1301
|
Abelein A, Abrahams JP, Danielsson J, Gräslund A, Jarvet J, Luo J, Tiiman A, Wärmländer SKTS. The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. J Biol Inorg Chem 2014; 19:623-34. [PMID: 24737040 DOI: 10.1007/s00775-014-1131-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/02/2014] [Indexed: 12/29/2022]
Abstract
The amyloid β (Aβ) peptides are 39-42 residue-long peptides found in the senile plaques in the brains of Alzheimer's disease (AD) patients. These peptides self-aggregate in aqueous solution, going from soluble and mainly unstructured monomers to insoluble ordered fibrils. The aggregation process(es) are strongly influenced by environmental conditions. Several lines of evidence indicate that the neurotoxic species are the intermediate oligomeric states appearing along the aggregation pathways. This minireview summarizes recent findings, mainly based on solution and solid-state NMR experiments and electron microscopy, which investigate the molecular structures and characteristics of the Aβ peptides at different stages along the aggregation pathways. We conclude that a hairpin-like conformation constitutes a common motif for the Aβ peptides in most of the described structures. There are certain variations in different hairpin conformations, for example regarding H-bonding partners, which could be one reason for the molecular heterogeneity observed in the aggregated systems. Interacting hairpins are the building blocks of the insoluble fibrils, again with variations in how hairpins are organized in the cross-section of the fibril, perpendicular to the fibril axis. The secondary structure propensities can be seen already in peptide monomers in solution. Unfortunately, detailed structural information about the intermediate oligomeric states is presently not available. In the review, special attention is given to metal ion interactions, particularly the binding constants and ligand structures of Aβ complexes with Cu(II) and Zn(II), since these ions affect the aggregation process(es) and are considered to be involved in the molecular mechanisms underlying AD pathology.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1302
|
Palmal S, Maity AR, Singh BK, Basu S, Jana NR, Jana NR. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry 2014; 20:6184-91. [PMID: 24691975 DOI: 10.1002/chem.201400079] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Inhibition of amyloid fibrillation and clearance of amyloid fibrils/plaques are essential for the prevention and treatment of various neurodegenerative disorders involving protein aggregation. Herein, we report curcumin-functionalized gold nanoparticles (Au-curcumin) of hydrodynamic diameter 10-25 nm, which serve to inhibit amyloid fibrillation and disintegrate/dissolve amyloid fibrils. In nanoparticle form, curcumin is water-soluble and can efficiently interact with amyloid protein/peptide, offering enhanced performance in inhibiting amyloid fibrillation and dissolving amyloid fibrils. Our results imply that nanoparticle-based artificial molecular chaperones may offer a promising therapeutic approach to combat neurodegenerative disease.
Collapse
Affiliation(s)
- Sharbari Palmal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032 (India)
| | | | | | | | | | | |
Collapse
|
1303
|
Lin D, Luo Y, Wu S, Ma Q, Wei G, Yang X. Investigation of the aggregation process of amyloid-β-(16-22) peptides and the dissolution of intermediate aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3170-3175. [PMID: 24588450 DOI: 10.1021/la4048165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aggregation processes of amyloid-β-(16-22) peptides (Aβ16-22) are investigated by atomic force microscopy (AFM). It is found that Aβ16-22 peptides quickly aggregate from monomers to oligomers and flakelike structures and finally to fibrils. In particular, unusual morphology change is observed in an early stage of aggregation; that is, the originally formed flakelike structures would disappear in the following aggregation processes. To determine the evolution of the flakelike structures, in situ AFM imaging is carried out in liquid to reveal the real-time morphology change of Aβ16-22. The results provide clear evidence that the flakelike structures are in an unstable intermediate state, which would be dissolved into oligomers or short protofibrils for reorganization. Further fluorescence and attenuated total reflectance Fourier transform infrared (ATR-FTIR) experiments on thioflavin T(ThT) suggest that those flakelike structures contain β-sheet components.
Collapse
Affiliation(s)
- Dongdong Lin
- State Key Laboratory of Surface Physics, Fudan University , 220 Handan Road, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
1304
|
Kepe V, Moghbel MC, Långström B, Zaidi H, Vinters HV, Huang SC, Satyamurthy N, Doudet D, Mishani E, Cohen RM, Høilund-Carlsen PF, Alavi A, Barrio JR. Amyloid-β positron emission tomography imaging probes: a critical review. J Alzheimers Dis 2014; 36:613-31. [PMID: 23648516 DOI: 10.3233/jad-130485] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-β deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-β plaques are currently at various stages of FDA approval. However, a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate on their significance has emerged. The aim of this review is to identify and discuss critically the scientific issues contributing to the extensive inconsistencies reported in the literature on their purported in vivo amyloid specificity and potential utilization in patients.
Collapse
Affiliation(s)
- Vladimir Kepe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1305
|
Acerra N, Kad NM, Griffith DA, Ott S, Crowther DC, Mason JM. Retro-inversal of Intracellular Selected β-Amyloid-Interacting Peptides: Implications for a Novel Alzheimer’s Disease Treatment. Biochemistry 2014; 53:2101-11. [DOI: 10.1021/bi5001257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Acerra
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Neil M. Kad
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Douglas A. Griffith
- Department
of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, U.K
| | - Stanislav Ott
- Department
of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, U.K
| | - Damian C. Crowther
- Department
of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, U.K
| | - Jody M. Mason
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| |
Collapse
|
1306
|
Månsson C, Kakkar V, Monsellier E, Sourigues Y, Härmark J, Kampinga HH, Melki R, Emanuelsson C. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 2014; 19:227-39. [PMID: 23904097 PMCID: PMC3933622 DOI: 10.1007/s12192-013-0448-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/17/2023] Open
Abstract
Expanded polyglutamine (polyQ) stretches lead to protein aggregation and severe neurodegenerative diseases. A highly efficient suppressor of polyQ aggregation was identified, the DNAJB6, when molecular chaperones from the HSPH, HSPA, and DNAJ families were screened for huntingtin exon 1 aggregation in cells (Hageman et al. in Mol Cell 37(3):355-369, 2010). Furthermore, also aggregation of polyQ peptides expressed in cells was recently found to be efficiently suppressed by co-expression of DNAJB6 (Gillis et al. in J Biol Chem 288:17225-17237, 2013). These suppression effects can be due to an indirect effect of DNAJB6 on other cellular components or to a direct interaction between DNAJB6 and polyQ peptides that may depend on other cellular components. Here, we have purified the DNAJB6 protein to investigate the suppression mechanism. The purified DNAJB6 protein formed large heterogeneous oligomers, in contrast to the more canonical family member DNAJB1 which is dimeric. Purified DNAJB6 protein, at substoichiometric molar ratios, efficiently suppressed fibrillation of polyQ peptides with 45°Q in a thioflavin T fibrillation. No suppression was obtained with DNAJB1, but with the closest homologue to DNAJB6, DNAJB8. The suppression effect was independent of HSPA1 and ATP. These data, based on purified proteins and controlled fibrillation in vitro, strongly suggest that the fibrillation suppression is due to a direct protein-protein interaction between the polyQ peptides and DNAJB6 and that the DNAJB6 has unique fibrillation suppression properties lacking in DNAJB1. Together, the data obtained in cells and in vitro support the view that DNAJB6 is a peptide-binding chaperone that can interact with polyQ peptides that are incompletely degraded by and released from the proteasome.
Collapse
Affiliation(s)
- Cecilia Månsson
- Department of Biochemistry & Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
1307
|
Campioni S, Carret G, Jordens S, Nicoud L, Mezzenga R, Riek R. The presence of an air-water interface affects formation and elongation of α-Synuclein fibrils. J Am Chem Soc 2014; 136:2866-75. [PMID: 24460028 DOI: 10.1021/ja412105t] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aggregation of human α-Synuclein (α-Syn) into amyloid fibrils is related to the onset of multiple diseases termed synucleinopathies. Substantial evidence suggests that hydrophobic-hydrophilic interfaces promote the aggregation of amyloidogenic proteins and peptides in vitro. In this work the effect of the air-water interface (AWI) on α-Syn aggregation is investigated by means of thioflavin T binding measurements, dynamic light scattering, size-exclusion chromatography, electron microscopy, and atomic force microscopy. Measurements were performed with the monomeric protein alone or together with preformed seeds. In presence of the AWI, α-Syn aggregates readily into amyloid fibrils that remain adsorbed to the AWI. Instead, when the AWI is removed from the samples by replacing it with a solid-liquid interface, the interfacial aggregation of monomeric α-Syn is greatly reduced and no significant increase in ThT fluorescence is detected in the bulk, even at 900 μM concentration. Bulk aggregation is observed only when a sufficient amount of preformed seeds is added, and the initial slope of the kinetics scales with the amount of seeds as expected for first order kinetics. By contrast, in seeded experiments with the AWI, the initial slope is one order of magnitude lower and secondary nucleation pathways appear instead to be dominant. Thus, interfaces play multiple roles in the aggregation of α-Syn, influencing primary nucleation, aggregate elongation, and secondary nucleation processes. Interfacial effects must therefore be taken into account to achieve a complete understanding of protein aggregation events in vitro as well as in vivo.
Collapse
Affiliation(s)
- Silvia Campioni
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
1308
|
Zhang C, Liu C, Xue X, Zhang X, Huo S, Jiang Y, Chen WQ, Zou G, Liang XJ. Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS APPLIED MATERIALS & INTERFACES 2014; 6:757-762. [PMID: 24372361 DOI: 10.1021/am4049354] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tetraphenylethylene (TPE), an archetypal luminogen with aggregation-induced emission (AIE), was grafted to a salt-responsive peptide to yield a yet luminescent hydrogelator. After testing different parameters, we found that only in the presence of salt rather than temperature, pH, and solvent, did the monodisperse hydrogelators self-assemble into a hydrogel network with bright emission turned on. The induced luminescence was a dynamic change and enabled real time monitoring of hydrogel formation. Grating AIE molecules to stimuli-responsive peptides is a promising approach for the development of self-revealing soft materials for biological applications.
Collapse
Affiliation(s)
- Chunqiu Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1309
|
Kurouski D, Sorci M, Postiglione T, Belfort G, Lednev IK. Detection and structural characterization of insulin prefibrilar oligomers using surface enhanced Raman spectroscopy. Biotechnol Prog 2014; 30:488-95. [PMID: 24376182 DOI: 10.1002/btpr.1852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/01/2013] [Indexed: 12/31/2022]
Abstract
In vitro fibril formation typically exhibits a lag phase followed by a rapid elongation phase. Soluble prefibrilar oligomers form as multiple assembly states occur during the lag phase and, after forming a nucleus, rapidly propagate into amyloid aggregates and fibrils. The structure and morphology of amyloid fibrils have been extensively characterized over the last decades, while little is known about the structural organization of the prefibrilar oligomers or their multiple assembly states. The main difficulty in structural characterization of prefibrilar aggregates is their low concentration (pmolar) and their continual reactive conversion. Herein we overcome these difficulties by utilizing Surface-Enhanced Raman Spectroscopy (SERS) with a model amyloid peptide, insulin. SERS is a powerful analytic tool that is able to provide detection of small molecules down to a single-molecule level. Using SERS we found that during the 3 lag phase before the onset of insulin fibril formation, the amount of insulin oligomers increased more than twice after the first hour of incubation under fibrillation conditions (pH 1.6, 65°C) and then slowly decreased with time. The latter finding is kinetically linked to the conversion of the prefibrilar oligomers into fibril species. This study provides valuable new information about the time-dependent structural organization of insulin oligomers and demonstrates the power and potential of SERS for detection and structural characterization of biological specimens present at low concentrations.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222
| | | | | | | | | |
Collapse
|
1310
|
Interaction of Thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: Resonance energy transfer study. J Struct Biol 2014; 185:116-24. [DOI: 10.1016/j.jsb.2013.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 10/08/2013] [Accepted: 10/25/2013] [Indexed: 11/23/2022]
|
1311
|
Hideshima S, Kobayashi M, Wada T, Kuroiwa S, Nakanishi T, Sawamura N, Asahi T, Osaka T. A label-free electrical assay of fibrous amyloid β based on semiconductor biosensing. Chem Commun (Camb) 2014; 50:3476-9. [DOI: 10.1039/c3cc49460h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simple electrical assay discriminates between fibrous and non-fibrous amyloid β (Aβ) proteins, and determines the fibrous Aβ concentration with high sensitivity.
Collapse
Affiliation(s)
- Sho Hideshima
- Institute for Nanoscience & Nanotechnology
- Waseda University
- Tokyo 162-0041, Japan
| | - Masumi Kobayashi
- Department of Nanoscience and Nanoengineering
- Waseda University
- Tokyo 169-8555, Japan
| | - Takeyoshi Wada
- Department of Life Science & Medical Bioscience
- Waseda University
- TWIns
- Tokyo 162-8480, Japan
| | - Shigeki Kuroiwa
- Institute for Nanoscience & Nanotechnology
- Waseda University
- Tokyo 162-0041, Japan
| | - Takuya Nakanishi
- Institute for Nanoscience & Nanotechnology
- Waseda University
- Tokyo 162-0041, Japan
| | - Naoya Sawamura
- Department of Life Science & Medical Bioscience
- Waseda University
- TWIns
- Tokyo 162-8480, Japan
| | - Toru Asahi
- Institute for Nanoscience & Nanotechnology
- Waseda University
- Tokyo 162-0041, Japan
- Department of Life Science & Medical Bioscience
- Waseda University
| | - Tetsuya Osaka
- Institute for Nanoscience & Nanotechnology
- Waseda University
- Tokyo 162-0041, Japan
- Department of Nanoscience and Nanoengineering
- Waseda University
| |
Collapse
|
1312
|
Yang L, Chen Q, Liu Y, Zhang J, Sun D, Zhou Y, Liu J. Se/Ru nanoparticles as inhibitors of metal-induced Aβ aggregation in Alzheimer's disease. J Mater Chem B 2014; 2:1977-1987. [DOI: 10.1039/c3tb21586e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1313
|
Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils. J Fluoresc 2013; 24:493-504. [DOI: 10.1007/s10895-013-1318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
|
1314
|
Adachi E, Kosaka A, Tsuji K, Mizuguchi C, Kawashima H, Shigenaga A, Nagao K, Akaji K, Otaka A, Saito H. The extreme N-terminal region of human apolipoprotein A-I has a strong propensity to form amyloid fibrils. FEBS Lett 2013; 588:389-94. [PMID: 24316228 DOI: 10.1016/j.febslet.2013.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 02/04/2023]
Abstract
The N-terminal 1-83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amyloid fibrils, in which the 46-59 segment was reported to aggregate to form amyloid-like fibrils. In this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1-43 residues strongly forms amyloid fibrils with a transition to β-sheet-rich structure, and that the G26R point mutation enhances the fibril formation of this segment. Our results suggest that in addition to the 46-59 segment, the extreme N-terminal region plays a crucial role in the development of amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.
Collapse
Affiliation(s)
- Emi Adachi
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Asako Kosaka
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Chiharu Mizuguchi
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroyuki Kawashima
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Akira Shigenaga
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kohjiro Nagao
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Akira Otaka
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroyuki Saito
- Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
1315
|
Rotzetter ACC, Schumacher CM, Zako T, Stark WJ, Maeda M. Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14117-14123. [PMID: 24151962 DOI: 10.1021/la4026427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic surface characteristics such as hydrophobicity, topology, and electrostatic charge. In this study, we address these more basic physical interactions. In a model system, the interaction of bovine serum albumin and amyloid β 42 fibrillar aggregates with carbon-coated cobalt nanoparticles, functionalized with various polymers differing in character, was studied. The possibility of rapid magnetic separation upon binding to the surface represents a valuable tool for studying surface interactions and selectivities. We find that the surface interaction of Aβ 42 fibrillar aggregates is mostly hydrophobic in nature. Because bovine serum albumin (BSA) is conformationally adaptive, it is known to bind surfaces with widely differing properties (charge, topology, and hydrophobicity). However, the rate of tight binding (no desorption upon washing) can vary largely depending on the extent of necessary conformational changes for a specific surface. We found that BSA can only bind slowly to polyethylenimine-coated nanomagnets. Under competitive conditions (high excess BSA compared to that for β 42 fibrillar aggregates), this effect is beneficial for targeting the fibrillar species. These findings highlight the possibility of selective extractions from complex media when advantageous basic physical surface properties are chosen.
Collapse
Affiliation(s)
- Aline C C Rotzetter
- ETH Zurich, Institute for Chemical and Bioengineering , Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
1316
|
Modern approaches to the treatment of amyloidosis: the critical importance of early detection in surgical pathology. Adv Anat Pathol 2013; 20:424-39. [PMID: 24113313 DOI: 10.1097/pap.0b013e3182a92dc3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The amyloidoses comprise a group of disorders of diverse etiology, in which different proteins undergo abnormal folding, leading to their deposition in tissues and concomitant tissue toxicity. This process ultimately leads to tissue destruction, with organ failure and progressive disease. Recent progress in the treatment of the systemic amyloidoses has dramatically changed the outlook for affected patients and their families. From a relatively rare and esoteric disorder that was typically diagnosed only at autopsy, or was invariably fatal if diagnosed during life, it has now become a disease for which, with modern therapies, durable responses and long-term survival can be achieved. The clinical symptoms are largely nonspecific, and therefore misdiagnosis, or late diagnosis, have been major detriments in achieving better treatment outcomes. Despite advances in laboratory medicine, amyloidoses are still diagnosed on the basis of the pathologic detection of deposits in tissues. Thus, effective primary screening for these diseases requires the active engagement of the pathology community at large, while specialized laboratories and treatment centers can offer secondary consultation and assistance with further steps. This review provides an update on pathogenesis, the clinical and pathologic features, and treatments of various amyloidoses, as well as the current terminology, classification, and practical considerations that are relevant to the diagnosis.
Collapse
|
1317
|
Bramanti E, Fulgentini L, Bizzarri R, Lenci F, Sgarbossa A. β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid. J Phys Chem B 2013; 117:13816-21. [PMID: 24168390 DOI: 10.1021/jp4079986] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an emerging interest in small natural molecules for their potential therapeutic use in neurodegenerative disorders like Alzheimer's disease (AD). Ferulic acid (FA), an antioxidant phenolic compound present in fruit and vegetables, has been proposed as an inhibitor of beta amyloid (Aβ) pathological aggregation. Using fluorescence and Fourier transform infrared spectroscopy, electrophoresis techniques, chromatographic analysis, and confocal microscopy, we investigated the effects of FA in the early stages of Aβ fibrillogenesis in vitro. Our results show that FA interacts promptly with Aβ monomers/oligomers, interfering since the beginning with its self-assembly and finally forming amorphous aggregates more prone to destabilization. These findings highlight the molecular basis underlying FA antiamyloidogenic activity in AD.
Collapse
Affiliation(s)
- Emilia Bramanti
- Istituto dei Composti Organo-Metallici, ‡Istituto di Biofisica, and §Istituto Nazionale di Ottica, CNR , U.O. Pisa, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | | | | | | | | |
Collapse
|
1318
|
Zhang X, Tian Y, Li Z, Tian X, Sun H, Liu H, Moore A, Ran C. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease. J Am Chem Soc 2013; 135:16397-409. [PMID: 24116384 DOI: 10.1021/ja405239v] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article, we first designed and synthesized curcumin-based near-infrared (NIR) fluorescence imaging probes for detecting both soluble and insoluble amyloid beta (Aβ) species and then an inhibitor that could attenuate cross-linking of Aβ induced by copper. According to our previous results and the possible structural stereohindrance compatibility of the Aβ peptide and the hydrophobic/hydrophilic property of the Aβ13-20 (HHQKLVFF) fragment, NIR imaging probe CRANAD-58 was designed and synthesized. As expected CRANAD-58 showed significant fluorescence property changes upon mixing with both soluble and insoluble Aβ species in vitro. In vivo NIR imaging revealed that CRANAD-58 was capable of differentiating transgenic and wild-type mice as young as 4 months old, the age that lacks apparently visible Aβ plaques and Aβ is likely in its soluble forms. According to our limited studies on the interaction mechanism between CRANAD-58 and Aβ, we also designed CRANAD-17 to attenuate the cross-linking of Aβ42 induced by copper. It is well-known that the coordination of copper with imidazoles on Histidine-13 and 14 (H13, H14) of Aβ peptides could initialize covalent cross-linking of Aβ. In CRANAD-17, a curcumin scaffold was used as an anchoring moiety to usher the designed compound to the vicinity of H13 and H14 of Aβ, and imidazole rings were incorporated to compete with H13/H14 for copper binding. The results of SDS-PAGE gel and Western blot indicated that CRANAD-17 was capable of inhibiting Aβ42 cross-linking induced by copper. This raises a potential for CRANAD-17 to be considered for AD therapy.
Collapse
Affiliation(s)
- Xueli Zhang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School , Building 75, Charlestown, Massachusetts 02129, United States
| | | | | | | | | | | | | | | |
Collapse
|
1319
|
Liu GCH, Chen BPW, Ye NTJ, Wang CH, Chen W, Lee HM, Chan SI, Huang JJT. Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chem Commun (Camb) 2013; 49:11212-4. [PMID: 24154814 DOI: 10.1039/c3cc46762g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The amyloidogenic core in the TAR DNA-binding protein (TDP-43) C-terminal fragment has been characterized with its chemical, biochemical, and structural properties delineated. Various properties of the core sequence, including membrane impairment ability and the seeding effect, have also been studied.
Collapse
Affiliation(s)
- Gerard Chun-Hao Liu
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
1320
|
Foley J, Hill SE, Miti T, Mulaj M, Ciesla M, Robeel R, Persichilli C, Raynes R, Westerheide S, Muschol M. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth. J Chem Phys 2013; 139:121901. [PMID: 24089713 PMCID: PMC3716784 DOI: 10.1063/1.4811343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/03/2013] [Indexed: 11/14/2022] Open
Abstract
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Collapse
Affiliation(s)
- Joseph Foley
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1321
|
Mishra NK, Joshi KB, Verma S. Inhibition of human and bovine insulin fibril formation by designed peptide conjugates. Mol Pharm 2013; 10:3903-12. [PMID: 24070716 DOI: 10.1021/mp400364w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aggregation of insulin, to afford amyloidogenic fibers, is a well-studied phenomenon, which has interesting biological ramifications and pharmaceutical implications. These fibers have been ascribed an intriguing role in certain disease states and stability of pharmaceutical formulations of this hormone. The present study describes the design and inhibitory effects of novel peptide conjugates toward fibrillation of insulin as investigated by thioflavin T assay, circular dichroism (CD), and atomic force microscopy (AFM). Possible interaction of insulin with peptide-based fibrillation inhibitors is also probed by other solution phase studies, which reveal an important role of aromatic π-π interactions in the inhibition process. CD studies suggest that a freshly prepared solution of insulin, rich in α-helices, transforms into a β-sheet structure upon aggregation, which gets perturbed in the presence of synthesized inhibitors. Therefore, these newly designed peptides could serve as potential leads as inhibitors of insulin aggregation.
Collapse
Affiliation(s)
- Narendra Kumar Mishra
- Department of Chemistry, DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur , Kanpur-208016 (UP), India
| | | | | |
Collapse
|
1322
|
Cristóvão JS, Leal SS, Cardoso I, Gomes CM. Small molecules present in the cerebrospinal fluid metabolome influence superoxide dismutase 1 aggregation. Int J Mol Sci 2013; 14:19128-45. [PMID: 24048249 PMCID: PMC3794824 DOI: 10.3390/ijms140919128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) aggregation is one of the pathological markers of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The underlying molecular grounds of SOD1 pathologic aggregation remains obscure as mutations alone are not exclusively the cause for the formation of protein inclusions. Thus, other components in the cell environment likely play a key role in triggering SOD1 toxic aggregation in ALS. Recently, it was found that ALS patients present a specific altered metabolomic profile in the cerebrospinal fluid (CSF) where SOD1 is also present and potentially interacts with metabolites. Here we have investigated how some of these small molecules affect apoSOD1 structure and aggregation propensity. Our results show that as co-solvents, the tested small molecules do not affect apoSOD1 thermal stability but do influence its tertiary interactions and dynamics, as evidenced by combined biophysical analysis and proteolytic susceptibility. Moreover, these compounds influence apoSOD1 aggregation, decreasing nucleation time and promoting the formation of larger and less soluble aggregates, and in some cases polymeric assemblies apparently composed by spherical species resembling the soluble native protein. We conclude that some components of the ALS metabolome that shape the chemical environment in the CSF may influence apoSOD1 conformers and aggregation.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal; E-Mails: (J.S.C.); (S.S.L.)
| | - Sónia S. Leal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal; E-Mails: (J.S.C.); (S.S.L.)
| | - Isabel Cardoso
- Molecular Neurobiology Unit, Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, Porto 4150-180, Portugal; E-Mail:
- Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Rua Valente Perfeito, 322, Vila Nova de Gaia 4400-330, Portugal
| | - Cláudio M. Gomes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal; E-Mails: (J.S.C.); (S.S.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-21-446-9332; Fax: +351-21-441-1277
| |
Collapse
|
1323
|
Bhowmik S, Khanna S, Srivastava K, Hasanain M, Sarkar J, Verma S, Batra S. An efficient combinatorial synthesis of allocolchicine analogues via a triple cascade reaction and their evaluation as inhibitors of insulin aggregation. ChemMedChem 2013; 8:1767-72. [PMID: 24009069 DOI: 10.1002/cmdc.201300302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 11/05/2022]
Abstract
A controlled cascade: A divergent, diastereoselective and efficient one-pot synthesis of allocolchicinoids via a cascade Suzuki-Michael addition-Carbocyclization sequence is described. The utility of the compounds as possible inhibitors of insulin aggregation is also presented.
Collapse
Affiliation(s)
- Subhendu Bhowmik
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Rd, Lucknow 226031 (India)
| | | | | | | | | | | | | |
Collapse
|
1324
|
He C, Han Y, Zhu L, Deng M, Wang Y. Modulation of Aβ(1–40) Peptide Fibrillar Architectures by Aβ-Based Peptide Amphiphiles. J Phys Chem B 2013; 117:10475-83. [DOI: 10.1021/jp4044286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chengqian He
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linyi Zhu
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Manli Deng
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
1325
|
Moran SD, Zhang TO, Decatur SM, Zanni MT. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Biochemistry 2013; 52:6169-81. [PMID: 23957864 DOI: 10.1021/bi4008353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γD-Crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV-B irradiation of γD-Crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV-B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-Crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarities between the amyloid forming pathways when induced by either UV-B radiation or low pH suggest that the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets determines the misfolding pathway independent of the mechanism of denaturation.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, WI, United States 53706
| | | | | | | |
Collapse
|
1326
|
Gal N, Morag A, Kolusheva S, Winter R, Landau M, Jelinek R. Lipid Bilayers Significantly Modulate Cross-Fibrillation of Two Distinct Amyloidogenic Peptides. J Am Chem Soc 2013; 135:13582-9. [DOI: 10.1021/ja4070427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Noga Gal
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
| | - Ahiud Morag
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
| | - Sofiya Kolusheva
- Ilse
Katz Institute for Nanotechnology, Ben Gurion University Beer Sheva, Israel 84105
| | - Roland Winter
- Technische Universität Dortmund Physikalische Chemie − Biophysikalische Chemie, Otto-Hahn-Straße
6, 44227 Dortmund, Germany
| | - Meytal Landau
- Department
of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Raz Jelinek
- Department
of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel 84105
- Ilse
Katz Institute for Nanotechnology, Ben Gurion University Beer Sheva, Israel 84105
| |
Collapse
|
1327
|
Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Chembiochem 2013; 14:1692-704. [PMID: 23983094 DOI: 10.1002/cbic.201300262] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is the most common of the protein misfolding ("amyloid") diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so-called amyloid β-peptides (Aβ peptides): fragments of the amyloid precursor protein of 39-43 residues in length. This review focuses on biophysical studies of the Aβ peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of Aβ with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high-resolution and solid-state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of Aβ peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the Aβ peptides and the prion protein, where the latter is involved in other protein misfolding diseases.
Collapse
Affiliation(s)
- Sebastian Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91 Stockholm (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|
1328
|
Skeby KK, Sørensen J, Schiøtt B. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations. J Am Chem Soc 2013; 135:15114-28. [DOI: 10.1021/ja405530p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katrine Kirkeby Skeby
- The Center
for Insoluble Protein Structures (inSPIN), the Interdisciplinary
Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C
| | - Jesper Sørensen
- The Center
for Insoluble Protein Structures (inSPIN), the Interdisciplinary
Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C
| | - Birgit Schiøtt
- The Center
for Insoluble Protein Structures (inSPIN), the Interdisciplinary
Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C
| |
Collapse
|
1329
|
D'Amico M, Schirò G, Cupane A, D'Alfonso L, Leone M, Militello V, Vetri V. High fluorescence of thioflavin T confined in mesoporous silica xerogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10238-10246. [PMID: 23844566 DOI: 10.1021/la402406g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trapping of organic molecules and dyes within nanoporous matrices is of great interest for the potential creation of new materials with tailored features and, thus, different possible applications ranging from nanomedicine to material science. The understanding of the physical basis of entrapment and the spectral properties of the guest molecules within the host matrix is an essential prerequisite for the design and control of the properties of these materials. In this work, we show that a mesoporous silica xerogel can efficiently trap the dye thioflavin T (ThT, a molecule used as a marker of amyloid fibrils and with potential drug benefits), sequestering it from an aqueous solution and producing a highly fluorescent material with a ThT quantum yield 1500 times greater than that of the free molecule. The study of spectroscopical properties of this system and the comparison with fluorescence of an uncharged analogue of ThT give indications about the mechanism responsible for the fluorescence switching-on of ThT molecules during their uptaking into the glass. Diffusion and nanocapillarity are responsible for ThT absorption, whereas electrostatic interaction between positive ThT molecules and negative dangling ≡SiO groups covering the pore surfaces causes the immobilization of ThT molecules inside the pores and the enhancement of its fluorescence, in line with the molecular rotor model proposed for this dye. We also show that entrapment efficiency and kinetics can be tuned by varying the electrostatic properties of the dye and/or the matrix.
Collapse
Affiliation(s)
- Michele D'Amico
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
1330
|
Gustot A, Raussens V, Dehousse M, Dumoulin M, Bryant CE, Ruysschaert JM, Lonez C. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cell Mol Life Sci 2013; 70:2999-3012. [PMID: 23334185 PMCID: PMC11113201 DOI: 10.1007/s00018-012-1245-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 12/24/2022]
Abstract
Inflammation occurs in many amyloidoses, but its underlying mechanisms remain enigmatic. Here we show that amyloid fibrils of human lysozyme, which are associated with severe systemic amyloidoses, induce the secretion of pro-inflammatory cytokines through activation of the NLRP3 (NLR, pyrin domain containing 3) inflammasome and the Toll-like receptor 2, two innate immune receptors that may be involved in immune responses associated to amyloidoses. More importantly, our data clearly suggest that the induction of inflammatory responses by amyloid fibrils is linked to their intrinsic structure, because the monomeric form and a non-fibrillar type of lysozyme aggregates are both unable to trigger cytokine secretion. These lysozyme species lack the so-called cross-β structure, a characteristic structural motif common to all amyloid fibrils irrespective of their origin. Since fibrils of other bacterial and endogenous proteins have been shown to trigger immunological responses, our observations suggest that the cross-β structural signature might be recognized as a generic danger signal by the immune system.
Collapse
Affiliation(s)
- Adelin Gustot
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
1331
|
Guan X, Yang J, Gu H, Zou J, Yao Z. Immunotherapeutic efficiency of a tetravalent Aβ1-15 vaccine in APP/PS1 transgenic mice as mouse model for Alzheimer's disease. Hum Vaccin Immunother 2013; 9:1643-53. [PMID: 23732905 PMCID: PMC3906261 DOI: 10.4161/hv.24830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 01/22/2023] Open
Abstract
Immunization with synthetic, preaggregated β-amyloid (Aβ) was the first treatment approach able to dramatically reduce brain Aβ pathology in Alzheimer's disease (AD) animal models. For the development of a safe vaccine, we investigated whether 4Aβ1-15 (four tandem repeats of GPGPG-linked Aβ1-15 sequences) had therapeutic effects in the APP/PS1 transgenic mice model of AD. We described the production of anti-Aβ antibodies in APP/PS1 mice immunized with 4Aβ1-15 mixed with MF59 adjuvant. The anti-Aβ antibody concentrations were increased which bound to AD plaques, markedly reduced Aβ pathology in transgenic AD mice and levels of intracerebral Aβ (soluble and insoluble), whereas increased serum Aβ levels. Immunization via 4Aβ1-15 (mainly of the IgG1 Class) may induce a non-inflammatory Th2 reaction. Immunohistochemistry analysis of MHC Class II and CD45 revealed that microglial cells were in a less activated state. Of note, 4Aβ1-15-immunized mice showed improved acquisition of memory compared with controls in a reference-memory Morris water-maze behavior test. The data identify the novel immunogen 4Aβ1-15 as a promising new tool for AD immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Guan
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Junhua Yang
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Juntao Zou
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| |
Collapse
|
1332
|
Garvey M, Meehan S, Gras SL, Schirra HJ, Craik DJ, Van der Weerden NL, Anderson MA, Gerrard JA, Carver JA. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1615-23. [PMID: 23665069 DOI: 10.1016/j.bbapap.2013.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.
Collapse
Affiliation(s)
- Megan Garvey
- School of Chemistry and Physics, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
1333
|
Leal SS, Cardoso I, Valentine JS, Gomes CM. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J Biol Chem 2013; 288:25219-25228. [PMID: 23861388 DOI: 10.1074/jbc.m113.470740] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+). We show that at physiological pH, Ca(2+) induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca(2+) boosts the onset of SOD1 aggregation. In agreement, Ca(2+) decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca(2+) induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca(2+)-induced aggregates, thus indicating that Ca(2+) diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca(2+) levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca(2+) may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.
Collapse
Affiliation(s)
- Sónia S Leal
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal
| | - Isabel Cardoso
- the Molecular Neurobiology Unit, Instituto Biologia Molecular e Celular, 4150-180 Porto, Portugal, and
| | - Joan S Valentine
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Cláudio M Gomes
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal,.
| |
Collapse
|
1334
|
Abelein A, Kaspersen JD, Nielsen SB, Jensen GV, Christiansen G, Pedersen JS, Danielsson J, Otzen DE, Gräslund A. Formation of dynamic soluble surfactant-induced amyloid β peptide aggregation intermediates. J Biol Chem 2013; 288:23518-28. [PMID: 23775077 DOI: 10.1074/jbc.m113.470450] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intermediate amyloidogenic states along the amyloid β peptide (Aβ) aggregation pathway have been shown to be linked to neurotoxicity. To shed more light on the different structures that may arise during Aβ aggregation, we here investigate surfactant-induced Aβ aggregation. This process leads to co-aggregates featuring a β-structure motif that is characteristic for mature amyloid-like structures. Surfactants induce secondary structure in Aβ in a concentration-dependent manner, from predominantly random coil at low surfactant concentration, via β-structure to the fully formed α-helical state at high surfactant concentration. The β-rich state is the most aggregation-prone as monitored by thioflavin T fluorescence. Small angle x-ray scattering reveals initial globular structures of surfactant-Aβ co-aggregated oligomers and formation of elongated fibrils during a slow aggregation process. Alongside this slow (minutes to hours time scale) fibrillation process, much faster dynamic exchange (k(ex) ∼1100 s(-1)) takes place between free and co-aggregate-bound peptide. The two hydrophobic segments of the peptide are directly involved in the chemical exchange and interact with the hydrophobic part of the co-aggregates. Our findings suggest a model for surfactant-induced aggregation where free peptide and surfactant initially co-aggregate to dynamic globular oligomers and eventually form elongated fibrils. When interacting with β-structure promoting substances, such as surfactants, Aβ is kinetically driven toward an aggregation-prone state.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
1335
|
Alí-Torres J, Rimola A, Rodríguez-Rodríguez C, Rodríguez-Santiago L, Sodupe M. Insights on the Binding of Thioflavin Derivative Markers to Amyloid-Like Fibril Models from Quantum Chemical Calculations. J Phys Chem B 2013; 117:6674-80. [DOI: 10.1021/jp402807g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Alí-Torres
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra
08193, Barcelona, Spain
| | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra
08193, Barcelona, Spain
| | - Cristina Rodríguez-Rodríguez
- Medicinal Inorganic Chemistry
Group, University of British Columbia,
2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Luis Rodríguez-Santiago
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra
08193, Barcelona, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra
08193, Barcelona, Spain
| |
Collapse
|
1336
|
Sörgjerd KM, Zako T, Sakono M, Stirling PC, Leroux MR, Saito T, Nilsson P, Sekimoto M, Saido TC, Maeda M. Human prefoldin inhibits amyloid-β (Aβ) fibrillation and contributes to formation of nontoxic Aβ aggregates. Biochemistry 2013; 52:3532-42. [PMID: 23614719 DOI: 10.1021/bi301705c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyloid-β (Aβ) peptides represent key players in the pathogenesis of Alzheimer's disease (AD), and mounting evidence indicates that soluble Aβ oligomers mediate the toxicity. Prefoldin (PFD) is a molecular chaperone that prevents aggregation of misfolded proteins. Here we investigated the role of PFD in Aβ aggregation. First, we demonstrated that PFD is expressed in mouse brain by Western blotting and immunohistochemistry and found that PFD is upregulated in AD model APP23 transgenic mice. Then we investigated the effect of recombinant human PFD (hPFD) on Aβ(1-42) aggregation in vitro and found that hPFD inhibited Aβ fibrillation and induced formation of soluble Aβ oligomers. Interestingly, cell viability measurements using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Aβ oligomers formed by hPFD were 30-40% less toxic to cultured rat pheochromocytoma (PC12) cells or primary cortical neurons from embryonic C57BL/6CrSlc mice than previously reported Aβ oligomers (formed by archaeal PFD) and Aβ fibrils (p < 0.001). Thioflavin T measurements and immunoblotting indicated different structural properties for the different Aβ oligomers. Our findings show a relation between cytotoxicity of Aβ oligomers and structure and suggest a possible protective role of PFD in AD.
Collapse
|
1337
|
Advances in electrochemical detection for study of neurodegenerative disorders. Anal Bioanal Chem 2013; 405:5725-41. [DOI: 10.1007/s00216-013-6904-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
|
1338
|
Luo J, Yu CH, Yu H, Borstnar R, Kamerlin SCL, Gräslund A, Abrahams JP, Wärmländer SKTS. Cellular polyamines promote amyloid-beta (Aβ) peptide fibrillation and modulate the aggregation pathways. ACS Chem Neurosci 2013; 4:454-62. [PMID: 23509981 DOI: 10.1021/cn300170x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cellular polyamines spermine, spermidine, and their metabolic precursor putrescine, have long been associated with cell-growth, tumor-related gene regulations, and Alzheimer's disease. Here, we show by in vitro spectroscopy and AFM imaging, that these molecules promote aggregation of amyloid-beta (Aβ) peptides into fibrils and modulate the aggregation pathways. NMR measurements showed that the three polyamines share a similar binding mode to monomeric Aβ(1-40) peptide. Kinetic ThT studies showed that already very low polyamine concentrations promote amyloid formation: addition of 10 μM spermine (normal intracellular concentration is ~1 mM) significantly decreased the lag and transition times of the aggregation process. Spermidine and putrescine additions yielded similar but weaker effects. CD measurements demonstrated that the three polyamines induce different aggregation pathways, involving different forms of induced secondary structure. This is supported by AFM images showing that the three polyamines induce Aβ(1-40) aggregates with different morphologies. The results reinforce the notion that designing suitable ligands which modulate the aggregation of Aβ peptides toward minimally toxic pathways may be a possible therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Rok Borstnar
- Department of Cell and Molecular Biology (ICM), Uppsala University, SE-75124 Uppsala, Sweden
- National Institute of Chemistry, Hajdrihova, 19 SI-1001 Ljubljana, Slovenia
| | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology (ICM), Uppsala University, SE-75124 Uppsala, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
1339
|
Jameson LP, Dzyuba SV. Aza-BODIPY: improved synthesis and interaction with soluble Aβ1-42 oligomers. Bioorg Med Chem Lett 2013; 23:1732-5. [PMID: 23416005 PMCID: PMC3662365 DOI: 10.1016/j.bmcl.2013.01.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 01/26/2023]
Abstract
Dye-binding assays that are used to evaluate anti-aggregation ability of small molecule inhibitors towards amyloids are known to be prone to false-positive effects due to spectral overlaps between the dye and the inhibitor. Aza-BODIPY dye, which has both excitation and emission maxima above 600nm, exhibits a significant increase in its fluorescence intensity in the presence of soluble oligomers of Aβ1-42. These results indicate that aza-BODIPY could serve as a near-IR probe for detecting conformational changes of Aβ1-42 soluble oligomers in vitro, and it should eliminate false-positive effects that are associated with currently utilized thioflavin T-based dyes. In addition, a facile synthesis of aza-BODIPY has been developed, which might further expand the applications of this dye.
Collapse
Affiliation(s)
- Laramie P. Jameson
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Sergei V. Dzyuba
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
1340
|
Growth behavior of Aβ protofibrils on liposome membranes and their membrane perturbation effect. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1341
|
Cheng XR, Hau BYH, Veloso AJ, Martic S, Kraatz HB, Kerman K. Surface Plasmon Resonance Imaging of Amyloid-β Aggregation Kinetics in the Presence of Epigallocatechin Gallate and Metals. Anal Chem 2013; 85:2049-55. [DOI: 10.1021/ac303181q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xin R. Cheng
- Department
of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Ben Y. H. Hau
- Department
of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Anthony J. Veloso
- Department
of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Sanela Martic
- Department of Chemistry and
Biochemistry, Oakland University, Rochester,
Michigan 48309, United States
| | - Heinz-Bernhard Kraatz
- Department
of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Kagan Kerman
- Department
of Physical and Environmental
Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
1342
|
Ariesandi W, Chang CF, Chen TE, Chen YR. Temperature-dependent structural changes of Parkinson's alpha-synuclein reveal the role of pre-existing oligomers in alpha-synuclein fibrillization. PLoS One 2013; 8:e53487. [PMID: 23349712 PMCID: PMC3551866 DOI: 10.1371/journal.pone.0053487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Amyloid fibrils of α-synuclein are the main constituent of Lewy bodies deposited in substantial nigra of Parkinson's disease brains. α-Synuclein is an intrinsically disordered protein lacking compact secondary and tertiary structures. To enhance the understanding of its structure and function relationship, we utilized temperature treatment to study α-synuclein conformational changes and the subsequent effects. We found that after 1 hr of high temperature pretreatment, >80°C, α-synuclein fibrillization was significantly inhibited. However, the temperature melting coupled with circular dichroism spectra showed that α-synuclein was fully reversible and the NMR studies showed no observable structural changes of α-synuclein after 95°C treatment. By using cross-linking and analytical ultracentrifugation, rare amount of pre-existing α-synuclein oligomers were found to decrease after the high temperature treatment. In addition, a small portion of C-terminal truncation of α-synuclein also occurred. The reduction of pre-existing oligomers of α-synuclein may contribute to less seeding effect that retards the kinetics of amyloid fibrillization. Overall, our results showed that the pre-existing oligomeric species is a key factor contributing to α-synuclein fibrillization. Our results facilitate the understanding of α-synuclein fibrillization.
Collapse
Affiliation(s)
- Winny Ariesandi
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tseng-Erh Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
1343
|
Ahyayauch H, Raab M, Busto JV, Andraka N, Arrondo JLR, Masserini M, Tvaroska I, Goñi FM. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies. Biophys J 2013; 103:453-463. [PMID: 22947861 DOI: 10.1016/j.bpj.2012.06.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (L(o)) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the L(o) state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5-5 mol%) than higher (10-20 mol%) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than L(o) ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol% anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Michal Raab
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jon V Busto
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Nagore Andraka
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - José-Luis R Arrondo
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Massimo Masserini
- Department of Experimental Medicine, University of Milano Bicocca, Monza, Italy
| | - Igor Tvaroska
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
1344
|
Duboisset J, Ferrand P, He W, Wang X, Rigneault H, Brasselet S. Thioflavine-T and Congo Red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy. J Phys Chem B 2013; 117:784-8. [PMID: 23289901 DOI: 10.1021/jp309528f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid fibrils are protein misfolding structures that involve a β-sheet structure and are associated with the pathologies of various neurodegenerative diseases. Here we show that Thioflavine-T and Congo Red, two major dyes used to image fibrils by fluorescence assays, can provide deep structural information when probed by means of polarization-resolved fluorescence microscopy. Unlike fluorescence anisotropy or fluorescence detected linear dichroism imaging, this technique allows to retrieve simultaneously both mean orientation and orientation dispersion of the dye, used here as a reporter of the fibril structure. We have observed that insulin amyloid fibrils exhibit a homogeneous behavior over the fibrils' length, confirming their structural uniformity. In addition, these results reveal the existence of various structures among the observed fibrils' population, in spite of a similar aspect when imaged with conventional fluorescence microscopy. This optical nondestructive technique opens perspectives for in vivo structural analyses or high throughput screening.
Collapse
Affiliation(s)
- Julien Duboisset
- Aix Marseille Université, CNRS, Ecole Centrale Marseille, Institut Fresnel, 13013 Marseille, France.
| | | | | | | | | | | |
Collapse
|
1345
|
Natalello A, Mattoo RUH, Priya S, Sharma SK, Goloubinoff P, Doglia SM. Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates. J Mol Biol 2013; 425:1158-71. [PMID: 23306033 DOI: 10.1016/j.jmb.2012.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/21/2012] [Accepted: 12/31/2012] [Indexed: 11/27/2022]
Abstract
Misfolded polypeptide monomers may be regarded as the initial species of many protein aggregation pathways, which could accordingly serve as primary targets for molecular chaperones. It is therefore of paramount importance to study the cellular mechanisms that can prevent misfolded monomers from entering the toxic aggregation pathway and moreover rehabilitate them into active proteins. Here, we produced two stable misfolded monomers of luciferase and rhodanese, which we found to be differently processed by the Hsp70 chaperone machinery and whose conformational properties were investigated by biophysical approaches. In spite of their monomeric nature, they displayed enhanced thioflavin T fluorescence, non-native β-sheets, and tertiary structures with surface-accessible hydrophobic patches, but differed in their conformational stability and aggregation propensity. Interestingly, minor structural differences between the two misfolded species could account for their markedly different behavior in chaperone-mediated unfolding/refolding assays. Indeed, only a single DnaK molecule was sufficient to unfold by direct clamping a misfolded luciferase monomer, while, by contrast, several DnaK molecules were necessary to unfold the more resistant misfolded rhodanese monomer by a combination of direct clamping and cooperative entropic pulling.
Collapse
Affiliation(s)
- Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
1346
|
Sgarbossa A, Monti S, Lenci F, Bramanti E, Bizzarri R, Barone V. The effects of ferulic acid on β-amyloid fibrillar structures investigated through experimental and computational techniques. Biochim Biophys Acta Gen Subj 2013; 1830:2924-37. [PMID: 23291428 DOI: 10.1016/j.bbagen.2012.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/29/2012] [Accepted: 12/21/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Current research has indicated that small natural compounds could interfere with β-amyloid fibril growth and have the ability to disassemble preformed folded structures. Ferulic acid (FA), which possesses both hydrophilic and hydrophobic moieties and binds to peptides/proteins, is a potential candidate against amyloidogenesis. The molecular mechanisms connected to this action have not been elucidated in detail yet. METHODS Here the effects of FA on preformed fibrils are investigated by means of a concerted experimental-computational approach. Spectroscopic techniques, such as FTIR, fluorescence, size exclusion chromatography and confocal microscopy in combination with molecular dynamics simulations are used to identify those features which play a key role in the destabilization of the aggregates. RESULTS Experimental findings highlight that FA has disruptive effects on the fibrils. The computational analysis suggests that dissociation of peptides from the amyloid superstructures could take place along the fibril axis and be primarily determined by the cooperative rupture of the backbone hydrogen bonds and of the Asp-Lys salt bridges. CONCLUSION FA clusters could induce a sort of stabilization and tightening of the fibril structure in the short term and its disruption in the long term, inhibiting further fibril re-assembly through FA screening effects. GENERAL SIGNIFICANCE The combination of experimental and computational techniques could be successfully used to identify the disrupting action of FA on preformed Aβ fibrils in water solution.
Collapse
Affiliation(s)
- Antonella Sgarbossa
- Biophysics Institute, National Research Council, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
1347
|
Jiang T, Yu WB, Yao T, Zhi XL, Pan LF, Wang J, Zhou P. Trehalose inhibits wild-type α-synuclein fibrillation and overexpression and protects against the protein neurotoxicity in transduced PC12 cells. RSC Adv 2013. [DOI: 10.1039/c3ra40600h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
1348
|
Sawyer EB, Gras SL. Self-assembling nanomaterials: monitoring the formation of amyloid fibrils, with a focus on small-angle X-ray scattering. Methods Mol Biol 2013; 996:77-101. [PMID: 23504419 DOI: 10.1007/978-1-62703-354-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amyloid fibrils are attractive targets for applications in biotechnology. These thin, nanoscale protein fibers are highly ordered structures that self-assemble from their component proteins or peptides. This chapter describes the use of several biophysical techniques to monitor the formation of amyloid fibrils including a common dye-binding assay, turbidity assay, and small-angle X-ray scattering. These techniques provide information about the assembly mechanism, the rate and reproducibility of assembly, as well as the size of species along the assembly pathway.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
1349
|
Noël S, Cadet S, Gras E, Hureau C. The benzazole scaffold: a SWAT to combat Alzheimer's disease. Chem Soc Rev 2013; 42:7747-62. [DOI: 10.1039/c3cs60086f] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
1350
|
Haratake M, Yoshida S, Mandai M, Fuchigami T, Nakayama M. Elevated amyloid-β plaque deposition in dietary selenium-deficient Tg2576 transgenic mice. Metallomics 2013; 5:479-83. [DOI: 10.1039/c3mt00035d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|