1251
|
Marko M, Hsieh CE. Three-dimensional cryotransmission electron microscopy of cells and organelles. Methods Mol Biol 2007; 369:407-29. [PMID: 17656762 DOI: 10.1007/978-1-59745-294-6_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cryoelectron microscopy of frozen-hydrated specimens is currently the only available technique for determining the "native" three-dimensional ultrastructure of individual examples of organelles and cells. Two techniques are available, stereo pair imaging and electron tomography, the latter providing full three-dimensional information about the specimen. A resolution of 4 to 10 nm can currently be obtained with cryotomography. We describe specimen preparation by means of plunge-freezing, which is straightforward and rapid compared with conventional EM techniques. We detail the considerations and preparation needed for successful cryotomography. Frozen-hydrated specimens are very radiation-sensitive and have low contrast because they lack heavy metal stains. The total electron dose that can be applied without damage to the specimen at a given resolution must be estimated, and this dose is fractionated among the images in the tilt series. The desired resolution determines the number and magnification of the images in the tilt series, as well as the objective lens defocus used for phase contrast imaging. The combination of the desired resolution and the maximum number of images into which a given dose can be fractionated sets an upper limit on specimen thickness. Because of these constraints, careful choice of imaging conditions, use of a sensitive CCD camera system, and microscope automation, are important requirements for conducting cryoelectron tomography.
Collapse
Affiliation(s)
- Michael Marko
- Resource for Visualization of Biological Complexity, Wadsworth Center, Empire State Plaza, Albany, New York, USA
| | | |
Collapse
|
1252
|
Zheng SQ, Kollman JM, Braunfeld MB, Sedat JW, Agard DA. Automated acquisition of electron microscopic random conical tilt sets. J Struct Biol 2007; 157:148-55. [PMID: 17169745 PMCID: PMC2556511 DOI: 10.1016/j.jsb.2006.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 10/23/2006] [Accepted: 10/26/2006] [Indexed: 11/29/2022]
Abstract
Single particle reconstruction using the random conical tilt data collection geometry is a robust method for the initial determination of macromolecular structures by electron microscopy. Unfortunately, the broad adoption of this powerful approach has been limited by the practical challenges inherent in manual data collection of the required pairs of matching high and low tilt images (typically 60 degrees and 0 degrees). The microscopist is obliged to keep the imaging area centered during tilting as well as to maintain accurate focus in the tilted image while minimizing the overall electron dose, a challenging and time consuming process. To help solve these problems, we have developed an automated system for the rapid acquisition of accurately aligned and focused tilt pairs. The system has been designed to minimize the dose incurred during alignment and focusing, making it useful in both negative stain and cryo-electron microscopy. The system includes a feature for montaging untilted images to ensure that all of the particles in the tilted image may be used in the reconstruction.
Collapse
Affiliation(s)
- Shawn Q. Zheng
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158-2517, USA
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Justin M. Kollman
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158-2517, USA
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Michael B. Braunfeld
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158-2517, USA
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - John W. Sedat
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - David A. Agard
- The Howard Hughes Medical Institute, University of California, San Francisco, CA 94158-2517, USA
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
1253
|
Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ. EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 2007; 157:38-46. [PMID: 16859925 DOI: 10.1016/j.jsb.2006.05.009] [Citation(s) in RCA: 2394] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored image processing library, and a wide range of features to make it much more flexible and extensible than EMAN1. The user-level programs are better documented, more straightforward to use, and written in the Python scripting language, so advanced users can modify the programs' behavior without any recompilation. A completely rewritten 3D transformation class simplifies translation between Euler angle standards and symmetry conventions. The core C++ library has over 500 functions for image processing and associated tasks, and it is modular with introspection capabilities, so programmers can add new algorithms with minimal effort and programs can incorporate new capabilities automatically. Finally, a flexible new parallelism system has been designed to address the shortcomings in the rigid system in EMAN1.
Collapse
Affiliation(s)
- Guang Tang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
1254
|
Yan X, Sinkovits RS, Baker TS. AUTO3DEM--an automated and high throughput program for image reconstruction of icosahedral particles. J Struct Biol 2007; 157:73-82. [PMID: 17029842 PMCID: PMC1847775 DOI: 10.1016/j.jsb.2006.08.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/29/2006] [Accepted: 08/01/2006] [Indexed: 11/18/2022]
Abstract
AUTO3DEM is an automation system designed to accelerate the computationally intensive process of three-dimensional structure determination from images of vitrified icosahedral virus particles. With minimal user input and intervention, AUTO3DEM manages the flow of data between the major image reconstruction programs, monitors the progress of the computations, and intelligently updates the input parameters as the resolution of the model is improved. It is designed to be used on any computer running the Linux or UNIX operating systems and can be run in parallel mode on multi-processor systems.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA.
| | | | | |
Collapse
|
1255
|
Hewat EA, Durmort C, Jacquamet L, Concord E, Gulino-Debrac D. Architecture of the VE-cadherin Hexamer. J Mol Biol 2007; 365:744-51. [PMID: 17095015 DOI: 10.1016/j.jmb.2006.10.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 10/24/2022]
Abstract
Vascular endothelial-cadherin (VE-cadherin) is the major constituent of the adherens junctions of endothelial cells and plays a key role in angiogenesis and vascular permeability. The ectodomains EC1-4 of VE-cadherin are known to form hexamers in solution. To examine the mechanism of homotypic association of VE-cadherin, we have made a 3D reconstruction of the EC1-4 hexamer using electron microscopy and produced a homology model based on the known structure of C-cadherin EC1-5. The hexamer consists of a trimer of dimers with each N-terminal EC1 module making an antiparallel dimeric contact, and the EC4 modules forming extensive trimeric interactions. Each EC1-4 molecule makes a helical curve allowing some torsional flexibility to the edifice. While there is no direct evidence for the existence of hexamers of cadherin at adherens junctions, the model that we have produced provides indirect evidence since it can be used to explain some of the disparate results for adherens junctions. It is in accord with the X-ray and electron microscopy results, which demonstrate that the EC1 dimer is central to homotypic cadherin interaction. It provides an explanation for the force measurements of the interaction between opposing cadherin layers, which have previously been interpreted as resulting from three different interdigitating interactions. It is in accord with observations of native junctions by cryo-electron microscopy. The fact that this hexameric model of VE-cadherin can be used to explain more of the existing data on adherens junctions than any other model alone argues in favour of the existence of the hexamer at the adherens junction. In the context of the cell-cell junction these cis-trimers close to the membrane, and trans-dimers from opposing membranes, would increase the avidity of the bond.
Collapse
Affiliation(s)
- Elizabeth A Hewat
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | | | |
Collapse
|
1256
|
Hohn M, Tang G, Goodyear G, Baldwin PR, Huang Z, Penczek PA, Yang C, Glaeser RM, Adams PD, Ludtke SJ. SPARX, a new environment for Cryo-EM image processing. J Struct Biol 2007; 157:47-55. [PMID: 16931051 DOI: 10.1016/j.jsb.2006.07.003] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/01/2006] [Accepted: 07/07/2006] [Indexed: 11/15/2022]
Abstract
SPARX (single particle analysis for resolution extension) is a new image processing environment with a particular emphasis on transmission electron microscopy (TEM) structure determination. It includes a graphical user interface that provides a complete graphical programming environment with a novel data/process-flow infrastructure, an extensive library of Python scripts that perform specific TEM-related computational tasks, and a core library of fundamental C++ image processing functions. In addition, SPARX relies on the EMAN2 library and cctbx, the open-source computational crystallography library from PHENIX. The design of the system is such that future inclusion of other image processing libraries is a straightforward task. The SPARX infrastructure intelligently handles retention of intermediate values, even those inside programming structures such as loops and function calls. SPARX and all dependencies are free for academic use and available with complete source.
Collapse
Affiliation(s)
- Michael Hohn
- Lawrence Berkeley National Laboratory, Physical Bioscience Division, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1257
|
Castaño Díez D, Mueller H, Frangakis AS. Implementation and performance evaluation of reconstruction algorithms on graphics processors. J Struct Biol 2007; 157:288-95. [PMID: 17029985 DOI: 10.1016/j.jsb.2006.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/16/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
The high-throughput needs in electron tomography and in single particle analysis have driven the parallel implementation of several reconstruction algorithms and software packages on computing clusters. Here, we report on the implementation of popular reconstruction algorithms as weighted backprojection, simultaneous iterative reconstruction technique (SIRT) and simultaneous algebraic reconstruction technique (SART) on common graphics processors (GPUs). The speed gain achieved on the GPUs is in the order of sixty (60x) to eighty (80x) times, compared to the performance of a single central processing unit (CPU), which is comparable to the acceleration achieved on a medium-range computing cluster. This acceleration of the reconstruction is caused by the highly specialized architecture of the GPU. Further, we show that the quality of the reconstruction on the GPU is comparable to the CPU. We present detailed flow-chart diagrams of the implementation. The reconstruction software does not require special hardware apart from the commercially available graphics cards and could be easily integrated in software packages like SPIDER, XMIPP, TOM-Package and others.
Collapse
Affiliation(s)
- Daniel Castaño Díez
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
1258
|
Plaisier JR, Jiang L, Abrahams JP. Cyclops: New modular software suite for cryo-EM. J Struct Biol 2007; 157:19-27. [PMID: 16931052 DOI: 10.1016/j.jsb.2006.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/22/2006] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
Cyclops is a new computer program designed as a graphical front-end that allows easy control and interaction with tasks and programs for 3D reconstruction of biological complexes using cryo-electron microscopy. Cyclops' current plug-ins are designed for automated particle picking and include two new algorithms, automated carbon masking and quaternion based rotation space sampling, which are also presented here. Additional plug-ins are in the pipeline. Cyclops allows straightforward organization and visualization of all data and tasks and allows both interactive and batch-wise processing. Furthermore, it was designed for straightforward implementation in grid architectures. As a front-end to a collection of programs it provides a common interface to these programs, thus enhancing the usability of the suite and the productivity of the user.
Collapse
Affiliation(s)
- J R Plaisier
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
1259
|
Petrov AS, Harvey SC. Structural and Thermodynamic Principles of Viral Packaging. Structure 2007; 15:21-7. [PMID: 17223529 DOI: 10.1016/j.str.2006.11.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/07/2006] [Accepted: 11/11/2006] [Indexed: 10/23/2022]
Abstract
Packaging of genetic material inside a capsid is one of the major processes in the lifecycle of bacteriophages. To establish the basic principles of packing double-stranded DNA into a phage, we present a low-resolution model of bacteriophage varphi29 and report simulations of DNA packaging. The simulations show excellent agreement with available experimental data, including the forces of packaging and the average structures seen in cryo-electron microscopy. The conformation of DNA inside the bacteriophage is primarily determined by the shape of the capsid and the elastic properties of DNA, but the energetics of packaging are dominated by electrostatic repulsions and the large entropic penalty associated with DNA confinement. In this slightly elongated capsid, the DNA assumes a folded toroidal conformation, rather than a coaxial spool. The model can be used to study packaging of other bacteriophages with different shapes under a range of environmental conditions.
Collapse
Affiliation(s)
- Anton S Petrov
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | | |
Collapse
|
1260
|
Egelman EH. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J Struct Biol 2007; 157:83-94. [PMID: 16919474 DOI: 10.1016/j.jsb.2006.05.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/02/2006] [Accepted: 05/16/2006] [Indexed: 11/20/2022]
Abstract
Many important biological macromolecules exist as helical polymers. Examples are actin, tubulin, myosin, RecA, Rad51, flagellin, pili, and filamentous bacteriophage. The first application of three-dimensional reconstruction from electron microscopic images was to a helical polymer, and a number of laboratories today are using helical tubes of integral membrane proteins for solving the structure of these proteins in the electron microscope at near atomic resolution. We have developed a method to analyze and reconstruct electron microscopic images of macromolecular helical polymers, the iterative helical real space reconstruction (IHRSR) algorithm. We can show that when there is disorder or heterogeneity, when the specimens diffract weakly, or when Bessel functions overlap, we can do far better with our method than can be done using traditional Fourier-Bessel approaches. In many cases, structures that were not even amenable to analysis can be solved at fairly high resolution using our method. The problems inherent in the traditional approach are discussed, and examples are presented illustrating how the IHRSR approach surmounts these problems.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences, P.O. Box 800733, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
1261
|
Affiliation(s)
- Yifan Cheng
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
1262
|
Viadiu H, Gonen T, Walz T. Projection map of aquaporin-9 at 7 A resolution. J Mol Biol 2006; 367:80-8. [PMID: 17239399 PMCID: PMC1839870 DOI: 10.1016/j.jmb.2006.12.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/21/2022]
Abstract
Aquaporin-9, an aquaglyceroporin present in diverse tissues, is unique among aquaporins because it is not only permeable to water, urea and glycerol, but also allows passage of larger uncharged solutes. Single particle analysis of negatively stained recombinant rat aquaporin-9 revealed a particle size characteristic of the tetrameric organization of all members of the aquaporin family. Reconstitution of aquaporin-9 into two-dimensional crystals enabled us to calculate a projection map at 7 A resolution. The projection structure indicates a tetrameric structure, similar to GlpF, with each square-like monomer forming a pore. A comparison of the pore-lining residues between the crystal structure of GlpF and a homology model of aquaporin-9 locates substitutions in these residues predominantly to the hydrophobic edge of the tripathic pore of GlpF, providing first insights into the structural basis for the broader substrate specificity of aquaporin-9.
Collapse
Affiliation(s)
- Hector Viadiu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
1263
|
Ruiz T, Lenox C, Radermacher M, Mintz KP. Novel surface structures are associated with the adhesion of Actinobacillus actinomycetemcomitans to collagen. Infect Immun 2006; 74:6163-70. [PMID: 17057091 PMCID: PMC1695496 DOI: 10.1128/iai.00857-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus actinomycetemcomitans is a gram-negative, facultative, anaerobic bacterium that colonizes the human oral cavity and the upper respiratory tract. This bacterium is strongly associated with localized aggressive periodontitis and adult periodontitis and is the causative agent for other serious systemic infections. Recently, we have identified a protein, EmaA (extracellular matrix protein adhesin A), that mediates the adhesion of A. actinomycetemcomitans to collagen. The conserved sequence and predicted secondary structure suggest that EmaA is an orthologue of the Yersinia enterocolitica adhesin YadA. Electron microscopy examinations of A. actinomycetemcomitans have identified antenna-like protrusions associated with the surface of the bacterium. These structures are absent on emaA mutant strains and can be restored by transformation of the mutant strain with emaA in trans. The loss of these structures is associated with a decrease in the binding of this bacterium to collagen. The antenna-like structures are composed of a long rod that terminates in an ellipsoidal head region. The analysis of these structures using image processing techniques has provided an initial estimate of the overall dimensions, which suggests that the appendages are oligomeric structures formed by either three or four subunits. Together, the data suggest that emaA is required for the expression of novel appendages on the surface of A. actinomycetemcomitans that mediate the adhesion of the bacterium to collagen.
Collapse
Affiliation(s)
- Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
1264
|
Rivera-Calzada A, Spagnolo L, Pearl LH, Llorca O. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep 2006; 8:56-62. [PMID: 17159921 PMCID: PMC1796749 DOI: 10.1038/sj.embor.7400847] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/11/2006] [Accepted: 10/02/2006] [Indexed: 11/10/2022] Open
Abstract
Recognition of DNA double-strand breaks during non-homologous end joining is carried out by the Ku70-Ku80 protein, a 150 kDa heterodimer that recruits the DNA repair kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the lesion. The atomic structure of a truncated Ku70-Ku80 was determined; however, the subunit-specific carboxy-terminal domain of Ku80--essential for binding to DNA-PKcs--was determined only in isolation, and the C-terminal domain of Ku70 was not resolved in its DNA-bound conformation. Both regions are conserved and mediate protein-protein interactions specific to mammals. Here, we reconstruct the three-dimensional structure of the human full-length Ku70-Ku80 dimer at 25 A resolution, alone and in complex with DNA, by using single-particle electron microscopy. We map the C-terminal regions of both subunits, and their conformational changes after DNA and DNA-PKcs binding to define a molecular model of the functions of these domains during DNA repair in the context of full-length Ku70-Ku80 protein.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, Campus Complutense University, Madrid 28040, Spain
| | - Laura Spagnolo
- Section of Structural Biology and Cancer Research UK DNA Repair Enzyme Research Group, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Laurence H Pearl
- Section of Structural Biology and Cancer Research UK DNA Repair Enzyme Research Group, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
- Tel: +44 20 7153 5422; Fax: +44 20 7153 5457; E-mail:
| | - Oscar Llorca
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, Campus Complutense University, Madrid 28040, Spain
- Tel: +34 91 837 3112 ext 4446; Fax: +34 91 5360432; E-mail:
| |
Collapse
|
1265
|
Hofacker M, Gompf S, Zutz A, Presenti C, Haase W, van der Does C, Model K, Tampé R. Structural and functional fingerprint of the mitochondrial ATP-binding cassette transporter Mdl1 from Saccharomyces cerevisiae. J Biol Chem 2006; 282:3951-61. [PMID: 17150958 DOI: 10.1074/jbc.m609899200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette half-transporter Mdl1 from Saccharomyces cerevisiae has been proposed to be involved in the quality control of misassembled respiratory chain complexes by exporting degradation products generated by the m-AAA proteases from the matrix. Direct functional or structural data of the transport complex are, however, not known so far. After screening expression in various hosts, Mdl1 was overexpressed 100-fold to 1% of total mitochondrial membrane protein in S. cerevisiae. Based on detergent screens, Mdl1 was solubilized and purified to homogeneity. Mdl1 showed a high binding affinity for MgATP (Kd = 0.26 microm) and an ATPase activity with a Km of 0.86 mm (Hill coefficient of 0.98) and a turnover rate of 2.6 ATP/s. Mutagenesis of the conserved glutamate downstream of the Walker B motif (E599Q) or the conserved histidine of the H-loop (H631A) abolished ATP hydrolysis, whereas ATP binding was not affected. Mdl1 reconstituted into liposomes showed an ATPase activity similar to the solubilized complex. By single particle electron microscopy, a first three-dimensional structure of the mitochondrial ATP-binding cassette transporter was derived at 2.3-nm resolution, revealing a homodimeric complex in an open conformation.
Collapse
Affiliation(s)
- Matthias Hofacker
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1266
|
Maiato H, Hergert PJ, Moutinho-Pereira S, Dong Y, Vandenbeldt KJ, Rieder CL, McEwen BF. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma 2006; 115:469-80. [PMID: 16909258 PMCID: PMC2747472 DOI: 10.1007/s00412-006-0076-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 05/23/2006] [Accepted: 06/12/2006] [Indexed: 12/17/2022]
Abstract
Drosophila melanogaster is a widely used model organism for the molecular dissection of mitosis in animals. However, despite the popularity of this system, no studies have been published on the ultrastructure of Drosophila kinetochores and kinetochore fibers (K-fibers) in somatic cells. To amend this situation, we used correlative light (LM) and electron microscopy (EM) to study kinetochores in cultured Drosophila S2 cells during metaphase, and after colchicine treatment to depolymerize all microtubules (MTs). We find that the structure of attached kinetochores in S2 cells is indistinct, consisting of an amorphous inner zone associated with a more electron-dense peripheral surface layer that is approximately 40-50 nm thick. On average, each S2 kinetochore binds 11+/-2 MTs, in contrast to the 4-6 MTs per kinetochore reported for Drosophila spermatocytes. Importantly, nearly all of the kinetochore MT plus ends terminate in the peripheral surface layer, which we argue is analogous to the outer plate in vertebrate kinetochores. Our structural observations provide important data for assessing the results of RNAi studies of mitosis, as well as for the development of mathematical modelling and computer simulation studies in Drosophila and related organisms.
Collapse
Affiliation(s)
- Helder Maiato
- Institute for Molecular and Cell Biology, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
1267
|
Raunser S, Appel M, Ganea C, Geldmacher-Kaufer U, Fendler K, Kühlbrandt W. Structure and function of prokaryotic glutamate transporters from Escherichia coli and Pyrococcus horikoshii. Biochemistry 2006; 45:12796-805. [PMID: 17042498 DOI: 10.1021/bi061008+] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glutamate transporters GltP(Ec) from Escherichia coli and GltP(Ph) from Pyrococcus horikoshii were overexpressed in E. coli and purified to homogeneity with a yield of 1-2 mg/L of culture. Single-particle analysis and electron microscopy indicate that GltP(Ph) is a trimer in detergent solution. Electron microscopy of negatively stained GltP(Ph) two-dimensional crystals shows that the transporter is a trimer also in the membrane. Gel filtration of GltP(Ec) indicates a reversible equilibrium of two oligomeric states in detergent solution that we identified as a trimer and hexamer by blue-native gel electrophoresis and cross-linking. The purified transporters were fully active upon reconstitution into liposomes, as demonstrated by the uptake of radioactively labeled L-aspartate or L-glutamate. L-aspartate/L-glutamate transport of GltP(Ec) involves the cotransport of protons and depends only on pH, whereas GltP(Ph) catalyzes L-glutamate transport with a cotransport of H+ or Na+. L-glutamate induces a fast transient current in GltP(Ph) proteoliposomes coupled to a solid supported membrane (SSM). We show that the electric signal depends on the concentration of Na+ or H+ outside the proteoliposomes and that GltP(Ph) does not require K+ inside the proteoliposomes. In addition, the electrical currents are inhibited by TBOA and HIP-B. The half-saturation concentration for activation of GltP(Ph) glutamate transport (K0.5(glut)) is 194 microM.
Collapse
Affiliation(s)
- Stefan Raunser
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
1268
|
Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 2006; 444:507-11. [PMID: 17086193 DOI: 10.1038/nature05326] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/10/2006] [Indexed: 11/08/2022]
Abstract
Membrane and secretory proteins can be co-translationally inserted into or translocated across the membrane. This process is dependent on signal sequence recognition on the ribosome by the signal recognition particle (SRP), which results in targeting of the ribosome-nascent-chain complex to the protein-conducting channel at the membrane. Here we present an ensemble of structures at subnanometre resolution, revealing the signal sequence both at the ribosomal tunnel exit and in the bacterial and eukaryotic ribosome-SRP complexes. Molecular details of signal sequence interaction in both prokaryotic and eukaryotic complexes were obtained by fitting high-resolution molecular models. The signal sequence is presented at the ribosomal tunnel exit in an exposed position ready for accommodation in the hydrophobic groove of the rearranged SRP54 M domain. Upon ribosome binding, the SRP54 NG domain also undergoes a conformational rearrangement, priming it for the subsequent docking reaction with the NG domain of the SRP receptor. These findings provide the structural basis for improving our understanding of the early steps of co-translational protein sorting.
Collapse
Affiliation(s)
- Mario Halic
- Gene Center, Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1269
|
Schüler M, Connell SR, Lescoute A, Giesebrecht J, Dabrowski M, Schroeer B, Mielke T, Penczek PA, Westhof E, Spahn CMT. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 2006; 13:1092-6. [PMID: 17115051 DOI: 10.1038/nsmb1177] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/31/2006] [Indexed: 02/05/2023]
Abstract
Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation.
Collapse
Affiliation(s)
- Martin Schüler
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1270
|
Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA. Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 2006; 25:583-94. [PMID: 17045822 DOI: 10.1016/j.immuni.2006.07.016] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
We used negative stain electron microscopy (EM) to examine the conformational changes in the ectodomains required for activation of the leukocyte integrins alpha(X)beta(2) and alpha(L)beta(2). They transitioned between a bent conformation and two extended conformations in which the headpiece was in either a closed or an open state. Extended integrins exhibited marked flexibility at the alpha subunit genu and between integrin epidermal growth factor-like (I-EGF) domains 1 and 2. A clasp to mimic juxtamembrane association between the integrin alpha and beta subunits stabilized the bent conformation strongly for alpha(X)beta(2) and less so for alpha(L)beta(2). A small molecule allosteric antagonist induced the extended, open headpiece conformation. A Fab known to activate beta(2) integrins on leukocytes induced extension, and a Fab reporter of activation bound only after extension had been induced. The results establish an intimate relationship between extension of beta(2) integrins and their activation in immune responses and leukocyte trafficking.
Collapse
Affiliation(s)
- Noritaka Nishida
- CBR Institute for Biomedical Research, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
1271
|
Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 2006; 366:179-92. [PMID: 17157868 DOI: 10.1016/j.jmb.2006.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/04/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
TIP48 and TIP49 are two related and highly conserved eukaryotic AAA(+) proteins with an essential biological function and a critical role in major pathways that are closely linked to cancer. They are found together as components of several highly conserved chromatin-modifying complexes. Both proteins show sequence homology to bacterial RuvB but the nature and mechanism of their biochemical role remain unknown. Recombinant human TIP48 and TIP49 were assembled into a stable high molecular mass equimolar complex and tested for activity in vitro. TIP48/TIP49 complex formation resulted in synergistic increase in ATPase activity but ATP hydrolysis was not stimulated in the presence of single-stranded, double-stranded or four-way junction DNA and no DNA helicase or branch migration activity could be detected. Complexes with catalytic defects in either TIP48 or TIP49 had no ATPase activity showing that both proteins within the TIP48/TIP49 complex are required for ATP hydrolysis. The structure of the TIP48/TIP49 complex was examined by negative stain electron microscopy. Three-dimensional reconstruction at 20 A resolution revealed that the TIP48/TIP49 complex consisted of two stacked hexameric rings with C6 symmetry. The top and bottom rings showed substantial structural differences. Interestingly, TIP48 formed oligomers in the presence of adenine nucleotides, whilst TIP49 did not. The results point to biochemical differences between TIP48 and TIP49, which may explain the structural differences between the two hexameric rings and could be significant for specialised functions that the proteins perform individually.
Collapse
Affiliation(s)
- Teena Puri
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
1272
|
Thomas DR, Francis NR, Xu C, DeRosier DJ. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:7039-48. [PMID: 17015643 PMCID: PMC1636246 DOI: 10.1128/jb.00552-06] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM.
Collapse
Affiliation(s)
- Dennis R Thomas
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
1273
|
Kaur S, Gillet R, Li W, Gursky R, Frank J. Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc Natl Acad Sci U S A 2006; 103:16484-9. [PMID: 17056712 PMCID: PMC1618813 DOI: 10.1073/pnas.0607438103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eubacterial translation, lack of a stop codon on the mRNA results in a defective, potentially toxic polypeptide stalled on the ribosome. Bacteria possess a specialized mRNA, called transfer messenger RNA (tmRNA), to rescue such a stalled system. tmRNA contains a transfer RNA (tRNA)-like domain (TLD), which enters the ribosome as a tRNA and places an ORF into the mRNA channel. This ORF codes for a signal marking the polypeptide for degradation and ends in a stop codon, leading to release of the faulty polypeptide and recycling of the ribosome. The binding of tmRNA to the stalled ribosome is mediated by small protein B (SmpB). By means of cryo-EM, we obtained a density map for the preaccommodated state of the tmRNA.SmpB.EF-Tu.70S ribosome complex with much improved definition for the tmRNA-SmpB complex, showing two SmpB molecules bound per ribosome, one toward the A site on the 30S subunit side and the other bound to the 50S subunit near the GTPase-associated center. tmRNA is strongly attached to the 30S subunit head by multiple contact sites, involving most of its pseudoknots and helices. The map clarifies that the TLD is located near helix 34 and protein S19 of the 30S subunit, rather than in the A site as tRNA for normal translation, so that the TLD is oriented toward the ORF.
Collapse
Affiliation(s)
- Sukhjit Kaur
- *Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509
| | - Reynald Gillet
- Institut Fédératif de Recherche 140, Unité Propre de Recherche de l' Enseignement Jeune Equipe 2311, Institut National de la Santé et de la Recherche Médicale Biochimie Pharmaceutique, Université de Rennes I, 2 Avenue du Prof. Léon Bernard, 35043 Rennes, France; and
| | - Wen Li
- *Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509
| | - Richard Gursky
- Howard Hughes Medical Institute
- Health Research Inc., and
| | - Joachim Frank
- Howard Hughes Medical Institute
- Health Research Inc., and
- *Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509
- Department of Biomedical Sciences, State University of New York, Empire State Plaza, Albany, NY 12201-0509
| |
Collapse
|
1274
|
Schaffitzel C, Oswald M, Berger I, Ishikawa T, Abrahams JP, Koerten HK, Koning RI, Ban N. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 2006; 444:503-6. [PMID: 17086205 DOI: 10.1038/nature05182] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/18/2006] [Indexed: 11/09/2022]
Abstract
The prokaryotic signal recognition particle (SRP) targets membrane proteins into the inner membrane. It binds translating ribosomes and screens the emerging nascent chain for a hydrophobic signal sequence, such as the transmembrane helix of inner membrane proteins. If such a sequence emerges, the SRP binds tightly, allowing the SRP receptor to lock on. This assembly delivers the ribosome-nascent chain complex to the protein translocation machinery in the membrane. Using cryo-electron microscopy and single-particle reconstruction, we obtained a 16 A structure of the Escherichia coli SRP in complex with a translating E. coli ribosome containing a nascent chain with a transmembrane helix anchor. We also obtained structural information on the SRP bound to an empty E. coli ribosome. The latter might share characteristics with a scanning SRP complex, whereas the former represents the next step: the targeting complex ready for receptor binding. High-resolution structures of the bacterial ribosome and of the bacterial SRP components are available, and their fitting explains our electron microscopic density. The structures reveal the regions that are involved in complex formation, provide insight into the conformation of the SRP on the ribosome and indicate the conformational changes that accompany high-affinity SRP binding to ribosome nascent chain complexes upon recognition of the signal sequence.
Collapse
Affiliation(s)
- Christiane Schaffitzel
- ETH Zurich, Institute for Molecular Biology and Biophysics, HPK Building, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
1275
|
DI LUCCIO E, PETSCHACHER B, VOEGTLI J, CHOU HT, STAHLBERG H, NIDETZKY B, WILSON DK. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. J Mol Biol 2006; 365:783-98. [PMID: 17123542 PMCID: PMC1995121 DOI: 10.1016/j.jmb.2006.10.068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 11/16/2022]
Abstract
The primary metabolic route for D-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates D-xylulose, the last step in this conversion. The apo and D-xylulose-bound crystal structures of Escherichia coli XK have been determined and show a dimer composed of two domains separated by an open cleft. XK dimerization was observed directly by a cryo-EM reconstruction at 36 A resolution. Kinetic studies reveal that XK has a weak substrate-independent MgATP-hydrolyzing activity, and phosphorylates several sugars and polyols with low catalytic efficiency. Binding of pentulose and MgATP to form the reactive ternary complex is strongly synergistic. Although the steady-state kinetic mechanism of XK is formally random, a path is preferred in which D-xylulose binds before MgATP. Modelling of MgATP binding to XK and the accompanying conformational change suggests that sugar binding is accompanied by a dramatic hinge-bending movement that enhances interactions with MgATP, explaining the observed synergism. A catalytic mechanism is proposed and supported by relevant site-directed mutants.
Collapse
Affiliation(s)
- Eric DI LUCCIO
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Barbara PETSCHACHER
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | - Jennifer VOEGTLI
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Hui-Ting CHOU
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Henning STAHLBERG
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
| | - Bernd NIDETZKY
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, A-8010 Graz, Austria
| | - David K. WILSON
- Section of Molecular and Cellular Biology, University of California, Davis, California, USA 95616
- * Corresponding author, Section of Molecular and Cellular Biology, One Shields Ave., University of California, Davis, CA, 95616, Phone: (530)752-1136; Fax: (530)752-3085,
| |
Collapse
|
1276
|
Albertini AAV, Clapier CR, Wernimont AK, Schoehn G, Weissenhorn W, Ruigrok RWH. Isolation and crystallization of a unique size category of recombinant Rabies virus Nucleoprotein-RNA rings. J Struct Biol 2006; 158:129-33. [PMID: 17126031 DOI: 10.1016/j.jsb.2006.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/10/2006] [Accepted: 10/15/2006] [Indexed: 11/21/2022]
Abstract
In order to study the packaging of rabies virus RNA inside the viral nucleocapsid, rabies nucleoprotein was expressed in insect cells. In the cells, it binds to cellular RNA to form long, helical or short circular complexes, depending on the length of the bound RNA. The circular complexes contained from 9 up to 13 N-protomers per ring. Separation of the rings into defined size classes was impossible through regular column chromatographies or gradient centrifugation. The size classes could be separated by native polyacrylamide gel electrophoresis. A large-scale separation was achieved with a 4% native gel using a preparative electrophoresis apparatus. Crystallization trials were set up with N-RNA rings from three size classes and crystals were obtained in all cases. The best diffracting crystals, diffracting up to 6A, contained rings with 11 N-protomers plus an RNA molecule of 99 nucleotides. The diffraction limit was improved to 3.5A by air dehydration prior to flash freezing.
Collapse
Affiliation(s)
- Aurélie A V Albertini
- Institut de Virologie Moléculaire et Structurale, FRE 2854 Université Joseph Fourier-CNRS, IVMS, c/o EMBL, BP 181, 38042 Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
1277
|
Gubellini F, Francia F, Busselez J, Venturoli G, Lévy D. Functional and structural analysis of the photosynthetic apparatus of Rhodobacter veldkampii. Biochemistry 2006; 45:10512-20. [PMID: 16939203 DOI: 10.1021/bi0610000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.
Collapse
Affiliation(s)
- Francesca Gubellini
- Institut Curie, UMR-CNRS 168 and LRC-CEA 34V, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
1278
|
Elmlund H, Baraznenok V, Lindahl M, Samuelsen CO, Koeck PJB, Holmberg S, Hebert H, Gustafsson CM. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci U S A 2006; 103:15788-93. [PMID: 17043218 PMCID: PMC1635081 DOI: 10.1073/pnas.0607483103] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II.
Collapse
Affiliation(s)
- Hans Elmlund
- *Department of Biosciences and Nutrition, Karolinska Institutet and School of Technology and Health, Royal Institute of Technology, Novum, SE-141 87 Huddinge, Sweden
- Department of Molecular Biophysics, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Vera Baraznenok
- Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
| | - Martin Lindahl
- Department of Molecular Biophysics, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Camilla O. Samuelsen
- Department of Genetics, Institute of Molecular Biology, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark; and
| | - Philip J. B. Koeck
- *Department of Biosciences and Nutrition, Karolinska Institutet and School of Technology and Health, Royal Institute of Technology, Novum, SE-141 87 Huddinge, Sweden
- University College of Southern Stockholm, SE-141 57 Huddinge, Sweden
| | - Steen Holmberg
- Department of Genetics, Institute of Molecular Biology, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark; and
| | - Hans Hebert
- *Department of Biosciences and Nutrition, Karolinska Institutet and School of Technology and Health, Royal Institute of Technology, Novum, SE-141 87 Huddinge, Sweden
- To whom correspondence may be addressed. E-mail:
or
| | - Claes M. Gustafsson
- Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
1279
|
Peng G, Bostina M, Radermacher M, Rais I, Karas M, Michel H. Biochemical and electron microscopic characterization of the F1F0 ATP synthase from the hyperthermophilic eubacterium Aquifex aeolicus. FEBS Lett 2006; 580:5934-40. [PMID: 17045990 DOI: 10.1016/j.febslet.2006.09.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 01/05/2023]
Abstract
The F(1)F(0) ATP synthase has been purified from the hyperthermophilic eubacterium Aquifex aeolicus and characterized. Its subunits have been identified by MALDI-mass spectrometry through peptide mass fingerprinting and MS/MS. It contains the canonical subunits alpha, beta, gamma, delta and epsilon of F(1) and subunits a and c of F(0). Two versions of the b subunit were found, which show a low sequence homology to each other. Most likely they form a heterodimer. An electron microscopic single particle analysis revealed clear structural details, including two stalks connecting F(1) and F(0). In several orientations the central stalk appears to be tilted and/or kinked. It is unclear whether there is a direct connection between the peripheral stalk and the delta subunit.
Collapse
Affiliation(s)
- Guohong Peng
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
1280
|
Edmonds L, Liu A, Kwan JJ, Avanessy A, Caracoglia M, Yang I, Maxwell KL, Rubenstein J, Davidson AR, Donaldson LW. The NMR structure of the gpU tail-terminator protein from bacteriophage lambda: identification of sites contributing to Mg(II)-mediated oligomerization and biological function. J Mol Biol 2006; 365:175-86. [PMID: 17056065 DOI: 10.1016/j.jmb.2006.09.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 11/29/2022]
Abstract
During the late stages of lambda bacteriophage assembly, the protein gpU terminates tail polymerization and participates at the interface between the mature capsid and tail components. When it engages the lambda tail, gpU undergoes a monomer-hexamer transition to achieve its biologically active form. Towards understanding how gpU participates in multiple protein-protein interactions, we have solved the structure of gpU in its monomeric state using NMR methods. The structure reveals a mixed alpha/beta motif with several dynamic loops at the periphery. Addition of 20 mM MgCl(2) is known to oligomerize gpU in the absence of its protein partners. Multiple image analysis of electron micrographs revealed ring-like structures of magnesium ion saturated gpU with a 30 A pore, consistent with its function as a portal for the passage of viral DNA into the host bacterium. The ability of magnesium ions to promote oligomerization was lost when substitutions were made at a cluster of acidic amino acids in the vicinity of helix alpha2 and the beta1-beta2 loop. Furthermore, substitutions at these sites abolished the biological activity of gpU.
Collapse
Affiliation(s)
- Lizbeth Edmonds
- Department of Biology, York University, 4700 Keele Street, Canada M3J 1P3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1281
|
Wolanin PM, Baker MD, Francis NR, Thomas DR, DeRosier DJ, Stock JB. Self-assembly of receptor/signaling complexes in bacterial chemotaxis. Proc Natl Acad Sci U S A 2006; 103:14313-8. [PMID: 16973743 PMCID: PMC1599961 DOI: 10.1073/pnas.0606350103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli chemotaxis is mediated by membrane receptor/histidine kinase signaling complexes. Fusing the cytoplasmic domain of the aspartate receptor, Tar, to a leucine zipper dimerization domain produces a hybrid, lzTar(C), that forms soluble complexes with CheA and CheW. The three-dimensional reconstruction of these complexes was different from that anticipated based solely on structures of the isolated components. We found that analogous complexes self-assembled with a monomeric cytoplasmic domain fragment of the serine receptor without the leucine zipper dimerization domain. These complexes have essentially the same size, composition, and architecture as those formed from lzTar(C). Thus, the organization of these receptor/signaling complexes is determined by conserved interactions between the constituent chemotaxis proteins and may represent the active form in vivo. To understand this structure in its cellular context, we propose a model involving parallel membrane segments in receptor-mediated CheA activation in vivo.
Collapse
Affiliation(s)
| | | | | | - Dennis R. Thomas
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454
| | | | - Jeffry B. Stock
- Departments of *Molecular Biology and
- Chemistry, Princeton University, Princeton, NJ 08544; and
| |
Collapse
|
1282
|
Ranson N, Stromer T, Bousset L, Melki R, Serpell LC. Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Sci 2006; 15:2481-7. [PMID: 17001037 PMCID: PMC2242408 DOI: 10.1110/ps.062215206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The protein Ure2 from baker's yeast is associated with a heritable and transmissible phenotypic change in the yeast Saccharomyces cerevisiae. Such prion properties are thought to arise from the fact that Ure2p is able to self-assemble into insoluble fibrils. Assemblies of Ure2p are composed of full-length proteins in which the structure of the globular, functional, C-terminal domain is retained. We have carried out structural studies on full-length, wild-type Ure2p fibrils with a regularly twisted morphology. Using electron microscopy and cryo-electron microscopy with image analysis we show high-resolution images of the twisted filaments revealing details within the fibrillar structure. We examine these details in light of recent proposed models and discuss how this new information contributes to an understanding of the architecture of Ure2p yeast prion fibrils.
Collapse
Affiliation(s)
- Neil Ranson
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
1283
|
Mainprize IL, Beniac DR, Falkovskaia E, Cleverley RM, Gierasch LM, Ottensmeyer FP, Andrews DW. The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy. Mol Biol Cell 2006; 17:5063-74. [PMID: 16987964 PMCID: PMC1679673 DOI: 10.1091/mbc.e06-05-0384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Structural studies on various domains of the ribonucleoprotein signal recognition particle (SRP) have not converged on a single complete structure of bacterial SRP consistent with the biochemistry of the particle. We obtained a three-dimensional structure for Escherichia coli SRP by cryoscanning transmission electron microscopy and mapped the internal RNA by electron spectroscopic imaging. Crystallographic data were fit into the SRP reconstruction, and although the resulting model differed from previous models, they could be rationalized by movement through an interdomain linker of Ffh, the protein component of SRP. Fluorescence resonance energy transfer experiments determined interdomain distances that were consistent with our model of SRP. Docking our model onto the bacterial ribosome suggests a mechanism for signal recognition involving interdomain movement of Ffh into and out of the nascent chain exit site and suggests how SRP could interact and/or compete with the ribosome-bound chaperone, trigger factor, for a nascent chain during translation.
Collapse
Affiliation(s)
- Iain L. Mainprize
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada
| | - Daniel R. Beniac
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg R3E 3R2, Canada
| | - Elena Falkovskaia
- Departments of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Robert M. Cleverley
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Lila M. Gierasch
- Departments of Biochemistry and Molecular Biology and Chemistry, University of Massachusetts, Amherst, MA 01003
| | - F. Peter Ottensmeyer
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
| | - David W. Andrews
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Canada
| |
Collapse
|
1284
|
Takagi Y, Calero G, Komori H, Brown JA, Ehrensberger AH, Hudmon A, Asturias F, Kornberg RD. Head module control of mediator interactions. Mol Cell 2006; 23:355-64. [PMID: 16885025 DOI: 10.1016/j.molcel.2006.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 05/22/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
Yeast Mediator proteins interacting with Med17(Srb4) have been expressed at a high level with the use of recombinant baculoviruses and recovered in homogeneous form as a seven subunit, 223 kDa complex. Electron microscopy and single-particle analysis identify this complex as the Mediator head module. The recombinant head module complements "headless" Mediator for the initiation of transcription in vitro. The module interacts with an RNA polymerase II-TFIIF complex, but not with the polymerase or TFIIF alone. This interaction is lost in the presence of a DNA template and associated RNA transcript, recapitulating the release of Mediator that occurs upon the initiation of transcription. Disruption of the head module in a temperature-sensitive mutant in vivo leads to the release of middle and tail modules from a transcriptionally active promoter. The head module evidently controls Mediator-RNA polymerase II and Mediator-promoter interactions.
Collapse
Affiliation(s)
- Yuichiro Takagi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
1285
|
Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnóczky G. Structural and functional features and significance of the physical linkage between ER and mitochondria. ACTA ACUST UNITED AC 2006; 174:915-21. [PMID: 16982799 PMCID: PMC2064383 DOI: 10.1083/jcb.200604016] [Citation(s) in RCA: 1081] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of mitochondria in cell metabolism and survival is controlled by calcium signals that are commonly transmitted at the close associations between mitochondria and endoplasmic reticulum (ER). However, the physical linkage of the ER-mitochondria interface and its relevance for cell function remains elusive. We show by electron tomography that ER and mitochondria are adjoined by tethers that are approximately 10 nm at the smooth ER and approximately 25 nm at the rough ER. Limited proteolysis separates ER from mitochondria, whereas expression of a short "synthetic linker" (<5 nm) leads to tightening of the associations. Although normal connections are necessary and sufficient for proper propagation of ER-derived calcium signals to the mitochondria, tightened connections, synthetic or naturally observed under apoptosis-inducing conditions, make mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected dependence of cell function and survival on the maintenance of proper spacing between the ER and mitochondria.
Collapse
Affiliation(s)
- György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1286
|
Zhang Y, Kostyuchenko VA, Rossmann MG. Structural analysis of viral nucleocapsids by subtraction of partial projections. J Struct Biol 2006; 157:356-64. [PMID: 17064936 PMCID: PMC1876683 DOI: 10.1016/j.jsb.2006.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/06/2006] [Accepted: 09/06/2006] [Indexed: 11/17/2022]
Abstract
The nucleocapsid of flavivirus particles does not have a recognizable capsid structure when using icosahedral averaging for cryo-electron microscopy structure determinations. The apparent absence of a definitive capsid structure could be due to a lack of synchronization of the symmetry elements of the external glycoprotein layer with those of the core or because the nucleocapsid does not have the same structure within each particle. A technique has been developed to determine the structure of the capsid, and possibly also of the genome, for icosahedral viruses, such as flaviviruses, using cryo-electron microscopy. The method is applicable not only to the analyses of viral cores, but also to the missing structure of multi-component complexes due to symmetry mismatches. The density contributed by external glycoprotein and membrane layers, derived from previously determined three-dimensional icosahedrally averaged reconstructions, was subtracted from the raw images of the virus particles. The resultant difference images were then used for a three-dimensional reconstruction. After appropriate test data sets were constructed and tested, the procedure was applied to examine the nucleocapsids of flaviviruses, which showed that there is no distinct protein density surrounding the genome. Furthermore, there was no evidence of any icosahedral symmetry within the nucleocapsid core.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | |
Collapse
|
1287
|
Clare DK, Orlova EV, Finbow MA, Harrison MA, Findlay JBC, Saibil HR. An expanded and flexible form of the vacuolar ATPase membrane sector. Structure 2006; 14:1149-56. [PMID: 16843896 DOI: 10.1016/j.str.2006.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/20/2022]
Abstract
The vacuolar ATPase integral membrane c-ring from Nephrops norvegicus occurs in paired complexes in a double membrane. Using cryo-electron microscopy and single particle image processing of 2D crystals, we have obtained a projection structure of the c-ring of N. norvegicus. The c-ring was found to be very flexible, most likely as a result of an expanded conformation of the c subunits. This structure may support a role for the vacuolar ATPase c-rings in membrane fusion.
Collapse
Affiliation(s)
- Daniel K Clare
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | | | | | | | | | | |
Collapse
|
1288
|
Hirose K, Akimaru E, Akiba T, Endow SA, Amos LA. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Mol Cell 2006; 23:913-23. [PMID: 16973442 PMCID: PMC1635653 DOI: 10.1016/j.molcel.2006.07.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 05/15/2006] [Accepted: 07/17/2006] [Indexed: 11/17/2022]
Abstract
Kinesin motor proteins release nucleotide upon interaction with microtubules (MTs), then bind and hydrolyze ATP to move along the MT. Although crystal structures of kinesin motors bound to nucleotides have been solved, nucleotide-free structures have not. Here, using cryomicroscopy and three-dimensional (3D) reconstruction, we report the structure of MTs decorated with a Kinesin-14 motor, Kar3, in the nucleotide-free state, as well as with ADP and AMPPNP, with resolution sufficient to show alpha helices. We find large structural changes in the empty motor, including melting of the switch II helix alpha4, closure of the nucleotide binding pocket, and changes in the central beta sheet reminiscent of those reported for nucleotide-free myosin crystal structures. We propose that the switch II region of the motor controls docking of the Kar3 neck by conformational changes in the central beta sheet, similar to myosin, rather than by rotation of the motor domain, as proposed for the Kif1A kinesin motor.
Collapse
Affiliation(s)
- Keiko Hirose
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan.
| | | | | | | | | |
Collapse
|
1289
|
Schoehn G, Vellieux FMD, Asunción Durá M, Receveur-Bréchot V, Fabry CMS, Ruigrok RWH, Ebel C, Roussel A, Franzetti B. An archaeal peptidase assembles into two different quaternary structures: A tetrahedron and a giant octahedron. J Biol Chem 2006; 281:36327-37. [PMID: 16973604 DOI: 10.1074/jbc.m604417200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids.
Collapse
Affiliation(s)
- Guy Schoehn
- Laboratoire de Virologie Moléculaire et Structurale c/o EMBL, FRE 2854 CNRS-UJF, 38042 Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1290
|
Malo J, Mitchell JC, Vénien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ. Engineering a 2D protein-DNA crystal. Angew Chem Int Ed Engl 2006; 44:3057-61. [PMID: 15828044 DOI: 10.1002/anie.200463027] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonathan Malo
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | |
Collapse
|
1291
|
Sachse C, Xu C, Wieligmann K, Diekmann S, Grigorieff N, Fändrich M. Quaternary Structure of a Mature Amyloid Fibril from Alzheimer’s Aβ(1-40) Peptide. J Mol Biol 2006; 362:347-54. [PMID: 16920151 DOI: 10.1016/j.jmb.2006.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/08/2006] [Accepted: 07/05/2006] [Indexed: 11/26/2022]
Abstract
Amyloid fibrils are fibrous polypeptide aggregates that can be formed in vitro and under pathologic conditions, such as in type II diabetes, Alzheimer's and Creutzfeldt-Jakob diseases. Using a range of biophysical techniques including electron microscopy we have analysed the quaternary structure of a mature amyloid fibril formed from the Abeta(1-40) peptide from Alzheimer's disease. We find that the analysed fibril is discernibly polar and represents a left-handed helix consisting of two or three protofilaments. These are organised in a manner so that the cross-section is, under the present resolution conditions (2.6 nm), S-shaped. In the cross-section, each protofilament can accommodate two beta-strands, suggesting that each protofilament contains two cross-beta-sheets. These data shed new light on the way in which Abeta(1-40) and the protofilaments formed from this peptide are organised within the mature fibril.
Collapse
Affiliation(s)
- Carsten Sachse
- Leibniz Institut für Altersforschung, Fritz-Lipmann Institut, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
1292
|
Baxter WT, Leith A, Frank J. SPIRE: the SPIDER reconstruction engine. J Struct Biol 2006; 157:56-63. [PMID: 17055743 DOI: 10.1016/j.jsb.2006.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/11/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
SPIRE is a Python program written to modernize the user interaction with SPIDER, the image processing system for electron microscopical reconstruction projects. SPIRE provides a graphical user interface (GUI) to SPIDER for executing batch files of SPIDER commands. It also lets users quickly view the status of a project by showing the last batch files that were run, as well as the data files that were generated. SPIRE handles the flexibility of the SPIDER programming environment through configuration files: XML-tagged documents that describe the batch files, directory trees, and presentation of the GUI for a given type of reconstruction project. It also provides the capability to connect to a laboratory database, for downloading parameters required by batch files at the start of a project, and uploading reconstruction results at the end of a project.
Collapse
Affiliation(s)
- William T Baxter
- Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
1293
|
Andersen CBF, Becker T, Blau M, Anand M, Halic M, Balar B, Mielke T, Boesen T, Pedersen JS, Spahn CMT, Kinzy TG, Andersen GR, Beckmann R. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature 2006; 443:663-8. [PMID: 16929303 DOI: 10.1038/nature05126] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 08/03/2006] [Indexed: 11/08/2022]
Abstract
Elongation factor eEF3 is an ATPase that, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aminoacyl-tRNA-eEF1A-GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here we present the crystal structure of Saccharomyces cerevisiae eEF3, showing that it consists of an amino-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains, with a chromodomain inserted in ABC2. Moreover, we present the cryo-electron microscopy structure of the ATP-bound form of eEF3 in complex with the post-translocational-state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain likely to stabilize the ribosomal L1 stalk in an open conformation, thus allowing tRNA release.
Collapse
Affiliation(s)
- Christian B F Andersen
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1294
|
Radermacher M, Ruiz T. Three-dimensional reconstruction of single particles in electron microscopy image processing. Methods Mol Biol 2006; 319:427-61. [PMID: 16719367 DOI: 10.1007/978-1-59259-993-6_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Three-dimensional electron microscopy of single macromolecular assemblies has made large strides forward over the last decade. A large number of image processing techniques have been developed and many have found general distribution. For the proper usage of the wide range of available techniques, a clear concept of all processing steps is essential. This chapter provides step-by-step instruction for the three-dimensional reconstruction of an unknown macromolecule. Where possible, the limitations of the techniques are explained. The chapter attempts to be sufficiently general such so as not to adhere to a single image processing system. Described are alignment techniques for two and three dimensions, classification procedures, and the usage of three-dimensional reconstruction algorithms.
Collapse
Affiliation(s)
- Michael Radermacher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, USA
| | | |
Collapse
|
1295
|
Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 2006; 281:32705-13. [PMID: 16923804 DOI: 10.1074/jbc.m606360200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.
Collapse
Affiliation(s)
- Kamoltip Promnares
- Faculty of Biological Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
1296
|
Sousa D, Grigorieff N. Ab initio resolution measurement for single particle structures. J Struct Biol 2006; 157:201-10. [PMID: 17029845 DOI: 10.1016/j.jsb.2006.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise. The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy community.
Collapse
Affiliation(s)
- Duncan Sousa
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
1297
|
Metlagel Z, Kikkawa YS, Kikkawa M. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language. J Struct Biol 2006; 157:95-105. [PMID: 16996276 DOI: 10.1016/j.jsb.2006.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/20/2006] [Accepted: 07/05/2006] [Indexed: 11/16/2022]
Abstract
Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.
Collapse
Affiliation(s)
- Zoltan Metlagel
- Department of Cell Biology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
1298
|
Majorovits E, Barton B, Schultheiss K, Pérez-Willard F, Gerthsen D, Schröder RR. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 2006; 107:213-26. [PMID: 16949755 DOI: 10.1016/j.ultramic.2006.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Imaging of weak amplitude and phase objects, such as unstained vitrified biological samples, by conventional transmission electron microscopy (TEM) suffers from poor object contrast since the amplitude and phase of the scattered electron wave change only very little. In phase contrast light microscopy the imaging of weak phase objects is greatly enhanced by the use of a quarter-wave phase plate, which produces high signal contrast by shifting the phase of the scattered light. An analogous quarter-wave plate for the electron microscope, designed as an electrostatic einzel lens, was proposed by Boersch in 1947 but the small dimensions of the device have impeded its realization up to now. We here present the first fabrication and application of a miniaturized electrostatic einzel lens driven as TEM quarter-wave phase plate. Phase modulation is generated by the electrostatic field confined to the inside of a microstructured ring electrode. This field affects the phase velocity of the unscattered part of the electron wave. By varying its strength the phase shift of the primary beam can be adjusted to pi/2, producing strong phase contrast independent of spatial frequency. The phase plate proves to be mechanically stable and does not impair image quality, in particular it does not reduce the high-resolution signal. The expected residual lens effect of the einzel lens is minimal. Our microlens is supported by conducting rods arranged in a threefold symmetry. This particular geometry provides optimized single-sideband signal transfer for spatial frequencies otherwise obstructed by the supporting rods.
Collapse
Affiliation(s)
- E Majorovits
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | |
Collapse
|
1299
|
Yan X, Dryden KA, Tang J, Baker TS. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J Struct Biol 2006; 157:211-25. [PMID: 16979906 PMCID: PMC1919437 DOI: 10.1016/j.jsb.2006.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/20/2006] [Accepted: 07/29/2006] [Indexed: 01/01/2023]
Abstract
Model-based, three-dimensional (3D) image reconstruction procedures require a starting model to initiate data analysis. We have designed an ab initio method, which we call the random model (RM) method, that automatically generates models to initiate structural analysis of icosahedral viruses imaged by cryo-electron microscopy. The robustness of the RM procedure was demonstrated on experimental sets of images for five representative viruses. The RM method also provides a straightforward way to generate unbiased starting models to derive independent 3D reconstructions and obtain a more reliable assessment of resolution. The fundamental scheme embodied in the RM method should be relatively easy to integrate into other icosahedral software packages.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA.
| | | | | | | |
Collapse
|
1300
|
Thirumurugan K, Sakamoto T, Hammer JA, Sellers JR, Knight PJ. The cargo-binding domain regulates structure and activity of myosin 5. Nature 2006; 442:212-5. [PMID: 16838021 PMCID: PMC1852638 DOI: 10.1038/nature04865] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/03/2006] [Indexed: 11/09/2022]
Abstract
Myosin 5 is a two-headed motor protein that moves cargoes along actin filaments. Its tail ends in paired globular tail domains (GTDs) thought to bind cargo. At nanomolar calcium levels, actin-activated ATPase is low and the molecule is folded. Micromolar calcium concentrations activate ATPase and the molecule unfolds. Here we describe the structure of folded myosin and the GTD's role in regulating activity. Electron microscopy shows that the two heads lie either side of the tail, contacting the GTDs at a lobe of the motor domain (approximately Pro 117-Pro 137) that contains conserved acidic side chains, suggesting ionic interactions between motor domain and GTD. Myosin 5 heavy meromyosin, a constitutively active fragment lacking the GTDs, is inhibited and folded by a dimeric GST-GTD fusion protein. Motility assays reveal that at nanomolar calcium levels heavy meromyosin moves robustly on actin filaments whereas few myosins bind or move. These results combine to show that with no cargo, the GTDs bind in an intramolecular manner to the motor domains, producing an inhibited and compact structure that binds weakly to actin and allows the molecule to recycle towards new cargoes.
Collapse
Affiliation(s)
- Kavitha Thirumurugan
- Institute of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|