c, which is a PE_PGRS protein. Evidence shows that PE_PGRS proteins show fibronectin binding activity. This protein has affinity for calcium and also shows motifs of GTP-binding protein. It also shows the presence of sites for ribose-5-phosphate binding and motifs of aspartate-beta-semialdehyde dehydrogenase, both of which are involved in amino acid biosynthesis. Thus, this protein might be targeted to block the amino acid biosynthesis in M. tuberculosis. This article takes into consideration some important aspects of Rv3344c protein as its function is still unknown. This study includes retrieval of protein sequence database, multiple sequence alignment, protein-protein interaction, epitope prediction, localization, function prediction, phosphorylation site prediction, model building and its validation, ligand-binding prediction along with mutational analysis. Hence, this study might be an important step in the development of new drugs and treatment of tuberculosis.
Collapse
Affiliation(s)
- Khyati Joshi
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Swati Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
11260
|
Lee CH, Griffiths S, Digard P, Pham N, Auer M, Haas J, Grey F. Asparagine Deprivation Causes a Reversible Inhibition of Human Cytomegalovirus Acute Virus Replication. mBio 2019; 10:e01651-19. [PMID: 31594813 PMCID: PMC6786868 DOI: 10.1128/mbio.01651-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023] Open
Abstract
As obligate intracellular pathogens, viruses rely on the host cell machinery to replicate efficiently, with the host metabolism extensively manipulated for this purpose. High-throughput small interfering RNA (siRNA) screens provide a systematic approach for the identification of novel host-virus interactions. Here, we report a large-scale screen for host factors important for human cytomegalovirus (HCMV), consisting of 6,881 siRNAs. We identified 47 proviral factors and 68 antiviral factors involved in a wide range of cellular processes, including the mediator complex, proteasome function, and mRNA splicing. Focused characterization of one of the hits, asparagine synthetase (ASNS), demonstrated a strict requirement for asparagine for HCMV replication which leads to an early block in virus replication before the onset of DNA amplification. This effect is specific to HCMV, as knockdown of ASNS had little effect on herpes simplex virus 1 or influenza A virus replication, suggesting that the restriction is not simply due to a failure in protein production. Remarkably, virus replication could be completely rescued 7 days postinfection with the addition of exogenous asparagine, indicating that while virus replication is restricted at an early stage, it maintains the capacity for full replication days after initial infection. This study represents the most comprehensive siRNA screen for the identification of host factors involved in HCMV replication and identifies the nonessential amino acid asparagine as a critical factor in regulating HCMV virus replication. These results have implications for control of viral latency and the clinical treatment of HCMV in patients.IMPORTANCE HCMV accounts for more than 60% of complications associated with solid organ transplant patients. Prophylactic or preventative treatment with antivirals, such as ganciclovir, reduces the occurrence of early onset HCMV disease. However, late onset disease remains a significant problem, and prolonged treatment, especially in patients with suppressed immune systems, greatly increases the risk of antiviral resistance. Very few antivirals have been developed for use against HCMV since the licensing of ganciclovir, and of these, the same viral genes are often targeted, reducing the usefulness of these drugs against resistant strains. An alternative approach is to target host genes essential for virus replication. Here we demonstrate that HCMV replication is highly dependent on levels of the amino acid asparagine and that knockdown of a critical enzyme involved in asparagine synthesis results in severe attenuation of virus replication. These results suggest that reducing asparagine levels through dietary restriction or chemotherapeutic treatment could limit HCMV replication in patients.
Collapse
Affiliation(s)
- Chen-Hsuin Lee
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Samantha Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nhan Pham
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Juergen Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
11261
|
Fan CY, Hou YR, Adak AK, Waniwan JT, Dela Rosa MAC, Low PY, Angata T, Hwang KC, Chen YJ, Lin CC. Boronate affinity-based photoactivatable magnetic nanoparticles for the oriented and irreversible conjugation of Fc-fused lectins and antibodies. Chem Sci 2019; 10:8600-8609. [PMID: 31803435 PMCID: PMC6844280 DOI: 10.1039/c9sc01613a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
The utilization of immuno-magnetic nanoparticles (MNPs) for the selective capture, enrichment, and separation of specific glycoproteins from complicated biological samples is appealing for the discovery of disease biomarkers. Herein, MNPs were designed and anchored with abundant boronic acid (BA) and photoreactive alkyl diazirine (Diaz) functional groups to obtain permanently tethered Fc-fused Siglec-2 and antiserum amyloid A (SAA) mAb with the assistance of reversible boronate affinity and UV light activation in an orientation-controlled manner. The Siglec-2-Fc-functionalized MNPs showed excellent stability in fetal bovine serum (FBS) and excellent efficiency in the extraction of cell membrane glycoproteins. The anti-SAA mAb-functionalized MNPs maintained active Ab orientation and preserved antigen recognition capability in biological samples. Thus, the BA-Diaz-based strategy holds promise for the immobilization of glycoproteins, such as antibodies, with the original protein binding activity maintained, which can provide better enrichment for the sensitive detection of target proteins.
Collapse
Affiliation(s)
- Chen-Yo Fan
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yi-Ren Hou
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Avijit K Adak
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | | | | | - Penk Yeir Low
- Institute of Biological Chemistry , Academia Sinica , Taipei , Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry , Academia Sinica , Taipei , Taiwan
| | - Kuo-Chu Hwang
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yu-Ju Chen
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan .
| | - Chun-Cheng Lin
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Frontier Research Center on Fundamental and Applied Sciences of Matters , Hsinchu , Taiwan
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung , Taiwan
| |
Collapse
|
11262
|
Gao X, You L, Liu A, Sang X, Li T, Zhang S, Li K, Huang G, Wang T, Xu A. Serum protein profiles suggest a possible link between qi deficiency constitution and Pi-qi-deficiency syndrome of chronic superficial gastritis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11263
|
Millard PS, Kragelund BB, Burow M. R2R3 MYB Transcription Factors - Functions outside the DNA-Binding Domain. TRENDS IN PLANT SCIENCE 2019; 24:934-946. [PMID: 31358471 DOI: 10.1016/j.tplants.2019.07.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 05/20/2023]
Abstract
Several transcription factor (TF) families, including the MYB family, regulate a wide array of biological processes. TFs contain DNA-binding domains (DBDs) and regulatory regions; although information on protein structure is scarce for plant MYB TFs, various in silico methods suggest that the non-MYB regions contain extensive intrinsically disordered regions (IDRs). Although IDRs do not fold into stable globular structures, they comprise functional regions including interaction motifs, and recent research has shown that IDRs perform crucial biological roles. We map here domain organization, disorder predictions, and functional regions across the entire Arabidopsis thaliana R2R3 MYB TF family, and highlight where an increased research focus will be necessary to shape a new understanding of structure-function relationships in plant TFs.
Collapse
Affiliation(s)
- Peter S Millard
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11264
|
Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell 2019; 179:543-560.e26. [DOI: 10.1016/j.cell.2019.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
|
11265
|
Alcala N, Mangiante L, Le-Stang N, Gustafson CE, Boyault S, Damiola F, Alcala K, Brevet M, Thivolet-Bejui F, Blanc-Fournier C, Le Rochais JP, Planchard G, Rousseau N, Damotte D, Pairon JC, Copin MC, Scherpereel A, Wasielewski E, Wicquart L, Lacomme S, Vignaud JM, Ancelin G, Girard C, Sagan C, Bonnetaud C, Hofman V, Hofman P, Mouroux J, Thomas de Montpreville V, Clermont-Taranchon E, Mazieres J, Rouquette I, Begueret H, Blay JY, Lantuejoul S, Bueno R, Caux C, Girard N, McKay JD, Foll M, Galateau-Salle F, Fernandez-Cuesta L. Redefining malignant pleural mesothelioma types as a continuum uncovers immune-vascular interactions. EBioMedicine 2019; 48:191-202. [PMID: 31648983 PMCID: PMC6838392 DOI: 10.1016/j.ebiom.2019.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is an aggressive disease related to asbestos exposure, with no effective therapeutic options. METHODS We undertook unsupervised analyses of RNA-sequencing data of 284 MPMs, with no assumption of discreteness. Using immunohistochemistry, we performed an orthogonal validation on a subset of 103 samples and a biological replication in an independent series of 77 samples. FINDINGS A continuum of molecular profiles explained the prognosis of the disease better than any discrete model. The immune and vascular pathways were the major sources of molecular variation, with strong differences in the expression of immune checkpoints and pro-angiogenic genes; the extrema of this continuum had specific molecular profiles: a "hot" bad-prognosis profile, with high lymphocyte infiltration and high expression of immune checkpoints and pro-angiogenic genes; a "cold" bad-prognosis profile, with low lymphocyte infiltration and high expression of pro-angiogenic genes; and a "VEGFR2+/VISTA+" better-prognosis profile, with high expression of immune checkpoint VISTA and pro-angiogenic gene VEGFR2. We validated the gene expression levels at the protein level for a subset of five selected genes belonging to the immune and vascular pathways (CD8A, PDL1, VEGFR3, VEGFR2, and VISTA), in the validation series, and replicated the molecular profiles as well as their prognostic value in the replication series. INTERPRETATION The prognosis of MPM is best explained by a continuous model, which extremes show specific expression patterns of genes involved in angiogenesis and immune response.
Collapse
Affiliation(s)
- Nicolas Alcala
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Lise Mangiante
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | | | - Corinne E Gustafson
- Division of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandrine Boyault
- Translational Research and Innovation Platform, Cancer Research Centre of Lyon (CRCL), Lyon, France
| | | | - Karine Alcala
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Marie Brevet
- Pathology Institute, Hospices Civils de Lyon, University Claude Bernard Lyon 1, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard (CLB), Lyon, France; European Reference Network (ENR-EURACAN), France
| | - Sylvie Lantuejoul
- Department of Pathology, Centre Léon Bérard (CLB), Lyon, France; University Grenoble Alpes, Grenoble, France
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Caux
- Department of Immunity, Virus, and Inflammation, Cancer Research Centre of Lyon (CRCL), Lyon, France
| | - Nicolas Girard
- European Reference Network (ENR-EURACAN), France; University Lyon 1, Lyon, France; INSERM U932, Paris, France; Institut Curie, Paris, France
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Matthieu Foll
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | | | | |
Collapse
|
11266
|
Deng H, Wu S, Song Q, Zhang J, Sang F, Sun X, Xu T, Gao Y, Zhao B. Cloning and identification of Bartonella α-enolase as a plasminogen-binding protein. Microb Pathog 2019; 135:103651. [DOI: 10.1016/j.micpath.2019.103651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022]
|
11267
|
Kuang M, Peng Y, Tao X, Zhou Z, Mao H, Zhuge L, Sun Y, Zhang H. FGB and FGG derived from plasma exosomes as potential biomarkers to distinguish benign from malignant pulmonary nodules. Clin Exp Med 2019; 19:557-564. [PMID: 31576477 DOI: 10.1007/s10238-019-00581-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Previous proteomic analysis (label-free) of plasma exosomes revealed that the expression of FGG and FGB was significantly higher in the malignant pulmonary nodules group, compared to the benign pulmonary nodules group. The present study was performed to evaluate the role of plasma exosomal proteins FGB and FGG in the diagnosis of benign and malignant pulmonary nodules. We examined the expression levels of FGB and FGG in plasma exosomes from 63 patients before surgery. Postoperative pathological diagnosis confirmed that 43 cases were malignant and 20 cases were benign. The ROC curve was used to describe the sensitivity, specificity, area under the curve (AUC) of the biomarker and the corresponding 95% confidence interval. We confirmed that the expression levels of FGB and FGG were higher in the plasma exosomes of malignant group than in the benign group. The sensitivity and AUC of FGB combined with FGG detection to determine the nature of pulmonary nodules are superior to single FGB or FGG detection. FGB and FGG might represent novel and sensitive biomarker to distinguish benign from malignant pulmonary nodules.
Collapse
Affiliation(s)
- Muyu Kuang
- Huadong Hospital, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yizhou Peng
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoting Tao
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zilang Zhou
- The First High School, Xintian County, Hunan, China
| | - Hengyu Mao
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lingdun Zhuge
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yihua Sun
- Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huibiao Zhang
- Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11268
|
Noman M, Jameel A, Qiang WD, Ahmad N, Liu WC, Wang FW, Li HY. Overexpression of GmCAMTA12 Enhanced Drought Tolerance in Arabidopsis and Soybean. Int J Mol Sci 2019; 20:E4849. [PMID: 31569565 PMCID: PMC6801534 DOI: 10.3390/ijms20194849] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Fifteen transcription factors in the CAMTA (calmodulin binding transcription activator) family of soybean were reported to differentially regulate in multiple stresses; however, their functional analyses had not yet been attempted. To characterize their role in stresses, we first comprehensively analyzed the GmCAMTA family in silico and thereafter determined their expression pattern under drought. The bioinformatics analysis revealed multiple stress-related cis-regulatory elements including ABRE, SARE, G-box and W-box, 10 unique miRNA (microRNA) targets in GmCAMTA transcripts and 48 proteins in GmCAMTAs' interaction network. We then cloned the 2769 bp CDS (coding sequence) of GmCAMTA12 in an expression vector and overexpressed in soybean and Arabidopsis through Agrobacterium-mediated transformation. The T3 (Transgenic generation 3) stably transformed homozygous lines of Arabidopsis exhibited enhanced tolerance to drought in soil as well as on MS (Murashige and Skoog) media containing mannitol. In their drought assay, the average survival rate of transgenic Arabidopsis lines OE5 and OE12 (Overexpression Line 5 and Line 12) was 83.66% and 87.87%, respectively, which was ~30% higher than that of wild type. In addition, the germination and root length assays as well as physiological indexes such as proline and malondialdehyde contents, catalase activity and leakage of electrolytes affirmed the better performance of OE lines. Similarly, GmCAMTA12 overexpression in soybean promoted drought-efficient hairy roots in OE chimeric plants as compare to that of VC (Vector control). In parallel, the improved growth performance of OE in Hoagland-PEG (polyethylene glycol) and on MS-mannitol was revealed by their phenotypic, physiological and molecular measures. Furthermore, with the overexpression of GmCAMTA12, the downstream genes including AtAnnexin5, AtCaMHSP, At2G433110 and AtWRKY14 were upregulated in Arabidopsis. Likewise, in soybean hairy roots, GmELO, GmNAB and GmPLA1-IId were significantly upregulated as a result of GmCAMTA12 overexpression and majority of these upregulated genes in both plants possess CAMTA binding CGCG/CGTG motif in their promoters. Taken together, we report that GmCAMTA12 plays substantial role in tolerance of soybean against drought stress and could prove to be a novel candidate for engineering soybean and other plants against drought stress. Some research gaps were also identified for future studies to extend our comprehension of Ca-CaM-CAMTA-mediated stress regulatory mechanisms.
Collapse
Affiliation(s)
- Muhammad Noman
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Aysha Jameel
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wei-Dong Qiang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wei-Can Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Fa-Wei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Hai-Yan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
11269
|
Integration of Bioinformatics Resources Reveals the Therapeutic Benefits of Gemcitabine and Cell Cycle Intervention in SMAD4-Deleted Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2019; 10:genes10100766. [PMID: 31569425 PMCID: PMC6827004 DOI: 10.3390/genes10100766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer. The five-year survival rate of PDAC is very low (less than 8%), which is associated with the late diagnosis, high metastatic potential, and resistance to therapeutic agents. The identification of better prognostic or therapeutic biomarker may have clinical benefits for PDAC treatment. SMAD4, a central mediator of transforming growth factor beta (TGFβ) signaling pathway, is considered a tumor suppressor gene. SMAD4 inactivation is frequently found in PDAC. However, its role in prognosis and therapeutics of PDAC is still unclear. In this study, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of SMAD4 gene deletion in PDAC. We found that SMAD4 deletion was associated with poorer disease-free, but not overall, survival in PDAC patients. Cancer hallmark enrichment and pathway analysis suggested that the upregulation of cell cycle-related genes in SMAD4-deleted PDAC. Chemotherapy response profiling of PDAC cell lines and patient-derived organoids revealed that SMAD4-deleted PDAC was sensitive to gemcitabine, the first-line treatment for PDAC, and specific cell cycle-targeting drugs. Taken together, our study provides an insight into the prognostic and therapeutic roles of SMAD4 gene deletion in PDAC, and SMAD4 gene copy numbers may be used as a therapeutic biomarker for PDAC treatment.
Collapse
|
11270
|
Newhardt MF, Batushansky A, Matsuzaki S, Young ZT, West M, Chin NC, Szweda LI, Kinter M, Humphries KM. Enhancing cardiac glycolysis causes an increase in PDK4 content in response to short-term high-fat diet. J Biol Chem 2019; 294:16831-16845. [PMID: 31562244 DOI: 10.1074/jbc.ra119.010371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Metabolic inflexibility, such as occurs with diabetes, increases cardiac reliance on fatty acids to meet energetic demands, and this results in deleterious effects, including mitochondrial dysfunction, that contribute to pathophysiology. Enhancing glucose usage may mitigate metabolic inflexibility and be advantageous under such conditions. Here, we sought to identify how mitochondrial function and cardiac metabolism are affected in a transgenic mouse model of enhanced cardiac glycolysis (GlycoHi) basally and following a short-term (7-day) high-fat diet (HFD). GlycoHi mice constitutively express an active form of phosphofructokinase-2, resulting in elevated levels of the PFK-1 allosteric activator fructose 2,6-bisphosphate. We report that basally GlycoHi mitochondria exhibit augmented pyruvate-supported respiration relative to fatty acids. Nevertheless, both WT and GlycoHi mitochondria had a similar shift toward increased rates of fatty acid-supported respiration following HFD. Metabolic profiling by GC-MS revealed distinct features based on both genotype and diet, with a unique increase in branched-chain amino acids in the GlycoHi HFD group. Targeted quantitative proteomics analysis also supported both genotype- and diet-dependent changes in protein expression and uncovered an enhanced expression of pyruvate dehydrogenase kinase 4 (PDK4) in the GlycoHi HFD group. These results support a newly identified mechanism whereby the levels of fructose 2,6-bisphosphate promote mitochondrial PDK4 levels and identify a secondary adaptive response that prevents excessive mitochondrial pyruvate oxidation when glycolysis is sustained after a high-fat dietary challenge.
Collapse
Affiliation(s)
- Maria F Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Zachary T Young
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Melinda West
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Ngun Cer Chin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 .,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
11271
|
Huang R, Zeng Z, Li G, Song D, Yan P, Yin H, Hu P, Zhu X, Chang R, Zhang X, Zhang J, Meng T, Huang Z. The Construction and Comprehensive Analysis of ceRNA Networks and Tumor-Infiltrating Immune Cells in Bone Metastatic Melanoma. Front Genet 2019; 10:828. [PMID: 31608101 PMCID: PMC6774271 DOI: 10.3389/fgene.2019.00828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background/Aims: As a malignant and melanocytic tumor, cutaneous melanoma is the devastating skin tumor with high rates of recurrence and metastasis. Bone is the common metastatic location, and bone metastasis may result in pathologic fracture, neurologic damage, and severe bone pain. Although metastatic melanoma was reported to get benefits from immunotherapy, molecular mechanisms and immune microenviroment underlying the melanoma bone metastasis and prognostic factors are still unknown. Methods: Gene expression profiling of 112 samples, including 104 primary melanomas and 8 bone metastatic melanomas from The Cancer Genome Atlas database, was assayed to construct a ceRNA network associated with bone metastases. Besides, we detected the fraction of 22 immune cell types in melanoma via the algorithm of “cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT).” Based on the significant ceRNAs or immune cells, we constructed nomograms to predict the prognosis of patients with melanoma. Ultimately, correlation analysis was implemented to discover the relationship between the significant ceRNA and immune cells to reveal the potential signaling pathways. Results: We constructed a ceRNA network based on the interaction among 8 pairs of long noncoding RNA–microRNA and 15 pairs of microRNA–mRNA. CIBERSORT and ceRNA integration analysis discovered that AL118506.1 has both significant prognostic value (P = 0.002) and high correlation with T follicular helper cells (P = 0.033). Meanwhile, T cells CD8 and macrophages M2 were negatively correlated (P < 0.001). Moreover, we constructed two satisfactory nomograms (area under curve of 3-year survival: 0.899; 5-year survival: 0.885; and concordance index: 0.780) with significant ceRNAs or immune cells, to predict the prognosis of patients. Conclusions: In this study, we suggest that bone metastasis in melanoma might be related to AL118506.1 and its role in regulating thrombospondin 2 and T follicular helper cells. Two nomograms were constructed to predict the prognosis of patients with melanoma and demonstrated their value in improving the personalized management.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhiwei Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Penghui Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhi Chang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11272
|
Soste M, Charmpi K, Lampert F, Gerez JA, van Oostrum M, Malinovska L, Boersema PJ, Prymaczok NC, Riek R, Peter M, Vanni S, Beyer A, Picotti P. Proteomics-Based Monitoring of Pathway Activity Reveals that Blocking Diacylglycerol Biosynthesis Rescues from Alpha-Synuclein Toxicity. Cell Syst 2019; 9:309-320.e8. [PMID: 31521608 PMCID: PMC6859835 DOI: 10.1016/j.cels.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Proteinaceous inclusions containing alpha-synuclein (α-Syn) have been implicated in neuronal toxicity in Parkinson's disease, but the pathways that modulate toxicity remain enigmatic. Here, we used a targeted proteomic assay to simultaneously measure 269 pathway activation markers and proteins deregulated by α-Syn expression across a panel of 33 Saccharomyces cerevisiae strains that genetically modulate α-Syn toxicity. Applying multidimensional linear regression analysis to these data predicted Pah1, a phosphatase that catalyzes conversion of phosphatidic acid to diacylglycerol at the endoplasmic reticulum membrane, as an effector of rescue. Follow-up studies demonstrated that inhibition of Pah1 activity ameliorates the toxic effects of α-Syn, indicate that the diacylglycerol branch of lipid metabolism could enhance α-Syn neuronal cytotoxicity, and suggest a link between α-Syn toxicity and the biology of lipid droplets.
Collapse
Affiliation(s)
- Martin Soste
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantina Charmpi
- CECAD, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabienne Lampert
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Juan Atilio Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Liliana Malinovska
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Jonathan Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Natalia Cecilia Prymaczok
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andreas Beyer
- CECAD, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11273
|
Ma XY, Ma Y, Zhou H, Zhang HJ, Sun MJ. Identification of the lncRNA-miRNA-mRNA network associated with gastric cancer via integrated bioinformatics analysis. Oncol Lett 2019; 18:5769-5784. [PMID: 31788050 PMCID: PMC6865131 DOI: 10.3892/ol.2019.10922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory network in gastric cancer (GC) using bioinformatics analysis. Two mRNA gene expression profiles, GSE79973 and GSE54129, and two miRNA expression profiles, GSE93415 and GSE78091, were downloaded from the Gene Expression Omnibus database. The differentially expressed mRNAs (DEMs) and the differentially expressed miRNAs (DEMis) were merged separately. Gene ontology and pathway enrichment analysis were conducted using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was then constructed and the 10 top hub genes in the network were analyzed using the Search Tool for the Retrieval of Interacting Genes. The lncRNA-miRNA-mRNA networks were visualized using Cytoscape software. As a result, 158 shared DEMs (40 upregulated and 118 downregulated) were identified from two mRNA datasets. A total of 30 upregulated miRNAs and 1 downregulated miRNA functioned as DEMis. The PPI network consisted of 129 nodes and 572 interactions. The 10 top hub genes were selected by degree using Cytohubba, including Jun proto-oncogene, mitogen-activated protein kinase (MAPK)3, transforming growth factor-β1, Fos proto-oncogene, AP-1 transcription factor subunit, interleukin (IL)-8, MAPK1, RELA proto-oncogene nuclear factor-κB subunit, interferon regulatory factor 7, ubiquitin like modifier and vascular endothelial growth factor A. In the lncRNA-miRNA-mRNA network, a total of 1,215 regulatory associations were constructed using Cytoscape. In conclusion, the present study provides a novel perspective of the molecular mechanisms underlying GC by identifying the lncRNA-miRNA-mRNA regulatory network via bioinformatics analysis.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Ma
- Department of Nuclear Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huan Zhou
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hui-Jing Zhang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ming-Jun Sun
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11274
|
Ha Y, Fang Y, Romecin Duran PA, Tolosa EJ, Moser CD, Fernandez-Zapico ME, Roberts LR. Induction of Lysosome-associated Protein Transmembrane 4 Beta via Sulfatase 2 Enhances Autophagic Flux in Liver Cancer Cells. Hepatol Commun 2019; 3:1520-1543. [PMID: 31701075 PMCID: PMC6824075 DOI: 10.1002/hep4.1429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy has been shown to be a key cellular event controlling tumor growth in different neoplasms including hepatocellular carcinoma (HCC). Although this biological role of autophagy has been clearly established, the mechanism underlying its regulation remains elusive. Here, we demonstrate a role of sulfatase 2 (SULF2), a 6‐O‐endosulfatase modulating various growth factors and cytokine‐related signaling pathways controlling tumor cell proliferation and survival, in the regulation of autophagy in HCC cells. SULF2 increased autophagosome formation, shown by increased LC3B‐II protein and green fluorescent protein–LC3 puncta. Increased fusion between autophagosomes and lysosomes/lysosomal enzymes, higher expression of lysosomal membrane protein, and an increase in autolysosomes were also shown by western blot, immunofluorescence, and electron microscopy of SULF2‐expressing cells, indicating enhanced autophagic flux. In contrast, RNA‐interference silencing of SULF2 in Huh7 cells induced lysosomal membrane permeabilization with diffuse cytosolic staining of cathepsin D and punctate staining of galectin‐3. Analysis of the mechanism showed that inhibition of lysosome‐associated protein transmembrane 4 beta (LAPTM4B), a gene induced by SULF2, resulted in decreased autophagosome formation, decreased fusion between autophagosomes and lysosomes, and increased lysosomal membrane permeabilization. Interestingly, down‐regulation of LAPTM4B also phenocopies the knockdown of SULF2, significantly reducing cell viability and colony formation. Conclusion: Our results demonstrate a role for SULF2 in the regulation of autophagic flux that is mediated through LAPTM4B induction in HCC cells, and provide a foundation for future translational efforts targeting autophagy in liver malignancies.
Collapse
Affiliation(s)
- Yeonjung Ha
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN.,Department of Gastroenterology CHA Bundang Medical Center CHA University Gyeonggi-do South Korea
| | - Yong Fang
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | - Paola A Romecin Duran
- Schulze Center of Novel Therapeutics Division of Oncology Research Mayo Clinic Rochester MN
| | - Ezequiel J Tolosa
- Schulze Center of Novel Therapeutics Division of Oncology Research Mayo Clinic Rochester MN
| | - Catherine D Moser
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| | | | - Lewis R Roberts
- Division of Gastroenterology and Hepatology Mayo Clinic Rochester MN
| |
Collapse
|
11275
|
Zhao T, Qian K, Zhang Y. High Expression of FGF5 Is an Independent Prognostic Factor for Poor Overall Survival and Relapse-Free Survival in Lung Adenocarcinoma. J Comput Biol 2019; 27:948-957. [PMID: 31553229 DOI: 10.1089/cmb.2019.0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is not only a serious disease but also a public problem threatening human health all over the world. Nonsmall cell lung cancer-which accounts for the majority of lung cancer-is mainly composed of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). FGF5 is a gene located in q21.21. In the past years, research on FGF5 is mainly focused on hair length and hereditary spherocytosis. In our study, bioinformatics analysis of FGF5 was performed through multiple databases. Expression of FGF5 was compared between tumor and normal tissues, association between gene expression and clinical outcomes was investigated in LUAD and LUSC separately, and potential signaling pathways were predicted. FGF5 expression was upregulated in lung cancer tissues compared with normal tissues. What is more, the high FGF5 expression group had significantly lower proportions of lymph node negative (N0) patients (77/144, 53.5%, vs. 253/358, 70.7%, p = 0.000), and is associated with worse overall survival (OS) (p < 0.0001) and relapse-free survival (RFS) (p = 0.024) in LUAD patients, which could not be seen in LUSC. The following analysis confirmed that high FGF5 expression could be an independent prognostic factor for poor OS (HR: 0.431, 95% CI: 0.312-0.597, p = 0.001) and RFS (HR: 0.678, 95% CI: 0.471-0.977, p = 0.037) in LUAD, but not in LUSC. Coexpression genes related to FGF5 were explored and potential pathways were investigated for further research. FGF5 is a tumor-associated gene that upregulated in lung cancer tissues, and could be an independent prognostic factor that have potential value for further research.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
11276
|
Liu J, Zhao H, Zhou F, Huang Y, Chen X, Wang S, Hao J, Xu X, He B, Wang J. Human-specific LAIR2 contributes to the high invasiveness of human extravillous trophoblast cells. Reprod Biol 2019; 19:287-292. [PMID: 31548102 DOI: 10.1016/j.repbio.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
The placenta is a temporary vital organ for intra-uterine development and growth. The anatomical structure of the placenta has evolved substantially, resulting in broad inter-species diversity. In particular, human placental extravillous trophoblast cells (EVTs) have evolved aggressive features, although the mechanism underlying this aggressiveness remains elusive. In the present study, we compared the human and mouse homologous gene databases and obtained 2272 human-specific genes, 807 of which are expressed in the placenta according to the UniGene database. Using the human trophoblast cell line HTR8/SVneo, we further verified the expression and function of one of these genes, the leukocyte-associated immunoglobulin-like receptor 2 (LAIR2). This gene shows increased expression during pregnancy and its reduced expression is associated with pregnancy complications. Although LAIR2 was expressed in the human placenta villus and decidua in the first trimester of pregnancy, it was not expressed in mouse tissues. Knockdown of LAIR2 markedly improved cell viability and inhibited the invasive ability of HTR8/SVneo cells. These data suggest that species-specific genes are pivotal to the evolution of a more aggressive human placenta to match the physiological demands of human development. Further investigation is required to obtain evidence on the function of LAIR2 and other specific genes in the placenta, providing insight on the mechanism, properties, and possible applications of this in humans.
Collapse
Affiliation(s)
- Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Shanxi, 030001, China
| | - Haoqi Zhao
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Fang Zhou
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Yu Huang
- Department of Computer Teaching, Shanxi Medical University, Shanxi, 030001, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Shufang Wang
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Shanxi, 030001, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China
| | - Bin He
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China.
| | - Jiedong Wang
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, 100081, China.
| |
Collapse
|
11277
|
Wang J, Yan Y, Zhang Z, Li Y. Role of miR-10b-5p in the prognosis of breast cancer. PeerJ 2019; 7:e7728. [PMID: 31579605 PMCID: PMC6756141 DOI: 10.7717/peerj.7728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Aberrant expression levels of miR-10b-5p in breast cancer has been reported while the molecular mechanism of miR-10b-5p in tumorigenesis remains elusive. Therefore, this study was aimed to investigate the role of miR-10b-5p in breast cancer and the network of its target genes using bioinformatics analysis. In this study, the expression profiles and prognostic value of miR-10b-5p in breast cancer were analyzed from public databases. Association between miR-10b-5p and clinicopathological parameters were analyzed by non-parametric test. Moreover, the optimal target genes of miR-10b-5p were obtained and their expression patterns were examined using starBase and HPA database. Additionally, the role of these target genes in cancer development were explored via Cancer Hallmarks Analytics Tool (CHAT). The protein–protein interaction (PPI) networks were constructed to further investigate the interactive relationships among these genes. Furthermore, GO, KEGG pathway and Reactome pathway analyses were carried out to decipher functions of these target genes. Results demonstrated that miR-10b-5p was down-regulated in breast cancer and low expression of miR-10b-5p was significantly correlated to worse outcome. Five genes, BIRC5, E2F2, KIF2C, FOXM1, and MCM5, were considered as potential key target genes of miR-10b-5p. As expected, higher expression levels of these genes were observed in breast cancer tissues than in normal tissues. Moreover, analysis from CHAT revealed that these genes were mainly involved in sustaining proliferative signaling in cancer development. In addition, PPI networks analysis revealed strong interactions between target genes. GO, KEGG, and Reactome pathway analysis suggested that these target genes of miR-10b-5p in breast cancer were significantly involved in cell cycle. Predicted target genes were further validated by qRT-PCR analysis in human breast cancer cell line MDA-MB-231 transfected with miR-10b mimic or antisense inhibitors. Taken together, our data suggest that miR-10b-5p functions to impede breast carcinoma progression via regulation of its key target genes and hopefully serves as a potential diagnostic and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Junmin Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yanyun Yan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqi Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
11278
|
Montaner-Tarbes S, Pujol M, Jabbar T, Hawes P, Chapman D, Portillo HD, Fraile L, Sánchez-Cordón PJ, Dixon L, Montoya M. Serum-Derived Extracellular Vesicles from African Swine Fever Virus-Infected Pigs Selectively Recruit Viral and Porcine Proteins. Viruses 2019; 11:v11100882. [PMID: 31547130 PMCID: PMC6832119 DOI: 10.3390/v11100882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
: African swine fever is a devastating hemorrhagic infectious disease, which affects domestic and wild swines (Susscrofa) of all breeds and ages, with a high lethality of up to 90-100% in naïve animals. The causative agent, African swine fever virus (ASFV), is a large and complex double-stranded DNA arbovirus which is currently spreading worldwide, with serious socioeconomic consequences. There is no treatment or effective vaccine commercially available, and most of the current research is focused on attenuated viral models, with limited success so far. Thus, new strategies are under investigation. Extracellular vesicles (EVs) have proven to be a promising new vaccination platform for veterinary diseases in situations in which conventional approaches have not been completely successful. Here, serum extracellular vesicles from infected pigs using two different ASFV viruses (OURT 88/3 and Benin ΔMGF), corresponding to a naturally attenuated virus and a deletion mutant, respectively, were characterized in order to determine possible differences in the content of swine and viral proteins in EV-enriched fractions. Firstly, EVs were characterized by their CD5, CD63, CD81 and CD163 surface expression. Secondly, ASFV proteins were detected on the surface of EVs from ASFV-infected pig serum. Finally, proteomic analysis revealed few specific proteins from ASFV in the EVs, but 942 swine proteins were detected in all EV preparations (negative controls, and OURT 88/3 and Benin ΔMGF-infected preparations). However, in samples from OURT 88/3-infected animals, only a small number of proteins were differentially identified compared to control uninfected animals. Fifty-six swine proteins (Group Benin) and seven proteins (Group OURT 88/3) were differentially detected on EVs when compared to the EV control group. Most of these were related to coagulation cascades. The results presented here could contribute to a better understanding of ASFV pathogenesis and immune/protective responses in the host.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L., 08916 Badalona, Barcelona, Spain.
- Departamento de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agrària, Avenida Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Myriam Pujol
- Faculty of Medicine, Universidad de Chile, Santiago 7591538, Chile.
| | - Tamara Jabbar
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Philippa Hawes
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Dave Chapman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | | | - Lorenzo Fraile
- Innovex Therapeutics S.L., 08916 Badalona, Barcelona, Spain.
- Departamento de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agrària, Avenida Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | | | - Linda Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - Maria Montoya
- Innovex Therapeutics S.L., 08916 Badalona, Barcelona, Spain.
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
- Centro de Investigaciones Biológicas (CIB-CSIC), Universidad Complutense de Madrid, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
11279
|
Tang S, Jing H, Huang Z, Huang T, Lin S, Liao M, Zhou J. Identification of key candidate genes in neuropathic pain by integrated bioinformatic analysis. J Cell Biochem 2019; 121:1635-1648. [PMID: 31535407 DOI: 10.1002/jcb.29398] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Simin Tang
- Department of Anesthesiology The First People's Hospital of Foshan Foshan Guangdong Province China
- Sun Yet‐Sen Memorial Hospital of Sun Yet‐Sen University Guangzhou Guangdong Province China
| | - Huan Jing
- Department of Anesthesiology The First People's Hospital of Foshan Foshan Guangdong Province China
- ZunYi Medical University ZunYi Guizhou Province China
| | - Zhenxing Huang
- Department of Anesthesiology The First People's Hospital of Foshan Foshan Guangdong Province China
| | - Teng Huang
- Department of Anesthesiology The First People's Hospital of Foshan Foshan Guangdong Province China
| | - Sen Lin
- Department of Anesthesiology The First People's Hospital of Foshan Foshan Guangdong Province China
| | - Meijuan Liao
- Department of Anesthesiology The First People's Hospital of Foshan Foshan Guangdong Province China
| | - Jun Zhou
- Department of Anesthesiology The Third Affiliated Hospital of Southern Medical University Guangzhou Guangdong Province China
| |
Collapse
|
11280
|
Altered Fecal Small RNA Profiles in Colorectal Cancer Reflect Gut Microbiome Composition in Stool Samples. mSystems 2019; 4:4/5/e00289-19. [PMID: 31530647 PMCID: PMC6749105 DOI: 10.1128/msystems.00289-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The characteristics of microbial small RNA transcription are largely unknown, while it is of primary importance for a better identification of molecules with functional activities in the gut niche under both healthy and disease conditions. By performing combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool samples from healthy individuals and from patients with colorectal carcinoma or adenoma. With the integrative analyses of metagenomic and sRNA-Seq data, we identified a human and microbial small RNA signature which can be used to improve diagnosis of the disease. Our analysis of human and gut microbiome small RNA expression is relevant to generation of the first hypotheses about the potential molecular interactions occurring in the gut of CRC patients, and it can be the basis for further mechanistic studies and clinical tests. Dysbiotic configurations of the human gut microbiota have been linked to colorectal cancer (CRC). Human small noncoding RNAs are also implicated in CRC, and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis, but their role has been less extensively explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens from patients with CRC or with adenomas and from healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We observed considerable overlap and a correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. We identified a combined predictive signature composed of 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC samples separately from healthy and adenoma samples (area under the curve [AUC] = 0.87). In the present study, we report evidence that host-microbiome dysbiosis in CRC can also be observed by examination of altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more-accurate tools for diagnostic purposes. IMPORTANCE The characteristics of microbial small RNA transcription are largely unknown, while it is of primary importance for a better identification of molecules with functional activities in the gut niche under both healthy and disease conditions. By performing combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool samples from healthy individuals and from patients with colorectal carcinoma or adenoma. With the integrative analyses of metagenomic and sRNA-Seq data, we identified a human and microbial small RNA signature which can be used to improve diagnosis of the disease. Our analysis of human and gut microbiome small RNA expression is relevant to generation of the first hypotheses about the potential molecular interactions occurring in the gut of CRC patients, and it can be the basis for further mechanistic studies and clinical tests.
Collapse
|
11281
|
Network Pharmacology Reveals the Molecular Mechanism of Cuyuxunxi Prescription in Promoting Wound Healing in Patients with Anal Fistula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3865121. [PMID: 31636684 PMCID: PMC6766082 DOI: 10.1155/2019/3865121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Background The healing process of the surgical wound of anal fistulotomy is much slower because of the presence of stool within the wound. Cuyuxunxi (CYXX) prescription is a Chinese herbal fumigant that is being used to wash surgical wound after anal fistulotomy. This study aimed at investigating the molecular mechanism of CYXX prescription using a network pharmacology-based strategy. Materials and Methods The active compounds in each herbal medicine were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and in Traditional Chinese Medicine Integrated Database (TCMID) analysis platform based on the criteria of oral bioavailability ≥40% and drug-likeness ≥0.2. The disease-related target genes were extracted from the Comparative Toxicogenomics Database. Protein-protein interaction network was built for the overlapped genes as well as functional enrichment analysis. Finally, an ingredient-target genes-pathway network was built by integrating all information. Results A total of 375 chemical ingredients of the 5 main herbal medicines in CYXX prescription were retrieved from TCMSP database and TCMID. Among the 375 chemical ingredients, 59 were active compounds. Besides, 325 target genes for 16 active compounds in 3 herbal medicines were obtained. Functional enrichment analysis revealed that these overlapped genes were significantly related with immune response, biosynthesis of antibiotics, and complement and coagulation cascades. A comprehensive network which contains 133 nodes (8 disease nodes, 3 drug nodes, 8 ingredients, 103 target gene nodes, 7 GO nodes, and 4 pathway nodes) was built. Conclusion The network built in this study might aid in understanding the action mechanism of CYXX prescription at molecular level to pathway level.
Collapse
|
11282
|
Deng GX, Xu N, Huang Q, Tan JY, Zhang Z, Li XF, Wei JR. Association between promoter DNA methylation and gene expression in the pathogenesis of ischemic stroke. Aging (Albany NY) 2019; 11:7663-7677. [PMID: 31527307 PMCID: PMC6781986 DOI: 10.18632/aging.102278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
To assess DNA methylation sites as well as gene expression related to ischemic stroke (IS) and comprehensively reveal their correlation and possible pathological mechanisms, we implemented (1) genome-wide DNA methylation profiling from the GEO repository related to IS with and without symptoms; (2) identification of differentially methylation positions (DMPs) and genes (DMGs), functional enrichment analysis along with DMG regulatory network construction; (3) validation tests of 2 differential methylation positions of interest as well as analogous gene expression in other datasets and in IS patients and controls; and (4) correlation analysis of DNA methylation and mRNA expression data. In total, 870 DMPs were physically located within 693 DMGs. After disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene ontology (GO), protein-protein interaction (PPI) network construction as well as module analysis, HLA-DRB1 and HLA-DQB1 were identified. Their expression was validated in 4 other datasets but was significant in only 1, and the expression was lower in the IS group (P < 0.05). After validation in IS patients and controls, we found that these two genes showed more hypermethylation and lower expression levels in the IS group (P < 0.001). The methylation of genes was negatively associated with their expression (P < 0.05). The current study recognized a connection among DNA methylation and gene expression and emphasized the prominence of HLA-DRB1 and HLA-DQB1 in IS pathogenesis.
Collapse
Affiliation(s)
- Guo-Xiong Deng
- Department of Cardiology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| | - Ning Xu
- Department of Neurology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| | - Qi Huang
- Department of Neurology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| | - Jin-Yue Tan
- Department of Cardiology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| | - Zhao Zhang
- Department of Neurology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| | - Xian-Feng Li
- Department of Neurology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| | - Jin-Ru Wei
- Department of Cardiology, The First People's Hospital of Nanning City, Nanning, Guangxi 530021, China
| |
Collapse
|
11283
|
Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. mSphere 2019; 4:4/5/e00620-19. [PMID: 31511371 PMCID: PMC6739497 DOI: 10.1128/msphere.00620-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections. The opportunistic pathogenic fungus Candida albicans can cause devastating infections in immunocompromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and damage tissues, and the expression of genes associated with a number of pathogenetic mechanisms is also coordinately regulated with the yeast-to-hypha conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. albicans. We have previously identified N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (compound 9029936) as the lead compound in a series of small-molecule inhibitors of C. albicans filamentation and characterized its activity both in vitro and in vivo. This compound appears to be a promising candidate for the development of alternative antivirulence strategies for the treatment of C. albicans infections. In this study, we performed RNA sequencing analysis of samples obtained from C. albicans cells grown under filament-inducing conditions in the presence or absence of this compound. Overall, treatment with compound 9029936 resulted in 618 upregulated and 702 downregulated genes. Not surprisingly, some of the most downregulated genes included well-characterized genes associated with filamentation and virulence such as SAP5, ECE1 (candidalysin), and ALS3, as well as genes that impact metal chelation and utilization. Gene ontology analysis revealed an overrepresentation of cell adhesion, iron transport, filamentation, biofilm formation, and pathogenesis processes among the genes downregulated during treatment with this leading compound. Interestingly, the top upregulated genes suggested an enhancement of vesicular transport pathways, particularly those involving SNARE interactions. IMPORTANCE These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections.
Collapse
|
11284
|
Ma W, Wang B, Zhang Y, Wang Z, Niu D, Chen S, Zhang Z, Shen N, Han W, Zhang X, Wei R, Wang C. Prognostic significance of TOP2A in non-small cell lung cancer revealed by bioinformatic analysis. Cancer Cell Int 2019; 19:239. [PMID: 31528121 PMCID: PMC6737627 DOI: 10.1186/s12935-019-0956-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Lung cancer has been a common malignant tumor with a leading cause of morbidity and mortality, current molecular targets are woefully lacking comparing to the highly progressive cancer. The study is designed to identify new prognostic predictors and potential gene targets based on bioinformatic analysis of Gene Expression Omnibus (GEO) database. Methods Four cDNA expression profiles GSE19188, GSE101929, GSE18842 and GSE33532 were chosen from GEO database to analyze the differently expressed genes (DEGs) between non-small cell lung cancer (NSCLC) and normal lung tissues. After the DEGs functions were analyzed, the protein-protein interaction network (PPI) of DEGs were constructed, and the core gene in the network which has high connectivity degree with other genes was identified. We analyzed the association of the gene with the development of NSCLC as well as its prognosis. Lastly we explored the conceivable signaling mechanism of the gene regulation during the development of NSCLC. Results A total of 92 up regulated and 214 down regulated DEGs were shared in four cDNA expression profiles. Based on their PPI network, TOP2A was connected with most of other genes and was selected for further analysis. Kaplan-Meier overall survival analysis (OS) revealed that TOP2A was associated with worse NSCLC patients survival. And both GEPIA analysis and immunohistochemistry experiment (IHC) confirmed that TOP2A was aberrant gain of expression in cancer comparing to normal tissues. The clinical significance of TOP2A and probable signaling pathways it involved in were further explored, and a positive correlation between TOP2A and TPX2 expression was found in lung cancer tissues. Conclusion Using bioinformatic analysis, we revealed that TOP2A could be adopted as a prognostic indicator of NSCLC and it potentially regulate cancer development through co-work with TPX2. However, more detailed experiments are needed to clarify its drug target role in clinical medical use.
Collapse
Affiliation(s)
- Wenxia Ma
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Bin Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Yaping Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Ziyue Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Dan Niu
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Siyu Chen
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Zhirong Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Ningning Shen
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Weixia Han
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Xiaoqin Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Rong Wei
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Chen Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| |
Collapse
|
11285
|
Hsu AY, Wang D, Liu S, Lu J, Syahirah R, Bennin DA, Huttenlocher A, Umulis DM, Wan J, Deng Q. Phenotypical microRNA screen reveals a noncanonical role of CDK2 in regulating neutrophil migration. Proc Natl Acad Sci U S A 2019; 116:18561-18570. [PMID: 31451657 PMCID: PMC6744913 DOI: 10.1073/pnas.1905221116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil migration is essential for inflammatory responses to kill pathogens; however, excessive neutrophilic inflammation also leads to tissue injury and adverse effects. To discover novel therapeutic targets that modulate neutrophil migration, we performed a neutrophil-specific microRNA (miRNA) overexpression screen in zebrafish and identified 8 miRNAs as potent suppressors of neutrophil migration. Among those, miR-199 decreases neutrophil chemotaxis in zebrafish and human neutrophil-like cells. Intriguingly, in terminally differentiated neutrophils, miR-199 alters the cell cycle-related pathways and directly suppresses cyclin-dependent kinase 2 (Cdk2), whose known activity is restricted to cell cycle progression and cell differentiation. Inhibiting Cdk2, but not DNA replication, disrupts cell polarity and chemotaxis of zebrafish neutrophils without inducing cell death. Human neutrophil-like cells deficient in CDK2 fail to polarize and display altered signaling downstream of the formyl peptide receptor. Chemotaxis of primary human neutrophils is also reduced upon CDK2 inhibition. Furthermore, miR-199 overexpression or CDK2 inhibition significantly improves the outcome of lethal systemic inflammation challenges in zebrafish. Our results therefore reveal previously unknown functions of miR-199 and CDK2 in regulating neutrophil migration and provide directions in alleviating systemic inflammation.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Decheng Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
- The Institute of Infection and Inflammation, Medical College of China Three Gorges University, 443002 Yichang, Hubei, People's Republic of China
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN 46202
| | - Justice Lu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - David A Bennin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| | - David M Umulis
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN 46202
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907;
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
11286
|
Lu HJ, Hsieh CC, Yeh CC, Yeh YC, Wu CC, Wang FS, Lai JM, Yang MH, Wang CH, Huang CYF, Chang PMH. Clinical, pathophysiologic, and genomic analysis of the outcomes of primary head and neck malignancy after pulmonary metastasectomy. Sci Rep 2019; 9:12913. [PMID: 31501464 PMCID: PMC6733860 DOI: 10.1038/s41598-019-49212-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
The median overall survival (OS) of some head and neck malignancies, such as head and neck squamous cell carcinoma (HNSCC), with metastatic lesions was only 12 months. Whether aggressive pulmonary metastasectomy (PM) improves survival is controversial. Patients with primary head and neck malignancy undergoing PM were enrolled. Clinical outcomes were compared among different histological types. Whole-exome sequencing was used for matched pulmonary metastatic samples. The genes where genetic variants have been identified were sent for analysis by DAVID, IPA, and STRING. Forty-nine patients with primary head and neck malignancies were enrolled. Two-year postmetastasectomy survival (PMS) rates of adenoid cystic carcinoma, thyroid carcinoma, nasopharyngeal carcinoma, and HNSCC were 100%, 88.2%, 71.4%, and 59.2%, respectively (P = 0.024). In HNSCC, the time to distant metastasis was an independent predictive factor of the efficacy of PM. Several pathways, such as branched-chain amino acid (BCAA) consumption, were significantly associated with the progression of HNSCC [P < 0.001, fold enrichment (FE) = 5.45]. Moreover, metabolism-associated signaling pathways also seemed to be involved in cancer metastasis. Histological types and time to distant metastasis were important factors influencing the clinical outcomes of PM. For HNSCC, metabolic-associated signaling pathways were significantly associated with tumor progression and distant metastasis. Future validations are warranted.
Collapse
Affiliation(s)
- Hsueh-Ju Lu
- Division of Medical Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan
| | - Chih-Cheng Hsieh
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | | | - Yi-Chen Yeh
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Jin-Mei Lai
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Muh-Hwa Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Cheng-Hsu Wang
- Cancer Center, Keelung Chang Gang Memorial Hospital, Keelung, Taiwan
| | - Chi-Ying F Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan. .,Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei, Taiwan.
| | - Peter Mu-Hsin Chang
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
11287
|
Friese A, Kapoor S, Schneidewind T, Vidadala SR, Sardana J, Brause A, Förster T, Bischoff M, Wagner J, Janning P, Ziegler S, Waldmann H. Chemical Genetics Reveals a Role of dCTP Pyrophosphatase 1 in Wnt Signaling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra Friese
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Shobhna Kapoor
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Present address: Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai- 400076 Maharashtra India
| | - Tabea Schneidewind
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Srinivasa Rao Vidadala
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Present address: Syngene International Limited Bengaluru Karnataka 560099 India
| | - Juhi Sardana
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Alexandra Brause
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Tim Förster
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Matthias Bischoff
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Jessica Wagner
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technische Universität Dortmund Otto-Hahn Strasse 6 44227 Dortmund Germany
| | - Petra Janning
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Slava Ziegler
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technische Universität Dortmund Otto-Hahn Strasse 6 44227 Dortmund Germany
| |
Collapse
|
11288
|
Uddin MN, Li M, Wang X. Identification of Transcriptional Markers and microRNA-mRNA Regulatory Networks in Colon Cancer by Integrative Analysis of mRNA and microRNA Expression Profiles in Colon Tumor Stroma. Cells 2019; 8:cells8091054. [PMID: 31500382 PMCID: PMC6769865 DOI: 10.3390/cells8091054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of microRNAs (miRNAs) and genes in tumor microenvironment (TME) has been associated with the pathogenesis of colon cancer. An integrative exploration of transcriptional markers (gene signatures) and miRNA–mRNA regulatory networks in colon tumor stroma (CTS) remains lacking. Using two datasets of mRNA and miRNA expression profiling in CTS, we identified differentially expressed miRNAs (DEmiRs) and differentially expressed genes (DEGs) between CTS and normal stroma. Furthermore, we identified the transcriptional markers which were both gene targets of DEmiRs and hub genes in the protein–protein interaction (PPI) network of DEGs. Moreover, we investigated the associations between the transcriptional markers and tumor immunity in colon cancer. We identified 17 upregulated and seven downregulated DEmiRs in CTS relative to normal stroma based on a miRNA expression profiling dataset. Pathway analysis revealed that the downregulated DEmiRs were significantly involved in 25 KEGG pathways (such as TGF-β, Wnt, cell adhesion molecules, and cytokine–cytokine receptor interaction), and the upregulated DEmiRs were involved in 10 pathways (such as extracellular matrix (ECM)-receptor interaction and proteoglycans in cancer). Moreover, we identified 460 DEGs in CTS versus normal stroma by a meta-analysis of two gene expression profiling datasets. Among them, eight upregulated DEGs were both hub genes in the PPI network of DEGs and target genes of the downregulated DEmiRs. We found that three of the eight DEGs were negative prognostic factors consistently in two colon cancer cohorts, including COL5A2, EDNRA, and OLR1. The identification of transcriptional markers and miRNA–mRNA regulatory networks in CTS may provide insights into the mechanism of tumor immune microenvironment regulation in colon cancer.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11289
|
Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Exp Biol Med (Maywood) 2019; 244:1273-1302. [PMID: 31483159 DOI: 10.1177/1535370219867269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We provide a review of Spectrin isoform function in the cytoplasm, the nucleus, the cell surface, and in intracellular signaling. We then discuss the importance of Spectrin’s E2/E3 chimeric ubiquitin conjugating and ligating activity in maintaining cellular homeostasis. Finally we present spectrin isoform subunit specific human diseases. We have created the Spectrinome, from the Human Proteome, Human Reactome and Human Atlas data and demonstrated how it can be a useful tool in visualizing and understanding spectrins myriad of cellular functions.Impact statementSpectrin was for the first 12 years after its discovery thought to be found only in erythrocytes. In 1981, Goodman and colleagues1found that spectrin-like molecules were ubiquitously found in non-erythroid cells leading to a great multitude of publications over the next thirty eight years. The discovery of multiple spectrin isoforms found associated with every cellular compartment, and representing 2-3% of cellular protein, has brought us to today’s understanding that spectrin is a scaffolding protein, with its own E2/E3 chimeric ubiquitin conjugating ligating activity that is involved in virtually every cellular function. We cover the history, localized functions of spectrin isoforms, human diseases caused by mutations, and provide the spectrinome: a useful tool for understanding the myriad of functions for one of the most important proteins in all eukaryotic cells.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Daniel Johnson
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - Steven L Youngentob
- Department of Anatomy and Neurobiology, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| | - David Kakhniashvili
- Department of Pediatrics, Memphis Institute of Regenerative Medicine, The University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
11290
|
Non-coding RNA regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194417. [PMID: 31493559 DOI: 10.1016/j.bbagrm.2019.194417] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
It is well established that the vast majority of human RNA transcripts do not encode for proteins and that non-coding RNAs regulate cell physiology and shape cellular functions. A subset of them is involved in gene regulation at different levels, from epigenetic gene silencing to post-transcriptional regulation of mRNA stability. Notably, the aberrant expression of many non-coding RNAs has been associated with aggressive pathologies. Rapid advances in network biology indicates that the robustness of cellular processes is the result of specific properties of biological networks such as scale-free degree distribution and hierarchical modularity, suggesting that regulatory network analyses could provide new insights on gene regulation and dysfunction mechanisms. In this study we present an overview of public repositories where non-coding RNA-regulatory interactions are collected and annotated, we discuss unresolved questions for data integration and we recall existing resources to build and analyse networks.
Collapse
|
11291
|
Xu Z, Wang X, Chen X, Zeng S, Qian L, Wei J, Gong Z, Yan Y. Identification of Aloperine as an anti-apoptotic Bcl2 protein inhibitor in glioma cells. PeerJ 2019; 7:e7652. [PMID: 31534865 PMCID: PMC6730530 DOI: 10.7717/peerj.7652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/09/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Aloperine (ALO), an alkaloid isolated from the leaves of Sophora alopecuroides, has been suggested to exhibit anti-inflammatory and anti-tumor properties and is traditionally used to treat various human diseases, including cancer. However, limited information is available about the mechanisms that determine the anti-tumor activities of ALO. METHODS Herein, through comprehensive bioinformatics methods and in vitro functional analyses, we evaluated the detailed anti-tumor mechanisms of ALO. RESULTS Using the databases Bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine and PubChem Project, we identified the potential targets of ALO. A protein-protein interaction network was constructed to determine the relationship among these probable targets. Functional enrichment analysis revealed that ALO is potentially involved in the induction of apoptosis. In addition, molecular docking demonstrated that ALO expectedly docks into the active pocket of the Bcl2 protein, suggesting Bcl2 as a direct target of ALO. Moreover, western blot and qPCR analysis showed that ALO downregulated Bcl2 expression in human glioma cell lines, SK-N-AS and U118. Using flow cytometry methods, we further confirmed that ALO significantly promotes apoptosis in SK-N-AS and U118 cell lines, similar to the effect induced by ABT-737, a well-known Bcl2 inhibitor. In addition, Bcl-2 overexpression could rescue ALO-induced Bcl-2 inhibition and suppress pro-apoptotic effects in glioma cells. CONCLUSION Taken together, these findings suggest that the natural agent ALO effectively enhances apoptosis by acting as a potential Bcl2 inhibitor in human glioma cells.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11292
|
Rivera-Mulia JC, Kim S, Gabr H, Chakraborty A, Ay F, Kahveci T, Gilbert DM. Replication timing networks reveal a link between transcription regulatory circuits and replication timing control. Genome Res 2019; 29:1415-1428. [PMID: 31434679 PMCID: PMC6724675 DOI: 10.1101/gr.247049.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
DNA replication occurs in a defined temporal order known as the replication timing (RT) program and is regulated during development, coordinated with 3D genome organization and transcriptional activity. However, transcription and RT are not sufficiently coordinated to predict each other, suggesting an indirect relationship. Here, we exploit genome-wide RT profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to construct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes during cell fate commitment to create highly complex RT networks composed of thousands of interactions that form specific functional subnetwork communities. We also constructed directional regulatory networks based on the order of RT changes within cell lineages, and identified master regulators of differentiation pathways. Finally, we explored relationships between RT networks and transcriptional regulatory networks (TRNs) by combining them into more complex circuitries of composite and bipartite networks. Results identified novel trans interactions linking transcription factors that are core to the regulatory circuitry of each cell type to RT changes occurring in those cell types. These core transcription factors were found to bind cooperatively to sites in the affected replication domains, providing provocative evidence that they constitute biologically significant directional interactions. Our findings suggest a regulatory link between the establishment of cell-type-specific TRNs and RT control during lineage specification.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sebo Kim
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Abhijit Chakraborty
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
11293
|
Radka CD, Labiuk SL, DeLucas LJ, Aller SG. Structures of the substrate-binding protein YfeA in apo and zinc-reconstituted holo forms. Acta Crystallogr D Struct Biol 2019; 75:831-840. [PMID: 31478906 PMCID: PMC6719664 DOI: 10.1107/s2059798319010866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/02/2019] [Indexed: 12/23/2022] Open
Abstract
In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shaunivan L. Labiuk
- Canadian Macromolecular Crystallography Facility, Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Lawrence J. DeLucas
- Division of Human Exploration and Spaceflight, Aerospace Corporation, El Segundo, CA 90245, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, Birmingham, AL 35294, USA
| |
Collapse
|
11294
|
Jie M, Hai-Xia L, Fei-Fei T, Shu-Ling L, Tian-Yi F, Xue-Qian W, Qing-Guo W, Fa-Feng C. Systematic Investigation of Berberine for Treating Hepatocellular Carcinoma Based on Network Pharmacology. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11295
|
Luo Y, Yi X, Liang T, Jiang S, He R, Hu Y, Bai L, Wang C, Wang K, Zhu L. Autograft microskin combined with adipose-derived stem cell enhances wound healing in a full-thickness skin defect mouse model. Stem Cell Res Ther 2019; 10:279. [PMID: 31470890 PMCID: PMC6717360 DOI: 10.1186/s13287-019-1389-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Autograft microskin transplantation has been widely used as a skin graft therapy in full-thickness skin defect. However, skin grafting failure can lead to a pathological delay wound healing due to a poor vascularization bed. Considering the active role of adipose-derived stem cell (ADSC) in promoting angiogenesis, we intend to investigate the efficacy of autograft microskin combined with ADSC transplantation for facilitating wound healing in a full-thickness skin defect mouse model. MATERIAL AND METHODS An in vivo full-thickness skin defect mouse model was used to evaluate the contribution of transplantation microskin and ADSC in wound healing. The angiogenesis was detected by immunohistochemistry staining. In vitro paracrine signaling pathway was evaluated by protein array and Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction network analysis. RESULTS Co-transplantation of microskin and ADSC potentiated the wound healing with better epithelization, smaller scar thickness, and higher angiogenesis (CD31) in the subcutaneous layer. We found both EGF and VEGF cytokines were secreted by microskin in vitro. Additionally, secretome proteomic analysis in a co-culture system of microskin and ADSC revealed that ADSC could secrete a wide range of important molecules to form a reacting network with microskin, including VEGF, IL-6, EGF, uPAR, MCP-3, G-CSF, and Tie-2, which most likely supported the angiogenesis effect as observed. CONCLUSION Overall, we concluded that the use of ADSC partially modulates microskin function and enhances wound healing by promoting angiogenesis in a full-thickness skin defect mouse model.
Collapse
Affiliation(s)
- Yuansen Luo
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Xiaoyou Yi
- Department of Orthopedics Surgery, Tungwah Hospital of Sun Yat-sen University, 523110, Dongguan, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Shihai Jiang
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Ying Hu
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Li Bai
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
| | - Chunmei Wang
- Department of Plastic and Aesthetic Surgery, Dermatology Hospital of Southern Medical University, 510630, Guangzhou, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, the Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Lei Zhu
- Department of Plastic and Aesthetic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
11296
|
Ayoola MB, Shack LA, Nakamya MF, Thornton JA, Swiatlo E, Nanduri B. Polyamine Synthesis Effects Capsule Expression by Reduction of Precursors in Streptococcus pneumoniae. Front Microbiol 2019; 10:1996. [PMID: 31555234 PMCID: PMC6727871 DOI: 10.3389/fmicb.2019.01996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus, Spn) colonizes the human nasopharynx asymptomatically but can cause infections such as otitis media, and invasive pneumococcal disease such as community-acquired pneumonia, meningitis, and sepsis. Although the success of Spn as a pathogen can be attributed to its ability to synthesize and regulate capsular polysaccharide (CPS) for survival in the host, the mechanisms of CPS regulation are not well-described. Recent studies from our lab demonstrate that deletion of a putative polyamine biosynthesis gene (ΔcadA) in Spn TIGR4 results in the loss of the capsule. In this study, we characterized the transcriptome and metabolome of ΔcadA and identified specific mechanisms that could explain the regulatory role of polyamines in pneumococcal CPS biosynthesis. Our data indicate that impaired polyamine synthesis impacts galactose to glucose interconversion via the Leloir pathway which limits the availability of UDP-galactose, a precursor of serotype 4 CPS, and UDP-N-acetylglucosamine (UDP-GlcNAc), a nucleotide sugar precursor that is at the intersection of CPS and peptidoglycan repeat unit biosynthesis. Reduced carbon flux through glycolysis, coupled with altered fate of glycolytic intermediates further supports impaired synthesis of UDP-GlcNAc. A significant increase in the expression of transketolases indicates a potential shift in carbon flow toward the pentose phosphate pathway (PPP). Higher PPP activity could constitute oxidative stress responses in ΔcadA which warrants further investigation. The results from this study clearly demonstrate the potential of polyamine synthesis, targeted for cancer therapy in human medicine, for the development of novel prophylactic and therapeutic strategies for treating bacterial infections.
Collapse
Affiliation(s)
- Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
11297
|
Espinoza-Sánchez NA, Győrffy B, Fuentes-Pananá EM, Götte M. Differential impact of classical and non-canonical NF-κB pathway-related gene expression on the survival of breast cancer patients. J Cancer 2019; 10:5191-5211. [PMID: 31602271 PMCID: PMC6775609 DOI: 10.7150/jca.34302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a well-known driver of carcinogenesis and cancer progression, often attributed to the tumor microenvironment. However, tumor cells themselves are capable of secreting a variety of inflammatory molecules, leading to the activation of specific signaling pathways that promote tumor progression. The NF-κB signaling pathway is one of the most important connections between inflammation and tumorigenesis. NF-κB is a superfamily of transcription factors that plays an important role in several types of hematological and solid tumors, including breast cancer. However, the role of the NF-κB pathway in the survival of breast cancer patients is poorly studied. In this study, we analyzed and related the expression of both canonical and alternative NF-κB pathways and selected target genes with the relapse-free and overall survival of breast cancer patients. We used the public database Kaplan-Meier plotter (KMplot) which includes gene expression data and survival information of 3951 breast cancer patients. We found that the expression of IKKα was associated with poor relapse-free survival in patients with ER-positive tumors. Moreover, the expression of IL-8 and MMP-1 was associated with poor relapse-free and overall survival. In contrast, expression of IKKβ, p50, and p65 from the canonical pathway, and NIK and RELB from the alternative pathway correlated with better relapse-free survival also when the patients were classified by their hormonal and nodal status. Our study suggests that the expression of genes of the canonical and alternative NF-κB pathways is ultimately critical for tumor persistence. Understanding the communication between both pathways would help to find better therapeutic and prophylactic targets to prevent breast cancer progression and relapse.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, and Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
11298
|
Molecular characterization and computational structure prediction of activin receptor type IIB in aseel and broiler chicken. Res Vet Sci 2019; 126:139-149. [PMID: 31491670 DOI: 10.1016/j.rvsc.2019.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
The present study was formulated to characterize and comprehend the molecular structural characteristics of ACTRIIB receptor in Aseel and control broiler (CB) populations. The full length coding sequence (1539 bp) of the receptor was amplified, cloned, sequenced and analyzed using bioinformatic tools. The physico chemical properties of protein and structural features like secondary structure, solvent accessibility and disorder regions were computed. The 3D structure was predicted by I-TASSER and evaluated by Ramachandran Plot and tools under Structural Analysis and Verification Server. The nucleotides differences between CB and Aseel were c. [156G > A; 210 T > C; 493C > T; c.520G > C; 665A > C; 686G > A; 937C > G; 1011A > C; 1130A > G; 1208 T > A; 1326 T > C; 1433 T > C]. The amino acid substitutions between CB and Aseel were p. [(Pro165Ser; Glu174Gln; Gln222Pro; Ser229Asn; His313Asp; Gln377Arg; Val403Asp; and Ile478Thr)]. While, the silent changes includes p. [(Lys53=; Glu71=; Leu337=; Asp442=)]. The molecular weight of mature protein was predicted to be 55.51 kDa and 57.80 kDa in Aseel and CB, respectively. The higher rank 3D model had a C-score of -1.60 in Aseel and - 1.41 in CB, while the estimated TM-score (0.54 ± 0.14) and RMSD (5.8 ± 1.2 Å) were found to be similar in Aseel and CB. Among the 512 residues, >90% were in favored region, 4.7% in allowed region and <1.5% in disallowed region in both Aseel and CB. The pattern of contact map was comparable in Aseel and CB. The Hydrogen bond plots of the Aseel and CB shared similar secondary structure pattern. The ACTRIIB protein was predicted to interact with ACVR1B, ACVR1C, INHBA, SMAD 1,2,5,7 & 9 and BMPR1A&B. Clustal and phylogenetic analysis implied that both the lines were closely related and formed a sub cluster with in avian cluster. The current research provides insights about structural and functional aspects of the receptor and also aids in understanding the evolutionary history of ACTRIIB.
Collapse
|
11299
|
Chen L, Zhu J, Zhang LJ. Long non-coding RNA small nucleolar RNA host gene 7 is upregulated and promotes cell proliferation in thyroid cancer. Oncol Lett 2019; 18:4726-4734. [PMID: 31611982 PMCID: PMC6781492 DOI: 10.3892/ol.2019.10782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid cancer (THCA) is one of the most common types of endocrine cancer worldwide. However, the mechanisms underlying THCA progression have not been fully elucidated. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are dysregulated in human diseases, and are involved in regulating various biological processes. Furthermore, several reports have indicated that lncRNAs serve important roles in THCA. In the present study, a dataset from The Cancer Genome Atlas was used to analyze the expression levels and the clinical information of small nucleolar RNA host gene 7 (SNHG7) in THCA. Starbase was used to construct the competing endogenous RNA network. The Molecule Annotation System was used to analyze the data from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Furthermore, cell proliferation and cell cycle assays were used to detect the functions of SNHG7 in THCA. The present study revealed for the first time, to the best of our knowledge, that SNHG7 is markedly upregulated in THCA samples following analysis of The Cancer Genome Atlas datasets. SNHG7 expression was higher in advanced stage compared with early stage THCA samples. In addition, high expression levels of SNHG7 were associated with shorter survival times in THCA patients compared with low expression levels. Bioinformatics analysis revealed that SNHG7 was associated with the processes of ‘protein translation’, ‘viral life cycle’, ‘RNA processing’, ‘mRNA splicing’, ‘histone ubiquitination’, ‘endoplasmic reticulum-to-Golgi vesicle-mediated transport’, ‘sister chromatid cohesion’, ‘DNA damage checkpoint regulation’, ‘translation’ and ‘the spliceosome’. Additionally, knockdown of SNHG7 significantly inhibited thyroid cancer cell proliferation and cell cycle progression in vitro. Taken together, the results obtained in the present study suggested that SNHG7 may serve as a novel therapeutic and prognostic target for THCA.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434020, P.R. China
| | - Ling-Jie Zhang
- Department of Anesthesiology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
11300
|
Sun F, Liang W, Tang K, Hong M, Qian J. Profiling the lncRNA-miRNA-mRNA ceRNA network to reveal potential crosstalk between inflammatory bowel disease and colorectal cancer. PeerJ 2019; 7:e7451. [PMID: 31523496 PMCID: PMC6714963 DOI: 10.7717/peerj.7451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Background Because of the increasing dysplasia rate in the lifelong course of inflammatory bowel disease (IBD) patients, it is imperative to characterize the crosstalk between IBD and colorectal cancer (CRC). However, there have been no reports revealing the occurrence of the ceRNA network in IBD-related CRC. Methods In this study, we conducted gene expression profile studies of databases and performed an integrated analysis to detect the potential of lncRNA-miRNA-mRNA ceRNA in regulating disease transformation. R packages were used to screen differentially expressed mRNA, lncRNA and miRNA among CRC, IBD and normal tissue. The lncRNA-miRNA-mRNA network was constructed based on predicted miRNA-targeted lncRNAs and miRNA-targeted mRNAs. Functional analyses were then conducted to identify genes involved in the ceRNA network, and key lncRNAs were evaluated based on several clinical outcomes. Results A total of three lncRNAs, 15 miRNAs, and 138 mRNAs were identified as potential mediators in the pathophysiological processes of IBD-related CRC. Gene Ontology annotation enrichment analysis confirmed that the dysplasia process was strongly associated with immune response, response to lipopolysaccharide, and inflammatory response. Survival analysis showed that LINC01106 (HR = 1.7; p < 0.05) were strongly associated with overall survival of colorectal cancer patients. The current study identified a series of IBD-related mRNAs, miRNA, and lncRNAs, and highlighted the important role of ceRNAs in the pathogenesis of IBD-related CRC. Among them, the LINC01106-miRNA-mRNA axis was identified as vital targets for further research.
Collapse
Affiliation(s)
- Fangfang Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Weiwei Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejun Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Mengying Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jing Qian
- Zhejiang University School of Medicine, Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China.,College of Pharmaceutical Sciences, Zhejiang University, Pharmaceutical Informatics Institute, Hangzhou, Zhejiang, China
| |
Collapse
|