1151
|
Tomasinsig L, Scocchi M, Mettulio R, Zanetti M. Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob Agents Chemother 2004; 48:3260-7. [PMID: 15328082 PMCID: PMC514742 DOI: 10.1128/aac.48.9.3260-3267.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most antimicrobial peptides (AMPs) impair the viability of target bacteria by permeabilizing bacterial membranes. However, the proline-rich AMPs have been shown to kill susceptible organisms without causing significant membrane perturbation and may act by inhibiting the activity of bacterial targets. To gain initial insight into the events that follow interaction of a proline-rich peptide with bacterial cells, we used DNA macroarray technology to monitor transcriptional alterations of Escherichia coli in response to challenge with a subinhibitory concentration of the proline-rich Bac7(1-35). Substantial changes in the expression levels of 70 bacterial genes from various functional categories were detected. Among these, 26 genes showed decreased expression, while 44 genes, including genes that are potentially involved in bacterial resistance to antimicrobials, showed increased expression. The generation of a transcriptional response under the experimental conditions used is consistent with the ability of Bac7(1-35) to interact with bacterial components and affect biological processes in this organism.
Collapse
Affiliation(s)
- Linda Tomasinsig
- Department of Biomedical Sciences and Technology, University of Udine, P. le Kolbe 4, I-33100 Udine, Italy
| | | | | | | |
Collapse
|
1152
|
Plénat T, Deshayes S, Boichot S, Milhiet PE, Cole RB, Heitz F, Le Grimellec C. Interaction of primary amphipathic cell-penetrating peptides with phospholipid-supported monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9255-9261. [PMID: 15461515 DOI: 10.1021/la048622b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mesoscopic organization adopted by two primary amphipathic peptides, P(beta) and P(alpha), in Langmuir-Blodgett (LB) films made of either the pure peptide or peptide-phospholipid mixtures was examined by atomic force microscopy. P(beta), a potent cell-penetrating peptide (CPP), and P(alpha) mainly differ by their conformational states, predominantly a beta-sheet for P(beta) and an alpha-helix for P(alpha), as determined by Fourier transform infrared spectroscopy. LB films of pure peptide, transferred significantly below their collapse pressure, were characterized by the presence of supramolecular structures, globular aggregates for P(beta) and filaments for P(alpha), inserted into the monomolecular film. In mixed peptide-phospholipid films, similar structures could be observed, as a function of the phospholipid headgroup and acyl chain saturation. They often coexisted with a liquid-expanded phase composed of miscible peptide-lipid. These data strongly suggest that primary amphipathic CPP and antimicrobial peptides may share, to some extent, common mechanisms of interaction with membranes.
Collapse
Affiliation(s)
- Thomas Plénat
- Nanostructures et Complexes Membranaires, CBS, CNRS UMR5048-INSERM U554, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
1153
|
Abstract
Although constantly exposed to the environment and "foreign bodies" such as contact lenses and unwashed fingertips, the ocular surface succumbs to infection relatively infrequently. This is, in large part, due to a very active and robust innate immune response mounted at the ocular surface. Studies over the past 20 years have revealed that small peptides with antimicrobial activity are a major component of the human innate immune response system. The ocular surface is no exception, with peptides of the defensin and cathelicidin families being detected in the tear film and secreted by corneal and conjunctival epithelial cells. There is also much evidence to suggest that the role of some antimicrobial peptides is not restricted to direct killing of pathogens, but, rather, that they function in various aspects of the immune response, including recruitment of immune cells, and through actions on dendritic cells provide a link to adaptive immunity. A role in wound healing is also supported. In this article, the properties, mechanisms of actions and functional roles of antimicrobial peptides are reviewed, with particular emphasis on the potential multifunctional roles of defensins and LL-37 (the only known human cathelicidin) at the ocular surface.
Collapse
Affiliation(s)
- Alison M McDermott
- University of Houston, College of Optometry, Houston, Texas 77204-2020, USA.
| |
Collapse
|
1154
|
Braunstein A, Papo N, Shai Y. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother 2004; 48:3127-9. [PMID: 15273131 PMCID: PMC478488 DOI: 10.1128/aac.48.8.3127-3129.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that intravenous injection (3 mg/kg of body weight twice daily) of a diastereomer (containing 33% D amino acids) of an antimicrobial peptide, K6L9 (LKLLKKLLKKLLKLL-NH2), but not the all-L-amino-acid parental peptide, cures neutropenic mice infected with gentamicin-sensitive Pseudomonas aeruginosa and gentamicin-resistant Acinetobacter baumannii bacteria. Various biophysical experiments suggest a membranolytic-like effect.
Collapse
Affiliation(s)
- Amir Braunstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
1155
|
Stella L, Mazzuca C, Venanzi M, Palleschi A, Didonè M, Formaggio F, Toniolo C, Pispisa B. Aggregation and water-membrane partition as major determinants of the activity of the antibiotic peptide trichogin GA IV. Biophys J 2004; 86:936-45. [PMID: 14747329 PMCID: PMC1303941 DOI: 10.1016/s0006-3495(04)74169-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Water-membrane partition and aggregation behavior are fundamental aspects of the biological activity of antibiotic peptides, natural compounds causing the death of pathogenic organisms by perturbing the permeability of their membranes. A synthetic fluorescent analog of the natural lipopeptaibol trichogin GA IV was used to study its interaction with model membranes. Time-resolved fluorescence data show that in water, an equilibrium between monomers and small aggregates is present, the two species having different affinity for membranes. Therefore, association curves are strongly dependent on peptide concentration. A similar heterogeneity is present in the membrane phase, which strongly suggests the occurrence of a monomer-aggregate equilibrium in this case, too. The relative population of each species was determined and a strong correlation between the concentration of membrane-bound aggregates and membrane leakage was found, thereby suggesting that liposome perturbation is due to peptide aggregates only. Light-scattering measurements demonstrate that leakage is not due to liposome micellization. Moreover, experiments with markers of different sizes show that molecules with a diameter of approximately 4 nm are released only to a minor extent. Overall, these results suggest that, within the concentration range explored, pore formation by peptide aggregates is the most likely mechanism of action for trichogin in membranes.
Collapse
Affiliation(s)
- Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
1156
|
Den Hertog AL, Wong Fong Sang HW, Kraayenhof R, Bolscher JGM, Van't Hof W, Veerman ECI, Nieuw Amerongen AV. Interactions of histatin 5 and histatin 5-derived peptides with liposome membranes: surface effects, translocation and permeabilization. Biochem J 2004; 379:665-72. [PMID: 14733612 PMCID: PMC1224109 DOI: 10.1042/bj20031785] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/19/2004] [Accepted: 01/20/2004] [Indexed: 12/20/2022]
Abstract
A number of cationic antimicrobial peptides, among which are histatin 5 and the derived peptides dhvar4 and dhvar5, enter their target cells and interact with internal organelles. There still are questions about the mechanisms by which antimicrobial peptides translocate across the membrane. We used a liposome model to study membrane binding, translocation and membrane-perturbing capacities of histatin 5, dhvar4 and dhvar5. Despite the differences in amphipathic characters of these peptides, they bound equally well to liposomes, whereas their membrane activities differed remarkably: dhvar4 translocated at the fastest rate, followed by dhvar5, whereas the histatin 5 translocation rate was much lower. The same pattern was seen for the extent of calcein release: highest with dhvar4, less with dhvar5 and almost none with histatin 5. The translocation and disruptive actions of dhvar5 did not seem to be coupled, because translocation occurred on a much longer timescale than calcein release, which ended within a few minutes. We conclude that peptide translocation can occur through peptide-phospholipid interactions, and that this is a possible mechanism by which antimicrobial peptides enter cells. However, the translocation rate was much lower in this model membrane system than that seen in yeast cells. Thus it is likely that, at least for some peptides, additional features promoting the translocation across biological membranes are involved as well.
Collapse
Affiliation(s)
- Alice L Den Hertog
- Department of Dental Basic Sciences, Section Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
1157
|
Shinnar AE, Butler KL, Park HJ. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg Chem 2004; 31:425-36. [PMID: 14613764 DOI: 10.1016/s0045-2068(03)00080-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cathelicidins are a gene family of antimicrobial peptides produced as inactive precursors. Signal peptidase removes the N-terminal signal sequence, while peptidylglycine alpha-amidating monooxygenase often amidates and cleaves the C-terminal region. Removal of the cathelin domain liberates the active antimicrobial peptide. For mammalian sequences, this cleavage usually occurs through the action of elastase, but other tissue-specific processing enzymes may also operate. Once released, these bioactive peptides are susceptible to proteolytic degradation. We propose that some mature cathelicidins are naturally resistant to proteases due to their unusual primary structures. Among mammalian cathelicidins, proline-rich sequences should resist attack by serine proteases because proline prevents cleavage of the scissile bond. In hagfish cathelicidins, the unusual amino acid bromotryptophan may make the active peptides less susceptible to proteolysis for steric reasons. Such protease resistance could extend the pharmacokinetic lifetimes of cathelicidins in vivo, sustaining antimicrobial activity.
Collapse
Affiliation(s)
- Ann Eisenberg Shinnar
- Chemistry Department, Barnard College, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
1158
|
Hornef MW, Pütsep K, Karlsson J, Refai E, Andersson M. Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol 2004; 5:836-43. [PMID: 15235601 DOI: 10.1038/ni1094] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 05/21/2004] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides are essential effector molecules of the innate immune system. Here we describe the structure, function and diversity of cryptdin-related sequence (CRS) peptides, a large family of antimicrobial molecules. We identified the peptides as covalent dimers in mouse intestinal tissue in amounts comparable to those of Paneth cell-derived enteric alpha-defensins. CRS peptides caused rapid and potent killing of commensal and pathogenic bacteria. The CRS peptides formed homo- and heterodimers in vivo, thereby expanding the repertoire of antimicrobial peptides and increasing the peptide diversity of Paneth cell secretions. CRS peptides might therefore be important in the maintenance of the microbial homeostasis within the intestinal tract.
Collapse
Affiliation(s)
- Mathias W Hornef
- Institute of Medical Microbiology and Hygiene, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
1159
|
Levashina EA. Immune responses in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:673-678. [PMID: 15242708 DOI: 10.1016/j.ibmb.2004.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
Transmission of human malaria requires a successful development of Plasmodium parasites in anopheline mosquitoes. Insects have developed efficient immune responses to oppose microbial and eukaryotic invaders. The completion of the sequencing of the Anopheles genome provides a wealth of information on putative immune genes that are homologous to components of the Drosophila and mammalian immune systems. In this review, we will summarize our present knowledge of immune responses in the mosquito Anopheles gambiae and attempt a comparative analysis of insect immune systems.
Collapse
Affiliation(s)
- Elena A Levashina
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
1160
|
Balaban N, Gov Y, Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Orlando F, D'Amato G, Saba V, Scalise G, Bernes S, Mor A. A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci. Antimicrob Agents Chemother 2004; 48:2544-50. [PMID: 15215107 PMCID: PMC434167 DOI: 10.1128/aac.48.7.2544-2550.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 10/06/2003] [Accepted: 12/24/2003] [Indexed: 12/19/2022] Open
Abstract
Staphylococcal bacteria are a prevalent cause of infections associated with foreign bodies and indwelling medical devices. Bacteria are capable of escaping antibiotic treatment through encapsulation into biofilms. RNA III-inhibiting peptide (RIP) is a heptapeptide that inhibits staphylococcal biofilm formation by obstructing quorum-sensing mechanisms. K(4)-S4(1-13)(a) is a 13-residue dermaseptin derivative (DD(13)) believed to kill bacteria via membrane disruption. We tested each of these peptides as well as a hybrid construct, DD(13)-RIP, for their ability to inhibit bacterial proliferation and suppress quorum sensing in vitro and for their efficacy in preventing staphylococcal infection in a rat graft infection model with methicillin-resistant Staphylococcus aureus (MRSA) or S. epidermidis (MRSE). In vitro, proliferation assays demonstrated that RIP had no inhibitory effect, while DD(13)-RIP and DD(13) were equally effective, and that the chimeric peptide but not DD(13) was slightly more effective than RIP in inhibiting RNA III synthesis, a regulatory RNA molecule important for staphylococcal pathogenesis. In vivo, the three peptides reduced graft-associated bacterial load in a dose-dependent manner, but the hybrid peptide was most potent in totally preventing staphylococcal infections at the lowest dose. In addition, each of the peptides acted synergistically with antibiotics. The data indicate that RIP and DD(13) act in synergy by attacking bacteria simultaneously by two different mechanisms. Such a chimeric peptide may be useful for coating medical devices to prevent drug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Naomi Balaban
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1161
|
Boichot S, Krauss U, Plénat T, Rennert R, Milhiet PE, Beck-Sickinger A, Le Grimellec C. Calcitonin-derived carrier peptide plays a major role in the membrane localization of a peptide-cargo complex. FEBS Lett 2004; 569:346-50. [PMID: 15225660 DOI: 10.1016/j.febslet.2004.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/18/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
Bilayers made of dioleoylphosphatidylcholine (DOPC)/dipalmitoylphosphatidylcholine (DPPC) mixture containing or not cholesterol (Chl) were used to investigate the interaction of a carrier peptide with membranes. Atomic force microscopy revealed that the C-terminal 9-32 fragment of human calcitonin (hCT (9-32)), free or coupled to enhanced green fluorescent protein (hCT-eGFP) cargo forms aggregates in the DOPC fluid phase in absence of Chl and in the DPPC enriched liquid-ordered phase when Chl is present. The data show that hCT (9-32) plays a determinant role in the membrane localization of the peptide-cargo complex. They suggest that carpet-like mechanism for membrane destabilization may be involved in the carrier function of hCT (9-32).
Collapse
Affiliation(s)
- Sylvie Boichot
- Nanostructures et Complexes Membranaires, C.B.S. CNRS UMR5048-INSERM U554, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
1162
|
Tasiemski A, Vandenbulcke F, Mitta G, Lemoine J, Lefebvre C, Sautière PE, Salzet M. Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J Biol Chem 2004; 279:30973-82. [PMID: 15102860 DOI: 10.1074/jbc.m312156200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel antimicrobial peptides named theromacin and theromyzin were isolated and characterized from the coelomic liquid of the leech Theromyzon tessulatum. Theromacin is a 75-amino acid cationic peptide containing 10 cysteine residues arranged in a disulfide array showing no similarities with other known antimicrobial peptides. Theromyzin is an 86-amino acid linear peptide and constitutes the first anionic antimicrobial peptide observed in invertebrates. Both peptides exhibit activity directed against Gram-positive bacteria. Theromacin and theromyzin cDNAs code precursor molecules containing a putative signal sequence directly followed by the mature peptide. The enhancement of theromacin and theromyzin mRNA levels has been observed after blood meal ingestion and upon bacterial challenge. In situ hybridization revealed that both genes are expressed in large fat cells in contact with coelomic cavities. Gene products were immunodetected in large fat cells, in intestinal epithelia, and at the epidermis level. In addition, a rapid release of the peptides into the coelomic liquid was observed after bacterial challenge. The presence of antimicrobial peptide genes in leeches and their expression in a specific tissue functionally resembling the insect fat body provide evidence for the first time of an antibacterial response in a lophotrochozoan comparable to that of holometabola insects.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Centre National de la Recherche Scientifique, Laboratoire de Neuroimmunologie UMR 8017, SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
1163
|
Salay LC, Procopio J, Oliveira E, Nakaie CR, Schreier S. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Lett 2004; 565:171-5. [PMID: 15135074 DOI: 10.1016/j.febslet.2004.03.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
The cationic peptide tritrpticin (VRRFPWWWPFLRR, Trp3) has a broad action spectrum, acting against Gram-positive and Gram-negative bacteria, as well as some fungi, while also displaying hemolytic activity. We have studied the behavior of Trp3 in planar lipid bilayers (or black lipid membrane - BLM) and were able to demonstrate its ion channel-like activity. Channel-like activity was observed in negatively charged azolectin BLM as a sudden appearance of discrete current fluctuations upon application of a constant voltage across the membrane. Trp3 formed large conductance channels (500-2000 pS) both at positive and negative potentials. In azolectin bilayers, the predominant ion-channel activity was characterized by very regular and discrete current steps (corresponding to openings) of uniform amplitude, which exhibited relatively long residence times (of the order of seconds). Occasionally, multiple conductance steps were observed, indicating the simultaneous presence of more than one open pore. In bilayers of zwitterionic diphytanoylphosphatidyl choline (DPhPC) Trp3 also showed ion-channel activity, but in a much less frequent and less prominent way. Studies of ion selectivity indicated that Trp3 forms a cation-selective channel. These results should contribute to the understanding of the molecular interactions and mechanism of action of Trp3 in lipid bilayers and biological membranes.
Collapse
Affiliation(s)
- Luiz C Salay
- Laboratory of Structural Biology, Department of Biochemistry, Institute of Chemistry, University of São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
1164
|
Rabel D, Charlet M, Ehret-Sabatier L, Cavicchioli L, Cudic M, Otvos L, Bulet P. Primary Structure and in Vitro Antibacterial Properties of the Drosophila melanogaster Attacin C Pro-domain. J Biol Chem 2004; 279:14853-9. [PMID: 14744858 DOI: 10.1074/jbc.m313608200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Drosophila melanogaster, seven distinct families of antimicrobial peptides with different structures and specificities are synthesized by the fat body and released into the hemolymph during the immune response. Using microscale high performance liquid chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and Edman degradation, we have isolated and characterized from immune-challenged Drosophila two novel induced molecules, under the control of the Imd pathway, that correspond to post-translationally modified antimicrobial peptides or peptide fragments. The first molecule is a doubly glycosylated form of drosocin, an O-glycosylated peptide that kills Gram-negative organisms. The second molecule represents a truncated form of the pro-domain of the Drosophila attacin C carrying two post-translational modifications and has significant structural similarities to proline-rich antibacterial peptides including drosocin. We have synthesized this peptide and found that it is active against Gram-negative bacteria. Furthermore, this activity is potentiated when the peptide is used in combination with the Drosophila antimicrobial peptide cecropin A. The synergistic action observed between these two molecules suggests that the truncated post-translationally modified pro-domain of attacin C by itself may play an important role in the antimicrobial defense of Drosophila.
Collapse
Affiliation(s)
- David Rabel
- Institut de Biologie Moléculaire et Cellulaire, UPR9022, CNRS, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
1165
|
Srinivas G, Lopez CF, Klein ML. Membrane Bound Hydraphiles Facilitate Cation Translocation. J Phys Chem B 2004. [DOI: 10.1021/jp036953b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Goundla Srinivas
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Carlos F. Lopez
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| | - Michael L. Klein
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
1166
|
Avrahami D, Shai Y. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 2004; 279:12277-85. [PMID: 14709550 DOI: 10.1074/jbc.m312260200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report on the synthesis, biological function, and a plausible mode of action of a new group of lipopeptides with potent antifungal and antibacterial activities. These lipopeptides are derived from positively charged peptides containing d- and l-amino acids (diastereomers) that are palmitoylated (PA) at their N terminus. The peptides investigated have the sequence K(4)X(7)W, where X designates Gly, Ala, Val, or Leu (designated d-X peptides). The data revealed that PA-d-G and PA-d-A gained potent antibacterial and antifungal activity despite the fact that both parental peptides were completely devoid of any activity toward microorganisms and model phospholipid membranes. In contrast, PA-d-L lost the potent antibacterial activity of the parental peptide but gained and preserved partial antifungal activity. Interestingly, both d-V and its palmitoylated analog were inactive toward bacteria, and only the palmitoylated peptide was highly potent toward yeast. Both PA-d-L and PA-d-V lipopeptides were also endowed with hemolytic activity. Mode of action studies were performed by using tryptophan fluorescence and attenuated total reflectance Fourier transform infrared and circular dichroism spectroscopy as well as transmembrane depolarization assays with bacteria and fungi. The data suggest that the lipopeptides act by increasing the permeability of the cell membrane and that differences in their potency and target specificity are the result of differences in their oligomeric state and ability to dissociate and insert into the cytoplasmic membrane. These results provide insight regarding a new approach of modulating hydrophobicity and the self-assembly of non-membrane interacting peptides in order to endow them with both antibacterial and antifungal activities urgently needed to combat bacterial and fungal infections.
Collapse
Affiliation(s)
- Dorit Avrahami
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
1167
|
Sonnevend A, Knoop FC, Patel M, Pál T, Soto AM, Conlon JM. Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog. Peptides 2004; 25:29-36. [PMID: 15003353 DOI: 10.1016/j.peptides.2003.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/25/2003] [Indexed: 11/29/2022]
Abstract
The predicted conformation of ranatuerin-1 (SMLSVLKNLG(10)KVGLGFVACK(20)INK QC), an antimicrobial peptide first isolated from the skin of the bullfrog Rana catesbeiana, comprises three structural domains: alpha-helix (residues 1-8), beta-sheet (residues 11-16) and beta-turn (residues 20-25). Circular dichroism studies confirm significant alpha-helical character in 50% trifluoroethanol. Replacement of Cys-19 and Cys-25 by serine resulted only in decreased antimicrobial potency but deletion of either the cyclic heptapeptide region [residues (19-25)] or the N-terminal domain [residues (1-8)] produced inactive analogs. Substitution of the glycine residues in the central domain of the [Ser-19, Ser-25] analog by lysine produced inactive peptides despite increased alpha-helical content and cationicity. The substitution Asn-8-->Lys gave a ranatuerin-1 analog with increased alpha-helicity and cationicity and increased potency against a range of Gram-positive and Gram-negative bacteria and against C. albicans but only a small increase (21%) in hemolytic activity. In contrast, increasing alpha-helicity and hydrophobicity by the substitution Asn-22-->Ala resulted in a 3.5-fold increase in hemolytic activity. Effects on antimicrobial potencies of substitutions of neutral amino acids at positions 4, 18, 22, and 24 by lysine were less marked. Strains of pathogenic E. coli from different groups showed varying degrees of sensitivity to ranatuerin-1 (MIC between 5 and 40 microM) but [Lys-8] ranatuerin-1 showed increased potency (between 2- and 8-fold; P < 0.01) against all strains. The data demonstrate that [Lys-8] ranatuerin-1 shows potential as a candidate for drug development.
Collapse
Affiliation(s)
- Agnes Sonnevend
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
1168
|
Bhargava K, Feix JB. Membrane binding, structure, and localization of cecropin-mellitin hybrid peptides: a site-directed spin-labeling study. Biophys J 2004; 86:329-36. [PMID: 14695274 PMCID: PMC1303797 DOI: 10.1016/s0006-3495(04)74108-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 09/24/2003] [Indexed: 11/16/2022] Open
Abstract
The interaction of antimicrobial peptides with membranes is a key factor in determining their biological activity. In this study we have synthesized a series of minimized cecropin-mellitin hybrid peptides each containing a single cysteine residue, modified the cysteine with the sulfhydryl-specific methanethiosulfonate spin-label, and used electron paramagnetic resonance spectroscopy to measure membrane-binding affinities and determine the orientation and localization of peptides bound to membranes that mimic the bacterial cytoplasmic membrane. All of the peptides were unstructured in aqueous solution but underwent a significant conformational change upon membrane binding that diminished the rotational mobility of the attached spin-label. Apparent partition coefficients were similar for five of the six constructs examined, indicating that location of the spin-label had little effect on peptide binding as long as the attachment site was in the relatively hydrophobic C-terminal domain. Depth measurements based on accessibility of the spin-labeled sites to oxygen and nickel ethylenediaminediacetate indicated that at high lipid/peptide ratios these peptides form a single alpha-helix, with the helical axis aligned parallel to the bilayer surface and immersed approximately 5 A below the membrane-aqueous interface. Such a localization would provide exposure of charged/polar residues on the hydrophilic face of the amphipathic helix to the aqueous phase, and allow the nonpolar residues along the opposite face of the helix to remain immersed in the hydrophobic phase of the bilayer. These results are discussed with respect to the mechanism of membrane disruption by antimicrobial peptides.
Collapse
Affiliation(s)
- Kalpana Bhargava
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53326, USA
| | | |
Collapse
|
1169
|
|
1170
|
Schreier S, Barbosa SR, Casallanovo F, Vieira RDFF, Cilli EM, Paiva ACM, Nakaie CR. Conformational basis for the biological activity of TOAC-labeled angiotensin II and bradykinin: Electron paramagnetic resonance, circular dichroism, and fluorescence studies. Biopolymers 2004; 74:389-402. [PMID: 15222018 DOI: 10.1002/bip.20092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). TOAC replaced Asp1 (TOAC1-AII) and Val3 (TOAC3-AII) in AII and was inserted prior to Arg1 (TOAC0-BK) and replacing Pro3 (TOAC3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (tauC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, tauC increased due to viscosity effects. Calculation of tau(Cpeptide)/tau(CTOAC) ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC3 derivatives acquired more restricted conformations. Fluorescence spectra of AII and its derivatives were especially sensitive to the ionization of Tyr4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC3-AII. The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation.
Collapse
Affiliation(s)
- Shirley Schreier
- Laboratory of Structural Biology, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
1171
|
Nicolas P, Vanhoye D, Amiche M. Molecular strategies in biological evolution of antimicrobial peptides. Peptides 2003; 24:1669-80. [PMID: 15019198 DOI: 10.1016/j.peptides.2003.08.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 08/08/2003] [Indexed: 11/24/2022]
Abstract
Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.
Collapse
Affiliation(s)
- Pierre Nicolas
- Laboratoire de Bioactivation des Peptides, Institut Jacques Monod, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | |
Collapse
|
1172
|
Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. ACTA ACUST UNITED AC 2003; 270:4478-87. [PMID: 14622276 DOI: 10.1046/j.1432-1033.2003.03840.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depth of bilayer penetration and effects on lipid mobility conferred by the membrane-active peptides magainin, melittin, and a hydrophobic helical sequence KKA(LA)7KK (denoted KAL), were investigated by colorimetric and time-resolved fluorescence techniques in biomimetic phospholipid/poly(diacetylene) vesicles. The experiments demonstrated that the extent of bilayer permeation and peptide localization within the membrane was dependent upon the bilayer composition, and that distinct dynamic modifications were induced by each peptide within the head-group environment of the phospholipids. Solvent relaxation, fluorescence correlation spectroscopy and fluorescence quenching analyses, employing probes at different locations within the bilayer, showed that magainin and melittin inserted close to the glycerol residues in bilayers incorporating negatively charged phospholipids, but predominant association at the lipid-water interface occurred in bilayers containing zwitterionic phospholipids. The fluorescence and colorimetric analyses also exposed the different permeation properties and distinct dynamic influence of the peptides: magainin exhibited the most pronounced interfacial attachment onto the vesicles, melittin penetrated more into the bilayers, while the KAL peptide inserted deepest into the hydrophobic core of the lipid assemblies. The solvent relaxation results suggest that decreasing the lipid fluidity might be an important initial factor contributing to the membrane activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Tanya Sheynis
- Department of Chemistry and the Stadler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | | | |
Collapse
|
1173
|
Papo N, Shai Y. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 2003; 24:1693-703. [PMID: 15019200 DOI: 10.1016/j.peptides.2003.09.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 09/09/2003] [Indexed: 11/25/2022]
Abstract
Cationic antibacterial peptides are produced in all living organisms and possess either selective activity toward a certain type of cell or microorganism, or a broad spectrum of activity toward several types of cells including prokaryotic and mammalian cells. In order to exert their activity, peptides first interact with and traverse an outer barrier, e.g., mainly LPS and peptidoglycan in bacteria or a glycocalix layer and matrix proteins in mammalian cells. Only then, can the peptides bind and insert into the cytoplasmic membrane. The mode of action of many antibacterial peptides is believed to be the disruption of the lipidic plasma membrane. Therefore, model phospholipid membranes have been used to study the mode of action of antimicrobial peptides. These studies have demonstrated that peptides that act preferentially on bacteria are also able to interact with and permeate efficiently anionic phospholipids, whereas peptides that lyse mammalian cells bind and permeate efficiently both acidic and zwitterionic phospholipids membranes, mimicking the plasma membranes of these cells. It is now becoming increasingly clear that selective activity of these peptides against different cells depends also on other parameters that characterize both the peptide and the target cell. With respect to the peptide's properties, these include the volume of the molecule, its structure, and its oligomeric state in solution and in membranes. Regarding the target membrane, these include the structure, length, and complexity of the hydrophilic polysaccharide found in its outer layer. These parameters affect the ability of the peptides to diffuse through the cell's outer barrier and to reach its cytoplasmic plasma membrane.
Collapse
Affiliation(s)
- Niv Papo
- Department of Biological Chemistry, The Weizmann Institute of Science, Herzel Street, Rehovot 76100, Israel
| | | |
Collapse
|
1174
|
Yang Y, Poncet J, Garnier J, Zatylny C, Bachère E, Aumelas A. Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide. J Biol Chem 2003; 278:36859-67. [PMID: 12842879 DOI: 10.1074/jbc.m305450200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penaeidins are a family of antimicrobial peptides of 47-63 residues isolated from several species of shrimp. These peptides display a proline-rich domain (N-terminal part) and a cysteine-rich domain (C-terminal part) stabilized by three conserved disulfide bonds whose arrangement has not yet been characterized. The recombinant penaeidin-3a of Litopenaeus vannamei (63 residues) and its [T8A]-Pen-3a analogue were produced in Saccharomyces cerevisiae and showed similar antimicrobial activity. The solution structure of the [T8A]-Pen-3a analogue was determined by using two-dimensional 1H NMR and simulated annealing calculations. The proline-rich domain, spanning residues 1-28 was found to be unconstrained. In contrast, the cysteine-rich domain, spanning residues 29-58, displays a well defined structure, which consists of an amphipathic helix (41-50) linked to the upstream and the downstream coils by two disulfide bonds (Cys32-Cys47 and Cys48-Cys55). These two coils are in turn linked together by the third disulfide bond (Cys36-Cys54). Such a disulfide bond packing, which is in agreement with the analysis of trypsin digests by ESI-MS, contributes to the highly hydrophobic core. Side chains of Arg45 and Arg50, which belong to the helix, and side chains of Arg37 and Arg53, which belong to the upstream and the downstream coils, are located in two opposite parts of this globular and compact structure. The environment of these positively charged residues, either by hydrophobic clusters at the surface of the cysteine-rich domain or by sequential hydrophobic residues in the unconstrained proline-rich domain, gives rise to the amphipathic character required for antimicrobial peptides. We hypothesize that the antimicrobial activity of penaeidins can be explained by a cooperative effect between the proline-rich and cysteine-rich features simultaneously present in their sequences.
Collapse
Affiliation(s)
- Yinshan Yang
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U414, Université Montpellier 1, Faculté de Pharmacie, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
1175
|
Abstract
Antibacterial peptides are the effector molecules of innate immunity. Generally they contain 15-45 amino acid residues and the net charge is positive. The cecropin type of linear peptides without cysteine were found first in insects, whilst the defensin type with three disulphide bridges were found in rabbit granulocytes. Now a database stores more than 800 sequences of antibacterial peptides and proteins from the animal and plant kingdoms. Generally, each species has 15-40 peptides made from genes, which code for only one precursor. The dominating targets are bacterial membranes and the killing reaction must be faster than the growth rate of the bacteria. Some antibacterial peptides are clearly multifunctional and an attempt to predict this property from the hydrophobicity of all amino acid side chains are given. Gene structures and biosynthesis are known both in the fruit fly Drosophila and several mammals. Humans need two classes of defensins and the cathelicidin-derived linear peptide LL-37. Clinical cases show that deficiencies in these peptides give severe symptoms. Examples given are morbus Kostmann and atopic allergy. Several antibacterial peptides are being developed as drugs.
Collapse
Affiliation(s)
- H G Boman
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
1176
|
Abstract
Medical or health-promoting products of marine origin are often regarded with skepticism--some, such as shark fins and cod liver oil, are frequently perceived as low-tech "alternative treatments" largely because they have not been exploited to their full potential. The marine environment is an enormous source of biodiversity--80% of all life is found under the oceans' surfaces--yet very little of this rich resource has been utilized. Furthermore, most marine organisms rely heavily on antimicrobial components of their innate immune defenses to combat pathogens. The past three years has seen a revolution in the methods used to identify novel antimicrobials from marine sources; among the most promising are marine cationic antimicrobial peptides (CAPs).
Collapse
Affiliation(s)
- Aleksander Patrzykat
- Institute for Marine Biosciences, 1411 Oxford Street, Halifax, Nova Scotia, Canada B3H 3Z1
| | | |
Collapse
|
1177
|
Vanhoye D, Bruston F, Nicolas P, Amiche M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2068-81. [PMID: 12709067 DOI: 10.1046/j.1432-1033.2003.03584.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dermal glands of frogs produce antimicrobial peptides that protect the skin against noxious microorganisms and assist in wound repair. The sequences of these peptides are very dissimilar, both within and between species, so that the 5000 living anuran frogs may produce approximately 100 000 different antimicrobial peptides. The antimicrobial peptides of South American hylid frogs are derived from precursors, the preprodermaseptins, whose signal peptides and intervening sequences are remarkably conserved, but their C-terminal domains are markedly diverse, resulting in mature peptides with different lengths, sequences and antimicrobial spectra. We have used the extreme conservation in the preproregion of preprodermaseptin transcripts to identify new members of this family in Australian and South American hylids. All these peptides are cationic, amphipathic and alpha-helical. They killed a broad spectrum of microorganisms and acted in synergy. 42 preprodermaseptin gene sequences from 10 species of hylid and ranin frogs were analyzed in the context of their phylogeny and biogeography and of geophysical models for the fragmentation of Gondwana to examine the strategy that these frogs have evolved to generate an enormous array of peptide antibiotics. The hyperdivergence of modern antimicrobial peptides and the number of peptides per species result from repeated duplications of a approximately 150-million-year-old ancestral gene and accelerated mutations of the mature peptide domain, probably involving a mutagenic, error-prone, DNA polymerase similar to Escherichia coli Pol V. The presence of antimicrobial peptides with such different structures and spectra of action represents the successful evolution of multidrug defense by providing frogs with maximum protection against infectious microbes and minimizing the chance of microorganisms developing resistance to individual peptides. The hypermutation of the antimicrobial domain by a targeted mutagenic polymerase that can generate many sequence changes in a few steps may have a selective survival value when frogs colonizing a new ecological niche encounter different microbial predators.
Collapse
Affiliation(s)
- Damien Vanhoye
- Laboratoire de Bioactivation des Peptides, Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|