1301
|
Mora AK, Murudkar S, Singh PK, Nath S. Effect of fibrillation on the excited state dynamics of tryptophan in serum protein – A time-resolved fluorescence study. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1302
|
Peralta MDR, Karsai A, Ngo A, Sierra C, Fong KT, Hayre NR, Mirzaee N, Ravikumar KM, Kluber AJ, Chen X, Liu GY, Toney MD, Singh RR, Cox DL. Engineering amyloid fibrils from β-solenoid proteins for biomaterials applications. ACS NANO 2015; 9:449-463. [PMID: 25562726 DOI: 10.1021/nn5056089] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nature provides numerous examples of self-assembly that can potentially be implemented for materials applications. Considerable attention has been given to one-dimensional cross-β or amyloid structures that can serve as templates for wire growth or strengthen materials such as glue or cement. Here, we demonstrate controlled amyloid self-assembly based on modifications of β-solenoid proteins. They occur naturally in several contexts (e.g., antifreeze proteins, drug resistance proteins) but do not aggregate in vivo due to capping structures or distortions at their ends. Removal of these capping structures and regularization of the ends of the spruce budworm and rye grass antifreeze proteins yield micron length amyloid fibrils with predictable heights, which can be a platform for biomaterial-based self-assembly. The design process, including all-atom molecular dynamics simulations, purification, and self-assembly procedures are described. Fibril formation with the predicted characteristics is supported by evidence from thioflavin-T fluorescence, circular dichroism, dynamic light scattering, and atomic force microscopy. Additionally, we find evidence for lateral assembly of the modified spruce budworm antifreeze fibrils with sufficient incubation time. The kinetics of polymerization are consistent with those for other amyloid formation reactions and are relatively fast due to the preformed nature of the polymerization nucleus.
Collapse
Affiliation(s)
- Maria D R Peralta
- Department of Chemistry, ‡Department of Physics, and §Institute for Complex Adaptive Matter, University of California , 1 Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1303
|
O'Rourke TW, Loya TJ, Head PE, Horton JR, Reines D. Amyloid-like assembly of the low complexity domain of yeast Nab3. Prion 2015; 9:34-47. [PMID: 25611193 DOI: 10.1080/19336896.2014.997618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Termination of transcription of short non-coding RNAs is carried out in yeast by the Nab3-Nrd1-Sen1 complex. Nab3 and Nrd1 are hnRNP-like proteins that dimerize and bind RNA with sequence specificity. We show here that an essential region of Nab3 that is predicted to be prion-like based upon its sequence bias, formed amyloid-like filaments. A similar region from Nrd1 also assembled into filaments in vitro. The purified Nab3 domain formed a macroscopic gel whose lattice organization was observed by X-ray fiber diffraction. Filaments were resistant to dissociation in anionic detergent, bound the fluorescent dye thioflavin T, and showed a β-sheet rich structure by circular dichroism spectroscopy, similar to human amyloid β which served as a reference amyloid. A version of the Nab3 domain with a mutation that impairs its termination function, also formed fibers as observed by electron microscopy. Using a protein fragment interaction assay, the purified Nab3 domain was seen to interact with itself in living yeast. A similar observation was made for full length Nab3. These results suggest that the Nab3 and Nrd1 RNA-binding proteins can attain a complex polymeric form and raise the possibility that this property is important for organizing their functional state during termination. These findings are congruent with recent work showing that RNA binding proteins with low complexity domains form a dynamic subcellular matrix in which RNA metabolism takes place but can also aberrantly yield pathological aggregated particles.
Collapse
Key Words
- Aβ, amyloid beta
- BSA, bovine serum albumin
- CPEB, cytoplasmic polyadenylation element binding protein
- CTD, carboxy terminal domain
- DHFR, dihydrofolate reductase
- DMSO, dimethyl sulfoxide
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HFIP, hexafluoroisopropanol
- IPTG, isopropyl β-D-1-thiogalactopyranoside
- PCR, polymerase chain reaction
- RNA binding protein
- RRM, RNA recognition motif
- SDD-AGE, semi-denaturing detergent agarose gel electrophoresis
- SDS, sodium dodecyl sulfate
- TEV, tobacco etch virus
- amyloid
- fibril
- hnRNP
- hnRNP, heterogeneous nuclear ribonucleoprotein
- transcription termination
Collapse
Affiliation(s)
- Thomas W O'Rourke
- a Department of Biochemistry ; Emory University School of Medicine ; Atlanta , GA USA
| | | | | | | | | |
Collapse
|
1304
|
Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus. J Virol 2015; 89:3648-58. [PMID: 25589659 DOI: 10.1128/jvi.02881-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family.
Collapse
|
1305
|
Selmani V, Robbins KJ, Ivancic VA, Lazo ND. K114 (trans, trans)-bromo-2,5-bis(4-hydroxystyryl)benzene is an efficient detector of cationic amyloid fibrils. Protein Sci 2015; 24:420-5. [PMID: 25524064 DOI: 10.1002/pro.2620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 11/05/2022]
Abstract
Cationic amyloid fibrils found in human semen enhance the transmission of the human immunodeficiency virus (HIV) and thus, are named semen-derived enhancer of virus infection (SEVI). The mechanism for the enhancement of transmission is not completely understood but it has been proposed that SEVI neutralizes the repulsion that exists between the negatively charged viral envelope and host cell membrane. Consistent with this view, here we show that the fluorescence of cationic thioflavin T (ThT) in the presence of SEVI is weak, and thus ThT is not an efficient detector of SEVI. On the other hand, K114 ((trans, trans)-bromo-2,5-bis(4-hydroxystyryl)benzene) forms a highly fluorescent, phenolate-like species on the cationic surface of SEVI. This species does not form in the presence of amyloid fibrils from insulin and amyloid-β protein, both of which are efficiently detected by ThT fluorescence. Together, our results show that K114 is an efficient detector of SEVI.
Collapse
Affiliation(s)
- Veli Selmani
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts, 01610
| | | | | | | |
Collapse
|
1306
|
Singh PK, Mora AK, Nath S. Ultrafast fluorescence spectroscopy reveals a dominant weakly-emissive population of fibril bound thioflavin-T. Chem Commun (Camb) 2015; 51:14042-5. [DOI: 10.1039/c5cc04256a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ultrafast fluorescence spectroscopy reveals that the majority of insulin fibril bound thioflavin-T remains weakly emissive and undergoes efficient ultrafast conformational relaxation.
Collapse
Affiliation(s)
- Prabhat K. Singh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Aruna K. Mora
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Sukhendu Nath
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| |
Collapse
|
1307
|
Awasthi S, Saraswathi NT. Silybin, a flavonolignan from milk thistle seeds, restrains the early and advanced glycation end product modification of albumin. RSC Adv 2015. [DOI: 10.1039/c5ra15550a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silybin exhibited a protective effect towards the non-enzymatic glycation mediated structure functional changes in albumin.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab. School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - N. T. Saraswathi
- Molecular Biophysics Lab. School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| |
Collapse
|
1308
|
Andrich K, Bieschke J. The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:139-61. [PMID: 26092630 DOI: 10.1007/978-3-319-18365-7_7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies on the interaction of the green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) with fourteen disease-related amyloid polypeptides and prions Huntingtin, Amyloid-beta, alpha-Synuclein, islet amyloid polypeptide (IAPP), Sup35, NM25 and NM4, tau, MSP2, semen-derived enhancer of virus infection (SEVI), immunoglobulin light chains, beta-microglobulin, prion protein (PrP) and Insulin, have yielded a variety of experimental observations. Here, we analyze whether these observations could be explained by a common mechanism and give a broad overview of the published experimental data on the actions of EGCG. Firstly, we look at the influence of EGCG on aggregate toxicity, morphology, seeding competence, stability and conformational changes. Secondly, we screened publications elucidating the biochemical mechanism of EGCG intervention, notably the effect of EGCG on aggregation kinetics, oligomeric aggregation intermediates, and its binding mode to polypeptides. We hypothesize that the experimental results may be reconciled in a common mechanism, in which EGCG binds to cross-beta sheet aggregation intermediates. The relative position of these species in the energy profile of the amyloid cascade would determine the net effect of EGCG on aggregation and disaggregation of amyloid fibrils.
Collapse
Affiliation(s)
- Kathrin Andrich
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | | |
Collapse
|
1309
|
Interactions of Lipid Membranes with Fibrillar Protein Aggregates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:135-55. [PMID: 26149929 DOI: 10.1007/978-3-319-17344-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid fibrils are an intriguing class of protein aggregates with distinct physicochemical, structural and morphological properties. They display peculiar membrane-binding behavior, thus adding complexity to the problem of protein-lipid interactions. The consensus that emerged during the past decade is that amyloid cytotoxicity arises from a continuum of cross-β-sheet assemblies including mature fibrils. Based on literature survey and our own data, in this chapter we address several aspects of fibril-lipid interactions, including (i) the effects of amyloid assemblies on molecular organization of lipid bilayer; (ii) competition between fibrillar and monomeric membrane-associating proteins for binding to the lipid surface; and (iii) the effects of lipids on the structural morphology of fibrillar aggregates. To illustrate some of the processes occurring in fibril-lipid systems, we present and analyze fluorescence data reporting on lipid bilayer interactions with fibrillar lysozyme and with the N-terminal 83-residue fragment of amyloidogenic mutant apolipoprotein A-I, 1-83/G26R/W@8. The results help understand possible mechanisms of interaction and mutual remodeling of amyloid fibers and lipid membranes, which may contribute to amyloid cytotoxicity.
Collapse
|
1310
|
Gao M, Winter R. The Effects of Lipid Membranes, Crowding and Osmolytes on the Aggregation, and Fibrillation Propensity of Human IAPP. J Diabetes Res 2015; 2015:849017. [PMID: 26582333 PMCID: PMC4637101 DOI: 10.1155/2015/849017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related and metabolic disease. Its development is hallmarked, among others, by the dysfunction and degeneration of β-cells of the pancreatic islets of Langerhans. The major pathological characteristic thereby is the formation of extracellular amyloid deposits consisting of the islet amyloid polypeptide (IAPP). The process of human IAPP (hIAPP) self-association, and the intermediate structures formed as well as the interaction of hIAPP with membrane systems seem to be, at least to a major extent, responsible for the cytotoxicity. Here we present a summary and comparison of the amyloidogenic propensities of hIAPP in bulk solution and in the presence of various neutral and charged lipid bilayer systems as well as biological membranes. We also discuss the cellular effects of macromolecular crowding and osmolytes on the aggregation pathway of hIAPP. Understanding the influence of different cellular factors on hIAPP aggregation will provide more insight into the onset of T2DM and help to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Street 6, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn Street 6, 44227 Dortmund, Germany
- *Roland Winter:
| |
Collapse
|
1311
|
Peccati F, Hernando J, Blancafort L, Solans-Monfort X, Sodupe M. Disaggregation-induced fluorescence enhancement of NIAD-4 for the optical imaging of amyloid-β fibrils. Phys Chem Chem Phys 2015; 17:19718-25. [DOI: 10.1039/c5cp02728d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence enhancement of the NIAD-4 marker upon interaction with amyloid-β fibrils arises from the disaggregation of the oligomers that spontaneously form in aqueous solution.
Collapse
Affiliation(s)
- Francesca Peccati
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Jordi Hernando
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi i Departament de Química
- Campus Montilivi
- Universitat de Girona
- Girona
- Spain
| | | | - Mariona Sodupe
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| |
Collapse
|
1312
|
Sivanesam K, Byrne A, Bisaglia M, Bubacco L, Andersen N. Binding Interactions of Agents That Alter α-Synuclein Aggregation. RSC Adv 2015; 5:11577-11590. [PMID: 25705374 DOI: 10.1039/c5ra00325c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.
Collapse
Affiliation(s)
- K Sivanesam
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - A Byrne
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - M Bisaglia
- Department of Biology, University of Padua, 35121 Padova, Italy
| | - L Bubacco
- Department of Biology, University of Padua, 35121 Padova, Italy
| | - N Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
1313
|
Fibrillation of β amyloid peptides in the presence of phospholipid bilayers and the consequent membrane disruption. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:266-76. [DOI: 10.1016/j.bbamem.2014.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/24/2014] [Accepted: 04/13/2014] [Indexed: 01/27/2023]
|
1314
|
Ju H, Ryu BH, Doohun Kim T. Identification, characterization, immobilization of a novel type hydrolase (LmH) from Listeria monocytogenes. Int J Biol Macromol 2015; 72:63-70. [DOI: 10.1016/j.ijbiomac.2014.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
1315
|
Sarvaiya J, Agrawal Y. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72:454-65. [DOI: 10.1016/j.ijbiomac.2014.08.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
|
1316
|
Zhang C, Li Y, Xue X, Chu P, Liu C, Yang K, Jiang Y, Chen WQ, Zou G, Liang XJ. A smart pH-switchable luminescent hydrogel. Chem Commun (Camb) 2015; 51:4168-71. [DOI: 10.1039/c4cc09861g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report a novel example of a luminescent hydrogel, which is formed from silent individual molecules simply by altering the pH of the system.
Collapse
Affiliation(s)
- Chunqiu Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Yiwei Li
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xiangdong Xue
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Pengfei Chu
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Chang Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Keni Yang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Yonggang Jiang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Wei-Qiang Chen
- Institute of Modern Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Guozhang Zou
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
1317
|
Zhou X, Sun J, Yin T, Le F, Yang L, Liu Y, Liu J. Enantiomers of cysteine-modified SeNPs (d/lSeNPs) as inhibitors of metal-induced Aβ aggregation in Alzheimer's disease. J Mater Chem B 2015; 3:7764-7774. [DOI: 10.1039/c5tb00731c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral molecules, which selectively target and inhibit amyloid β-peptide (Aβ) aggregation, have potential use as therapeutic agents for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xianbo Zhou
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jing Sun
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tiantian Yin
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Fangling Le
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Licong Yang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yanan Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
1318
|
Udelson JE. Developing Imaging Biomarkers for Myocardial Involvement in Amyloidosis. JACC Cardiovasc Imaging 2015; 8:60-62. [DOI: 10.1016/j.jcmg.2014.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
|
1319
|
Bhattacharya A, Prajapati R, Chatterjee S, Mukherjee TK. Concentration-dependent reversible self-oligomerization of serum albumins through intermolecular β-sheet formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14894-14904. [PMID: 25409497 DOI: 10.1021/la5034959] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins inside a cell remain in highly crowded environments, and this often affects their structure and activity. However, most of the earlier studies involving serum albumins were performed under dilute conditions, which lack biological relevance. The effect of protein-protein interactions on the structure and properties of serum albumins at physiological conditions have not yet been explored. Here, we report for the first time the effect of protein-protein and protein-crowder interactions on the structure and stability of two homologous serum albumins, namely, human serum albumin (HSA) and bovine serum albumin (BSA), at physiological conditions by using spectroscopic techniques and scanning electron microscopy (SEM). Concentration-dependent self-oligomerization and subsequent structural alteration of serum albumins have been explored by means of fluorescence and circular dichroism spectroscopy at pH 7.4. The excitation wavelength (λex) dependence of the intrinsic fluorescence and the corresponding excitation spectra at each emission wavelength indicate the presence of various ground state oligomers of serum albumins in the concentration range 10-150 μM. Circular dichroism and thioflavin T binding assay revealed formation of intermolecular β-sheet rich interfaces at high protein concentration. Excellent correlations have been observed between β-sheet content of both the albumins and fluorescence enhancement of ThT with protein concentrations. SEM images at a concentration of 150 μM revealed large dispersed self-oligomeric states with sizes vary from 330 to 924 nm and 260 to 520 nm for BSA and HSA, respectively. The self-oligomerization of serum albumins is found to be a reversible process; upon dilution, these oligomers dissociate into a native monomeric state. It has also been observed that synthetic macromolecular crowder polyethylene glycol (PEG 200) stabilizes the self-associated state of both the albumins which is contrary to expectations that the macromolecular crowding favors compact native state of proteins.
Collapse
Affiliation(s)
- Arpan Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore , M-Block, IET-DAVV Campus, Khandwa Road, Indore-452017 Madhya Pradesh, India
| | | | | | | |
Collapse
|
1320
|
Pasi S, Kant R, Gupta S, Surolia A. Novel multimeric IL-1 receptor antagonist for the treatment of rheumatoid arthritis. Biomaterials 2014; 42:121-33. [PMID: 25542800 DOI: 10.1016/j.biomaterials.2014.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Protein therapeutics targeting inflammatory mediators have shown great promise for the treatment of autoimmunities such as rheumatoid arthritis (RA). However, a significant challenge in this area has been their low in vivo stability and consequently their severely compromised therapeutic efficacy. One such therapeutic molecule IL-1 receptor antagonist (IL-1ra), used in the treatment of rheumatoid arthritis, has displayed only modest efficacy in human clinical trials owing to its short biological half-life. Herein, we report a novel approach to conglomerate individual protein entities into a drug depot by incorporation of an amyloidogenic motif Lys-Phe-Phe-Glu (KFFE) thereby dramatically improving their systemic persistence and in turn their therapeutic efficacy in a mice model of autoimmune arthritis.
Collapse
Affiliation(s)
- Shweta Pasi
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| | - Ravi Kant
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India
| | - Avadhesha Surolia
- Molecular Science Laboratory, National Institute of Immunology, New Delhi, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
1321
|
Peng J, Weng J, Ren L, Sun L. Interactions between gold nanoparticles and amyloid
β
25–35
peptide. IET Nanobiotechnol 2014; 8:295-303. [DOI: 10.1049/iet-nbt.2013.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jian Peng
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| | - Jian Weng
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| | - Lei Ren
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| | - Li‐Ping Sun
- Department of BiomaterialsCollege of MaterialsXiamen UniversityXiamen 361005People's Republic of China
| |
Collapse
|
1322
|
Ueno H, Yamaguchi T, Fukunaga S, Okada Y, Yano Y, Hoshino M, Matsuzaki K. Comparison between the Aggregation of Human and Rodent Amyloid β-Proteins in GM1 Ganglioside Clusters. Biochemistry 2014; 53:7523-30. [DOI: 10.1021/bi501239q] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroshi Ueno
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Yamaguchi
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saori Fukunaga
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Okada
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
1323
|
Zhang C, Xue X, Luo Q, Li Y, Yang K, Zhuang X, Jiang Y, Zhang J, Liu J, Zou G, Liang XJ. Self-assembled Peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS NANO 2014; 8:11715-23. [PMID: 25375351 DOI: 10.1021/nn5051344] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The structural arrangement of amino acid residues in a native enzyme provides a blueprint for the design of artificial enzymes. One challenge of mimicking the catalytic center of a native enzyme is how to arrange the essential amino acid residues in an appropriate position. In this study, we designed an artificial hydrolase via self-assembly of short peptides to catalyze ester hydrolysis. When the assembled hydrolase catalytic sites were embedded in a matrix of peptide nanofibers, they exhibited much higher catalytic efficiency than the peptide nanofibers without the catalytic sites, suggesting that this well-ordered nanostructure is an attractive scaffold for developing new artificial enzymes. Furthermore, the cytotoxicity of the assembled hydrolase was evaluated with human cells, and the novel artificial biological enzyme showed excellent biocompatibility.
Collapse
Affiliation(s)
- Chunqiu Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1324
|
Li T, Kalloudis M, Cardoso AZ, Adams DJ, Clegg PS. Drop-casting hydrogels at a liquid interface: the case of hydrophobic dipeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13854-13860. [PMID: 24842147 DOI: 10.1021/la501182t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hydrophobic dipeptide molecules have been induced to self-assemble into thin interfacial films at the air-water interface via drop-casting. The mechanism involves fiberlike strands, which exist in the high-pH spreading solvent, becoming intertwined at the surface of a low-pH subphase. Atomic force microscopy (AFM) reveals that the strands are ∼40 nm wide and ∼20 nm high and are woven together to form layers that can be up to ∼800 nm thick. The use of Thioflavin T (ThT) fluorescence suggests that the dipeptides are ordered in a β-sheet configuration irrespective of whether they form an interfacial film, while Fourier transform infrared spectroscopy (FTIR) shows the protonation effect for those which do form an interfacial film. The entanglement between protonated strands results in the formation of an elastic sheet. The interfacial films buckled under compression in a Langmuir trough and have the ability to convey long-term stability to large air bubbles.
Collapse
Affiliation(s)
- Tao Li
- School of Physics and Astronomy, University of Edinburgh , Mayfield Road, Edinburgh EH9 3JZ, U.K
| | | | | | | | | |
Collapse
|
1325
|
Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, Linse S. Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 2014; 290:2969-82. [PMID: 25425650 PMCID: PMC4317028 DOI: 10.1074/jbc.m114.585703] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix. Using thioflavin T fluorescence to monitor aggregation kinetics, we found that exosomes catalyze the process in a similar manner as a low concentration of preformed α-synuclein fibrils. The exosomes reduce the lag time indicating that they provide catalytic environments for nucleation. The catalytic effects of exosomes derived from naive cells and cells that overexpress α-synuclein do not differ. Vesicles prepared from extracted exosome lipids accelerate aggregation, suggesting that the lipids in exosomes are sufficient for the catalytic effect to arise. Using mass spectrometry, we found several phospholipid classes in the exosomes, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and the gangliosides GM2 and GM3. Within each class, several species with different acyl chains were identified. We then prepared vesicles from corresponding pure lipids or defined mixtures, most of which were found to retard α-synuclein aggregation. As a striking exception, vesicles containing ganglioside lipids GM1 or GM3 accelerate the process. Understanding how α-synuclein interacts with biological membranes to promote neurological disease might lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Marie Grey
- From the Departments of Physical Chemistry
| | - Christopher J Dunning
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, Biochemistry and Structural Biology, and
| | - Ricardo Gaspar
- From the Departments of Physical Chemistry, Biochemistry and Structural Biology, and
| | | | - Patrik Brundin
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, The Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Emma Sparr
- From the Departments of Physical Chemistry,
| | - Sara Linse
- Biochemistry and Structural Biology, and
| |
Collapse
|
1326
|
Amdursky N, Simkovitch R, Huppert D. Excited-State Proton Transfer of Photoacids Adsorbed on Biomaterials. J Phys Chem B 2014; 118:13859-69. [DOI: 10.1021/jp509153r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nadav Amdursky
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ron Simkovitch
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Huppert
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
1327
|
Neuroprotective effects of geniposide in SH-SY5Y cells and primary hippocampal neurons exposed to Aβ42. BIOMED RESEARCH INTERNATIONAL 2014; 2014:284314. [PMID: 25506055 PMCID: PMC4255058 DOI: 10.1155/2014/284314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022]
Abstract
Our former studies have suggested that TongLuoJiuNao (TLJN) is clinically efficacious in the treatment of dementia and improving learning and memory in AD models. When Aβ aggregated with oligomer, it is known to be able to induce cellular toxicity as well as cognitive impairment. We tested the possibility that TLJN affects the formation of Aβ oligomers. In our experiment, TLJN improved cell viability, inhibited LDH release, and promoted the outgrowth of neurites of neurons treated with Aβ. Geniposide, the main component of TLJN, could increase the cell viability of SY5Y-APP695sw cells. The cytotoxicity of pretreated Aβ with geniposide was decreased in a dose-dependent manner. SDS-PAGE and Western blotting showed that geniposide and TLJN stimulated Aβ oligomer assembly. Compared with the control, more and longer fibrils of Aβ in the presence of geniposide were observed under electron microscope though the fibrils became less sensitive to thioflavin T staining. In sum, geniposide is able to protect neurons from Aβ-induced damage by remodeling Aβ.
Collapse
|
1328
|
Jayamani J, Shanmugam G, Azhagiya Singam ER. Inhibition of insulin amyloid fibril formation by ferulic acid, a natural compound found in many vegetables and fruits. RSC Adv 2014. [DOI: 10.1039/c4ra11291a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
1329
|
Zaidi N, Nusrat S, Zaidi FK, Khan RH. pH-Dependent Differential Interacting Mechanisms of Sodium Dodecyl Sulfate with Bovine Serum Fetuin: A Biophysical Insight. J Phys Chem B 2014; 118:13025-36. [DOI: 10.1021/jp501515g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nida Zaidi
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Saima Nusrat
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Fatima Kamal Zaidi
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan H. Khan
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
1330
|
Kaur M, Healy J, Vasudevamurthy M, Lassé M, Puskar L, Tobin MJ, Valery C, Gerrard JA, Sasso L. Stability and cytotoxicity of crystallin amyloid nanofibrils. NANOSCALE 2014; 6:13169-78. [PMID: 25255060 DOI: 10.1039/c4nr04624b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.
Collapse
Affiliation(s)
- Manmeet Kaur
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
1331
|
Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, Kwon JH, Paeng JC, Kim HK, Cheon GJ, Kim YJ, Kim I, Yoon SS, Seo JW, Sohn DW. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2014; 8:50-59. [PMID: 25499132 DOI: 10.1016/j.jcmg.2014.09.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVES This study sought to investigate the efficacy of (11)C-Pittsburgh B (PiB) positron emission tomography (PET)/computed tomography (CT) in the diagnosis of cardiac amyloidosis. BACKGROUND The PiB compound has been promising for detection of amyloid deposits in the brain. METHODS A total of 22 consecutive patients were enrolled in this prospective pilot study of monoclonal gammopathy patients with suspected cardiac amyloidosis. The study consisted of a series of (11)C-PiB PET/CT, echocardiography, cardiac magnetic resonance, and endomyocardial biopsy within a 1-month period. In addition, 10 normal subjects were recruited to determine the most optimal cut-off value for a positive (11)C-PiB PET/CT scan. RESULTS Among the 22 patients, 15 patients were diagnosed as cardiac amyloidosis by endomyocardial biopsy and 5 patients had undergone chemotherapy previously before the (11)C-PiB PET/CT. There were no differences in echocardiographic parameters between patients with versus without cardiac amyloidosis, except for a marginal difference in the left ventricular end-diastolic dimension (median 41.0 mm [range 33.0 to 49.0 mm] vs. 50.0 mm [range 38.0 to 55.0 mm], p = 0.066). (11)C-PiB PET/CT was positive in 13 of 15 biopsy-proven cardiac amyloidosis patients, whereas none of the patients without cardiac amyloidosis demonstrated positive (11)C-PiB PET/CT scan results. The maximal myocardium-to-blood cavity ratio was significantly different between patients with versus without cardiac amyloidosis (median 3.9 [range 1.7 to 19.9] vs. 1.0 [range 0.8 to 1.2], p < 0.001). In association with the significant difference of (11)C-PiB uptake in the myocardium between the chemotherapy naïve versus the previous chemotherapy group (median 10.4 [range 1.7 to 19.9] vs. 2.3 [range 1.7 to 3.8], p = 0.014), all except 1 patient among the 5 previously treated patients had responded to chemotherapy by serum free light chain assay results at the time of (11)C-PiB PET/CT scan. CONCLUSIONS (11)C-PiB PET/CT may be valuable for the diagnosis of cardiac amyloidosis noninvasively. Whether (11)C-PiB PET/CT may be a good surrogate marker of active light chain deposition in the myocardium warrants further investigation in a larger number of patients.
Collapse
Affiliation(s)
- Seung-Pyo Lee
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Eun Seong Lee
- Department of Nuclear Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, WCU Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Jun Im
- Department of Nuclear Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Min-Ho Lee
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Ji-Hyun Kwon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Kwan Kim
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Jin Kim
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Jeong-Wook Seo
- Department of Pathology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Dae-Won Sohn
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
1332
|
Liu Y, Carver JA, Ho LH, Elias AK, Musgrave IF, Pukala TL. Hemin as a generic and potent protein misfolding inhibitor. Biochem Biophys Res Commun 2014; 454:295-300. [DOI: 10.1016/j.bbrc.2014.10.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/15/2022]
|
1333
|
Yang Y, Cui M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer's disease. Eur J Med Chem 2014; 87:703-21. [DOI: 10.1016/j.ejmech.2014.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 01/30/2023]
|
1334
|
p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 2014; 34:3605-16. [PMID: 25263447 DOI: 10.1038/onc.2014.296] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/25/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the most lethal gynecological cancer, often leads to chemoresistant diseases. The p53 protein is a key transcriptional factor regulating cellular homeostasis. A majority of HGSOCs have inactive p53 because of genetic mutations. However, genetic mutation is not the only cause of p53 inactivation. The aggregation of p53 protein has been discovered in different types of cancers and may be responsible for impairing the normal transcriptional activation and pro-apoptotic functions of p53. We demonstrated that in a unique population of HGSOC cancer cells with cancer stem cell properties, p53 protein aggregation is associated with p53 inactivation and platinum resistance. When these cancer stem cells differentiated into their chemosensitive progeny, they lost tumor-initiating capacity and p53 aggregates. In addition to the association of p53 aggregation and chemoresistance in HGSOC cells, we further demonstrated that the overexpression of a p53-positive regulator, p14ARF, inhibited MDM2-mediated p53 degradation and led to the imbalance of p53 turnover that promoted the formation of p53 aggregates. With in vitro and in vivo models, we demonstrated that the inhibition of p14ARF could suppress p53 aggregation and sensitize cancer cells to platinum treatment. Moreover, by two-dimensional gel electrophoresis and mass spectrometry we discovered that the aggregated p53 may function uniquely by interacting with proteins that are critical for cancer cell survival and tumor progression. Our findings help us understand the poor chemoresponse of a subset of HGSOC patients and suggest p53 aggregation as a new marker for chemoresistance. Our findings also suggest that inhibiting p53 aggregation can reactivate p53 pro-apoptotic function. Therefore, p53 aggregation is a potential therapeutic target for reversing chemoresistance. This is paramount for improving ovarian cancer patients' responses to chemotherapy, and thus increasing their survival rate.
Collapse
|
1335
|
Liu L, Niu L, Xu M, Han Q, Duan H, Dong M, Besenbacher F, Wang C, Yang Y. Molecular tethering effect of C-terminus of amyloid peptide aβ42. ACS NANO 2014; 8:9503-9510. [PMID: 25192556 DOI: 10.1021/nn503737r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Amyloid peptides are considered to be the main contributor for the membrane disruption related to the pathogenesis of degenerative diseases. The variation of amino acids at the carboxylic terminus of amyloid peptide has revealed significant effects on the modulation of abnormal assemblies of amyloid peptides. In this work, molecular binding agents were tethered to the C-terminus of β-amyloid peptide 1-42 (Aβ42). The molecular interaction between Aβ42 and molecule tethers was identified at single molecule level by using scanning tunneling microscopy (STM). The mechanistic insight into the feature variation of the self-assembly of Aβ42 peptide caused by molecular tethering at C-terminus was clearly revealed, which could appreciably affect the nucleation of amyloid peptide, thus reducing the membrane disruptions.
Collapse
Affiliation(s)
- Lei Liu
- National Center for Nanoscience and Technology , Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1336
|
Zhao D, Dong X, Jiang N, Zhang D, Liu C. Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes. Nucleic Acids Res 2014; 42:11612-21. [PMID: 25245945 PMCID: PMC4191408 DOI: 10.1093/nar/gku833] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4) have been found increasing potential in applications, such as molecular therapeutics, diagnostics and sensing. Both Thioflavin T (ThT) and N-Methyl mesoporphyrin IX (NMM) become fluorescent in the presence of most G4, but thrombin-binding aptamer (TBA) has been reported as the only exception of the known G4-forming oligonucleotides when ThT is used as a high-throughput assay to identify G4 formation. Here, we investigate the interactions between ThT/NMM and TBA through fluorescence spectroscopy, circular dichroism and molecular docking simulation experiments in the absence or presence of cations. The results display that a large ThT fluorescence enhancement can be observed only when ThT bind to the parallel TBA quadruplex, which is induced to form by ThT in the absence of cations. On the other hand, great promotion in NMM fluorescence can be obtained only in the presence of anti-parallel TBA quadruplex, which is induced to fold by K+ or thrombin. The highly selective recognition of TBA quadruplex with different topologies by the two probes may be useful to investigate the interactions between conformation-specific G4 and the associated proteins, and could also be applied in label-free fluorescent sensing of other biomolecules.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiongwei Dong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nan Jiang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dan Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
1337
|
Simon RA, Shirani H, Åslund KOA, Bäck M, Haroutunian V, Gandy S, Nilsson KPR. Pentameric thiophene-based ligands that spectrally discriminate amyloid-β and tau aggregates display distinct solvatochromism and viscosity-induced spectral shifts. Chemistry 2014; 20:12537-43. [PMID: 25111601 PMCID: PMC4221846 DOI: 10.1002/chem.201402890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 01/03/2023]
Abstract
A wide range of neurodegenerative diseases are characterized by the deposition of multiple protein aggregates. Ligands for molecular characterization and discrimination of these pathological hallmarks are thus important for understanding their potential role in pathogenesis as well as for clinical diagnosis of the disease. In this regard, luminescent conjugated oligothiophenes (LCOs) have proven useful for spectral discrimination of amyloid-beta (Aβ) and tau neurofibrillary tangles (NFTs), two of the pathological hallmarks associated with Alzheimer's disease. Herein, the solvatochromism of a library of anionic pentameric thiophene-based ligands, as well as their ability to spectrally discriminate Aβ and tau aggregates, were investigated. Overall, the results from this study identified distinct solvatochromic and viscosity-dependent behavior of thiophene-based ligands that can be applied as indices to direct the chemical design of improved LCOs for spectral separation of Aβ and tau aggregates in brain tissue sections. The results also suggest that the observed spectral transitions of the ligands are due to their ability to conform by induced fit to specific microenvironments within the binding interface of each particular protein aggregate. We foresee that these findings might aid in the chemical design of thiophene-based ligands that are increasingly selective for distinct disease-associated protein aggregates.
Collapse
Affiliation(s)
- Rozalyn A Simon
- Department of Chemistry, Linköping University581 83 Linköping (Sweden)
| | - Hamid Shirani
- Department of Chemistry, Linköping University581 83 Linköping (Sweden)
| | | | - Marcus Bäck
- Department of Chemistry, Linköping University581 83 Linköping (Sweden)
| | - Vahram Haroutunian
- Department of Psychiatry and Alzheimer's Disease Research CenterMount Sinai School of Medicine, New York, NY 10029 (USA) and James J. Peters VA Medical Center, Bronx, NY 10468 (USA)
| | - Sam Gandy
- Department of Psychiatry and Alzheimer's Disease Research CenterMount Sinai School of Medicine, New York, NY 10029 (USA) and James J. Peters VA Medical Center, Bronx, NY 10468 (USA)
| | - K Peter R Nilsson
- Department of Chemistry, Linköping University581 83 Linköping (Sweden)
| |
Collapse
|
1338
|
Ghosh R, Palit DK. Ultrafast twisting dynamics of thioflavin-T: spectroscopy of the twisted intramolecular charge-transfer state. Chemphyschem 2014; 15:4126-31. [PMID: 25251013 DOI: 10.1002/cphc.201402317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/23/2014] [Indexed: 11/11/2022]
Abstract
Understanding the excited-state properties of thioflavin-T (ThT) has been of immense importance, because of its efficient amyloid-sensing ability related to neurodegenerative disorders. The excited-state dynamics of ThT is studied by using sub-pico- and nanosecond time-resolved transient absorption techniques as well as density functional theory (DFT)/time-dependent DFT calculations. Barrierless twisting around the central C-C bond between two aromatic moieties is the dominant process that contributes to the ultrafast dynamics of the S1 state. The spectroscopic properties of the intramolecular charge-transfer state are characterized for the first time. The energetics of the S0 and S1 states has also been correlated with the experimentally observed spectroscopic parameters and structural dynamics. A longer-lived transient state populated with a very low yield has been characterized as the triplet state.
Collapse
Affiliation(s)
- Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)
| | | |
Collapse
|
1339
|
Daigo K, Nakakido M, Ohashi R, Fukuda R, Matsubara K, Minami T, Yamaguchi N, Inoue K, Jiang S, Naito M, Tsumoto K, Hamakubo T. Protective effect of the long pentraxin PTX3 against histone-mediated endothelial cell cytotoxicity in sepsis. Sci Signal 2014; 7:ra88. [PMID: 25227610 DOI: 10.1126/scisignal.2005522] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pentraxin 3 (PTX3), a member of the long pentraxin subfamily within the family of pentraxins, is a soluble pattern recognition molecule that functions in the innate immune system. Innate immunity affords the infected host protection against sepsis, a potentially life-threatening inflammatory response to infection. Extracellular histones are considered to be the main cause of septic death because of their cytotoxic effect on endothelial cells, which makes them a potential therapeutic target. We found that PTX3 interacted with histones to form coaggregates, which depended on polyvalent interactions and disorder in the secondary structure of PTX3. PTX3 exerted a protective effect, both in vitro and in vivo, against histone-mediated cytotoxicity toward endothelial cells. Additionally, the intraperitoneal administration of PTX3 reduced mortality in mouse models of sepsis. The amino-terminal domain of PTX3, which was required for coaggregation with histones, was sufficient to protect against cytotoxicity. Our results suggest that the host-protective effects of PTX3 in sepsis are a result of its coaggregation with histones rather than its ability to mediate pattern recognition. This long pentraxin-specific effect provides a potential basis for the treatment of sepsis directed at protecting cells from the toxic effects of extracellular histones.
Collapse
Affiliation(s)
- Kenji Daigo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Riuko Ohashi
- Division of Cellular and Molecular Pathology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan. Department of Pathology, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan
| | - Rie Fukuda
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Koichi Matsubara
- Division of Cellular and Molecular Pathology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Takashi Minami
- Laboratory for Vascular Biology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Naotaka Yamaguchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| | - Kenji Inoue
- Department of Cardiology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| | - Shuying Jiang
- Division of Cellular and Molecular Pathology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan. Niigata College of Medical Technology, Niigata 950-2076, Japan. Perseus Proteomics Inc., Tokyo 153-0041, Japan
| | - Makoto Naito
- Division of Cellular and Molecular Pathology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kouhei Tsumoto
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.
| |
Collapse
|
1340
|
Ghimire Gautam S, Komatsu M, Nishigaki K. Strong Inhibition of Beta-Amyloid Peptide Aggregation Realized by Two-Steps Evolved Peptides. Chem Biol Drug Des 2014; 85:356-68. [DOI: 10.1111/cbdd.12400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/12/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Sunita Ghimire Gautam
- Department of Functional Materials Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo Sakura-Ku Saitama-Shi 338-8570 Japan
| | - Masayuki Komatsu
- Department of Functional Materials Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo Sakura-Ku Saitama-Shi 338-8570 Japan
| | - Koichi Nishigaki
- Department of Functional Materials Science; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo Sakura-Ku Saitama-Shi 338-8570 Japan
| |
Collapse
|
1341
|
Navarro S, Ventura S. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol J 2014; 9:1259-66. [PMID: 25112199 DOI: 10.1002/biot.201400291] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022]
Abstract
The formation of amyloid aggregates is linked to the onset of an increasing number of human disorders. Thus, there is an increasing need for methodologies able to provide insights into protein deposition and its modulation. Many approaches exist to study amyloids in vitro, but the techniques available for the study of amyloid aggregation in cells are still limited and non-specific. In this study we developed a methodology for the detection of amyloid-like aggregates inside cells that discriminates these ordered assemblies from other intracellular aggregates. We chose bacteria as model system, since the inclusion bodies formed by amyloid proteins in the cytosol of bacteria resemble toxic amyloids both structurally and functionally. Using confocal microscopy, fluorescence spectroscopy, and flow cytometry, we show that the recently developed red fluorescent dye ProteoStat can detect the presence of intracellular amyloid-like deposits in living bacterial cells with high specificity, even when the target proteins are expressed at low levels. This methodology allows quantitation of the intracellular amyloid content, shows the potential to replace in vitro screenings in the search for therapeutic anti-amyloidogenic compounds, and might be useful for identifying conditions that prevent the aggregation of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
1342
|
Khan MV, Rabbani G, Ahmad E, Khan RH. Fluoroalcohols-induced modulation and amyloid formation in conalbumin. Int J Biol Macromol 2014; 70:606-14. [DOI: 10.1016/j.ijbiomac.2014.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/27/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
1343
|
Rajaram H, Palanivelu MK, Arumugam TV, Rao VM, Shaw PN, McGeary RP, Ross BP. ‘Click’ assembly of glycoclusters and discovery of a trehalose analogue that retards Aβ40 aggregation and inhibits Aβ40-induced neurotoxicity. Bioorg Med Chem Lett 2014; 24:4523-4528. [DOI: 10.1016/j.bmcl.2014.07.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022]
|
1344
|
Ono K, Fujimoto E, Fujimoto N, Akiyama M, Satoh T, Maeda H, Fujii N, Tajima S. In vitro amyloidogenic peptides of galectin-7: possible mechanism of amyloidogenesis of primary localized cutaneous amyloidosis. J Biol Chem 2014; 289:29195-207. [PMID: 25172508 DOI: 10.1074/jbc.m114.592998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathogenesis of primary localized cutaneous amyloidosis (PLCA) is unclear, but pathogenic relationship to keratinocyte apoptosis has been implicated. We have previously identified galectin-7, actin, and cytokeratins as the major constituents of PLCA. Determination of the amyloidogenetic potential of these proteins by thioflavin T (ThT) method demonstrated that galectin-7 molecule incubated at pH 2.0 was capable of binding to the dye, but failed to form amyloid fibrils. When a series of galectin-7 fragments containing β-strand peptides were prepared to compare their amyloidogenesis, Ser(31)-Gln(67) and Arg(120)-Phe(136) were aggregated to form amyloid fibrils at pH 2.0. The rates of aggregation of Ser(31)-Gln(67) and Arg(120)-Phe(136) were dose-dependent with maximal ThT levels after 3 and 48 h, respectively. Their synthetic analogs, Phe(33)-Lys(65) and Leu(121)-Arg(134), which are both putative tryptic peptides, showed comparable amyloidogenesis. The addition of sonicated fibrous form of Ser(31)-Gln(67) or Phe(33)-Lys(65) to monomeric Ser(31)-Gln(67) or Phe(33)-Lys(65) solution, respectively, resulted in an increased rate of aggregation and extension of amyloid fibrils. Amyloidogenic potentials of Ser(31)-Gln(67) and Phe(33)-Lys(65) were inhibited by actin and cytokeratin fragments, whereas those of Arg(120)-Phe(136) and Leu(121)-Arg(134) were enhanced in the presence of Gly(84)-Arg(113), a putative tryptic peptide of galectin-7. Degraded fragments of the galectin-7 molecule produced by limited trypsin digestion, formed amyloid fibrils after incubation at pH 2.0. These results suggest that the tryptic peptides of galectin-7 released at neutral pH, may lead to amyloid fibril formation of PLCA in the intracellular acidified conditions during keratinocyte apoptosis via regulation by the galectin-7 peptide as well as actin and cytokeratins.
Collapse
Affiliation(s)
- Koji Ono
- From the Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan and
| | - Eita Fujimoto
- From the Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan and
| | - Norihiro Fujimoto
- From the Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan and
| | - Minoru Akiyama
- From the Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan and
| | - Takahiro Satoh
- From the Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan and
| | - Hiroki Maeda
- Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Noriko Fujii
- Research Reactor Institute, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Shingo Tajima
- From the Department of Dermatology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan and
| |
Collapse
|
1345
|
Fichman G, Guterman T, Adler-Abramovich L, Gazit E. The Use of the Calcitonin Minimal Recognition Module for the Design of DOPA-Containing Fibrillar Assemblies. NANOMATERIALS 2014; 4:726-740. [PMID: 28344244 PMCID: PMC5304689 DOI: 10.3390/nano4030726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/28/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022]
Abstract
Amyloid deposits are insoluble fibrous protein aggregates, identified in numerous diseases, which self-assemble through molecular recognition. This process is facilitated by short amino acid sequences, identified as minimal modules. Peptides corresponding to these motifs can be used for the formation of amyloid-like fibrillar assemblies in vitro. Such assemblies hold broad appeal in nanobiotechnology due to their ordered structure and to their ability to be functionalized. The catechol functional group, present in the non-coded L-3,4-dihydroxyphenylalanine (DOPA) amino acid, can take part in diverse chemical interactions. Moreover, DOPA-incorporated polymers have demonstrated adhesive properties and redox activity. In this work, amyloid-like fibrillar assemblies were formed through the self-assembly of a pentapeptide containing DOPA residues, Asp-DOPA-Asn-Lys-DOPA. The design of this peptide was based on the minimal amyloidogenic recognition motif of the human calcitonin hormone, Asp-Phe-Asn-Lys-Phe, the first amyloidogenic pentapeptide identified. By substituting phenylalanine with DOPA, we obtained DOPA-functionalized amyloid-like assemblies in water. Electron microscopy revealed elongated, linear fibril-like nanometric assemblies. Secondary structure analysis indicated the presence of amyloid-characteristic β-sheet structures as well as random coil structures. Deposition of silver on the DOPA-incorporated assemblies suggested redox activity and demonstrated the applicative potential of this novel nanobiomaterial.
Collapse
Affiliation(s)
- Galit Fichman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Tom Guterman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Lihi Adler-Abramovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
1346
|
Wang J, Li Y, Wang X, Chen W, Sun H, Wang J. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2910-8. [PMID: 25109934 DOI: 10.1016/j.bbamem.2014.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity.
Collapse
Affiliation(s)
- Jiarong Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Yan Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Xiaoming Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Wei Chen
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China
| | - Hongbin Sun
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China.
| |
Collapse
|
1347
|
Effects of additional fibrils on structural and rheological properties of rice bran albumin solution and gel. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2294-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
1348
|
Catto M, Arnesano F, Palazzo G, De Stradis A, Calò V, Losacco M, Purgatorio R, Campagna F. Investigation on the influence of (Z)-3-(2-(3-chlorophenyl)hydrazono)-5,6-dihydroxyindolin-2-one (PT2) on β-amyloid(1-40) aggregation and toxicity. Arch Biochem Biophys 2014; 560:73-82. [PMID: 25051344 DOI: 10.1016/j.abb.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD), native Aβ protein monomers aggregate through the formation of a variety of water-soluble, toxic oligomers, ultimately leading to insoluble fibrillar deposits. The inhibition of oligomers formation and/or their dissociation into non-toxic monomers, are considered an attractive strategy for the prevention and treatment of AD. A number of studies have demonstrated that small molecules, containing single or multiple (hetero)aromatic rings, can inhibit protein aggregation, being potentially effective in AD treatment. Starting from previously reported data on the antiamyloidogenic activity of a series of 3-hydrazonoindolinones, compound PT2 was selected to deeply investigate the inhibitory mechanism in the Aβ aggregation cascade. We compared data from DLS, NMR, CD, TEM and ThT fluorescence measures to ascertain the interactions with amyloidogenic species formed in vitro during the aggregation process, and confirmed this feature with cell viability tests on HeLa cultured cells. PT2 was effective in disrupting toxic oligomers and mature amyloid fibrils, stabilizing Aβ as non-toxic, β-sheet arranged, ThT-insensitive protofilaments. It also strongly reduced cellular toxicity caused by Aβ and showed good antioxidant properties in two radical scavenging tests. Taken together, these data confirmed that PT2 is a small molecule inhibitor of Aβ oligomerization and toxicity, displaying also additional activity as antioxidant.
Collapse
Affiliation(s)
- Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Fabio Arnesano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Angelo De Stradis
- Istituto di Virologia Vegetale del CNR, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, I-70126 Bari, Italy
| | - Vincenza Calò
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Maurizio Losacco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Rosa Purgatorio
- Taub Institute of Columbia University, 630W 168th Street, Building P&S 12-502, New York, NY 10032, United States
| | - Francesco Campagna
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
1349
|
Cho PY, Joshi G, Johnson JA, Murphy RM. Transthyretin-derived peptides as β-amyloid inhibitors. ACS Chem Neurosci 2014; 5:542-51. [PMID: 24689444 DOI: 10.1021/cn500014u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Self-association of β-amyloid (Aβ) into soluble oligomers and fibrillar aggregates is associated with Alzheimer's disease pathology, motivating the search for compounds that selectively bind to and inhibit Aβ oligomerization and/or neurotoxicity. Numerous small-molecule inhibitors of Aβ aggregation or toxicity have been reported in the literature. However, because of their greater size and complexity, peptides and peptidomimetics may afford improved specificity and affinity as Aβ aggregation modulators compared to small molecules. Two divergent strategies have been employed in the search for peptides that bind Aβ: (i) using recognition domains corresponding to sequences in Aβ itself (such as KLVFF) and (ii) screening random peptide-based libraries. In this study, we propose a third strategy, specifically, designing peptides that mimic binding domains of Aβ-binding proteins. Transthyretin, a plasma transport protein that is also relatively abundant in cerebrospinal fluid, has been shown to bind to Aβ, inhibit aggregation, and reduce its toxicity. Previously, we identified strand G of transthyretin as a specific Aβ binding domain. In this work we further explore and define the necessary features of this binding domain. We demonstrate that peptides derived from transthyretin bind Aβ and inhibit its toxicity. We also show that, although both transthyretin and transthyretin-derived peptides bind Aβ and inhibit toxicity, they differ significantly in their effect on Aβ aggregation.
Collapse
Affiliation(s)
- Patricia Y. Cho
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Gururaj Joshi
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey A. Johnson
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
1350
|
Zhang X, Zhao Y, Xu Y, Pan Y, Chen F, Kumar A, Zou G, Liang XJ. In situ self-assembly of peptides in glucan particles for macrophage-targeted oral delivery. J Mater Chem B 2014; 2:5882-5890. [DOI: 10.1039/c4tb00626g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|