1351
|
Therapeutic exploitation of necroptosis for cancer therapy. Semin Cell Dev Biol 2014; 35:51-6. [PMID: 25065969 DOI: 10.1016/j.semcdb.2014.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022]
Abstract
Evasion of programmed cell death represents one of the hallmarks of cancers that contributes to tumor initiation, progression and treatment resistance. This calls for novel therapeutic concepts to reactivate cell death programs in human malignancies. Since necroptosis represents a regulated form of necrosis that is under the control of defined signal transduction pathways, it offers molecular targets for rational therapeutic intervention. Indeed, there is mounting evidence showing that many currently used anticancer agents can engage necroptotic signaling pathways and thereby elicit cell death in malignant cells. A better understanding of the signaling networks regulating necroptosis in cancer cells is expected to speed up the development of anticancer drugs for therapeutic exploitation of necroptosis for cancer therapy.
Collapse
|
1352
|
Modulatory roles of glycolytic enzymes in cell death. Biochem Pharmacol 2014; 92:22-30. [PMID: 25034412 DOI: 10.1016/j.bcp.2014.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Cancer cells depend on an altered energy metabolism characterized by increased rates of both glycolysis and glutaminolysis. Accordingly, corresponding key metabolic enzymes are overexpressed or hyperactivated. As a result, this newly acquired metabolic profile determines most other cancer hallmarks including resistance to cell death. Recent findings highlighted metabolic enzymes as direct modulators of cell death pathways. Conversely, key mediators of cell death mechanisms are emerging as new binding partners of glycolytic actors; moreover, there is evidence that metabolic regulators re-localize to specific subcellular compartments or organelles to modulate various types of cell demise. The final outcome is the resistance against cell death programs. Current findings give a new meaning to metabolic pathways and allow understanding how they affect cancer-specific pathological alterations. Furthermore, they shed light on potentially targetable functions of metabolic actors to restore susceptibility of cancer cells to death. Here, we discuss an emerging interplay between cell metabolism and cell death, focusing on interactions that may offer new options of targeted therapies in cancer treatment involving more specifically hexokinases and glyceraldehyde-3-phosphate dehydrogenase.
Collapse
|
1353
|
Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van TM, Lee TH, Chan FKM, Pasparakis M, Kelliher MA. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 193:1539-1543. [PMID: 25015821 DOI: 10.4049/jimmunol.1400590] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The serine/threonine kinase RIPK1 is recruited to TNFR1 to mediate proinflammatory signaling and to regulate TNF-induced cell death. A RIPK1 deficiency results in perinatal lethality, impaired NFκB and MAPK signaling, and sensitivity to TNF-induced apoptosis. Chemical inhibitor and in vitro-reconstitution studies suggested that RIPK1 displays distinct kinase activity-dependent and -independent functions. To determine the contribution of RIPK1 kinase to inflammation in vivo, we generated knock-in mice endogenously expressing catalytically inactive RIPK1 D138N. Unlike Ripk1(-/-) mice, which die shortly after birth, Ripk1(D138N/D138N) mice are viable. Cells expressing RIPK1 D138N are resistant to TNF- and polyinosinic-polycytidylic acid-induced necroptosis in vitro, and Ripk1(D138N/D138N) mice are protected from TNF-induced shock in vivo. Moreover, Ripk1(D138N/D138N) mice fail to control vaccinia virus replication in vivo. This study provides genetic evidence that the kinase activity of RIPK1 is not required for survival but is essential for TNF-, TRIF-, and viral-initiated necroptosis.
Collapse
Affiliation(s)
- Apostolos Polykratis
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Nicole Hermance
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Matija Zelic
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Justine Roderick
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chun Kim
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Trieu-My Van
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | | | - Francis K M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Michelle A Kelliher
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
1354
|
Lehners A, Lange S, Niemann G, Rosendahl A, Meyer-Schwesinger C, Oh J, Stahl R, Ehmke H, Benndorf R, Klinke A, Baldus S, Wenzel UO. Myeloperoxidase deficiency ameliorates progression of chronic kidney disease in mice. Am J Physiol Renal Physiol 2014; 307:F407-17. [PMID: 24990898 DOI: 10.1152/ajprenal.00262.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Myeloperoxidase (MPO) is an enzyme expressed in neutrophils and monocytes/macrophages. Beside its well-defined role in innate immune defence, it may also be responsible for tissue damage. To identify the role of MPO in the progression of chronic kidney disease (CKD), we investigated CKD in a model of renal ablation in MPO knockout and wild-type mice. CKD was induced by 5/6 nephrectomy. Mice were followed for 10 wk to evaluate the impact of MPO deficiency on renal morbidity. Renal ablation induced CKD in wild-type mice with increased plasma levels of MPO compared with controls. No difference was found between MPO-deficient and wild-type mice regarding albuminuria 1 wk after renal ablation, indicating similar acute responses to renal ablation. Over the next 10 wk, however, MPO-deficient mice developed significantly less albuminuria and glomerular injury than wild-type mice. This was accompanied by a significantly lower renal mRNA expression of the fibrosis marker genes plasminogen activator inhibitor-I, collagen type III, and collagen type IV as well as matrix metalloproteinase-2 and matrix metalloproteinase-9. MPO-deficient mice also developed less renal inflammation after renal ablation, as indicated by a lower infiltration of CD3-positive T cells and F4/80-positive monocytes/macrophages compared with wild-type mice. In vitro chemotaxis of monocyte/macrophages isolated from MPO-deficient mice was impaired compared with wild-type mice. No significant differences were observed for mortality and blood pressure after renal ablation. In conclusion, these results demonstrate that MPO deficiency ameliorates renal injury in the renal ablation model of CKD in mice.
Collapse
Affiliation(s)
- Alexander Lehners
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sascha Lange
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Gianina Niemann
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Alva Rosendahl
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jun Oh
- Division of Nephrology, Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf Stahl
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Heimo Ehmke
- Department of Physiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Benndorf
- Clinical Pharmacology, University of Halle, Halle, Germany; and
| | - Anna Klinke
- Division of Cardiology, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Division of Cardiology, University of Cologne, Cologne, Germany
| | - Ulrich Otto Wenzel
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany;
| |
Collapse
|
1355
|
Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 2014; 25:1387-400. [PMID: 24762401 PMCID: PMC4073442 DOI: 10.1681/asn.2014010117] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue injury initiates an inflammatory response through the actions of immunostimulatory molecules referred to as damage-associated molecular patterns (DAMPs). DAMPs encompass a group of heterogenous molecules, including intracellular molecules released during cell necrosis and molecules involved in extracellular matrix remodeling such as hyaluronan, biglycan, and fibronectin. Kidney-specific DAMPs include crystals and uromodulin released by renal tubular damage. DAMPs trigger innate immunity by activating Toll-like receptors, purinergic receptors, or the NLRP3 inflammasome. However, recent evidence revealed that DAMPs also trigger re-epithelialization upon kidney injury and contribute to epithelial-mesenchymal transition and, potentially, to myofibroblast differentiation and proliferation. Thus, these discoveries suggest that DAMPs drive not only immune injury but also kidney regeneration and renal scarring. Here, we review the data from these studies and discuss the increasingly complex connection between DAMPs and kidney diseases.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrological Center, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany; and
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institute of General Pharmacology and Toxicology, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|
1356
|
Repnik U, Hafner Česen M, Turk B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 2014; 19 Pt A:49-57. [PMID: 24984038 DOI: 10.1016/j.mito.2014.06.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
Late endocytic compartments include late endosomes, lysosomes and hybrid organelles. In the acidic lumen, cargo material derived from endocytosed and phagocytosed extracellular material and autophagy-derived intracellular material is degraded. In the event of lysosomal membrane permeabilization (LMP), the function of endo/lysosomal compartment is affected and the luminal contents are released into the cytosol to various extents. LMP can be a result of osmotic lysis or direct membranolytic activity of the compounds that accumulate in the lumen of endo/lysosomes. In addition to several synthetic compounds, such as dipeptide methyl esters and lysosomotropic detergents, endogenous agents that can cause LMP include ROS and lipid metabolites such as sphingosine and phosphatidic acid. Depending on the cell type and the dose, LMP can initiate the lysosomal apoptotic pathway, pyroptosis or necrosis. LMP can also amplify cell death signaling that was initiated outside the endocytic compartment, and hamper cell recovery via autophagy. However, mechanisms that connect LMP with cell death signaling are poorly understood, with the exception of the proteolytic activation of Bid by aspartic cathepsin D and cysteine cathepsins. Determination of LMP in a cell model system is methodologically challenging. Even more difficult is to prove that LMP is the primary event leading to cell death. Nevertheless, LMP may prove to be a valuable approach in therapy, either as a trigger of cell death or as a mechanism of therapeutic drug release in the case of delivery systems that target the endocytic pathway.
Collapse
Affiliation(s)
- Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Maruša Hafner Česen
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKeBiP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
1357
|
Aredia F, Scovassi AI. Poly(ADP-ribose): a signaling molecule in different paradigms of cell death. Biochem Pharmacol 2014; 92:157-63. [PMID: 24976506 DOI: 10.1016/j.bcp.2014.06.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribosylation) results from the conversion of NAD(+) into ADP-ribose and the following addition of ADP-ribose units to form polymers, further bound to acceptor proteins; once post-translationally ADP-ribosylated, proteins could change their function in basic processes. Poly(ADP-ribosylation) is activated under critical situations represented by DNA damage and cellular stress, and modulated in different paradigms of cell death. The hallmarks of the main death processes, i.e. apoptosis, parthanatos, necroptosis and autophagy, will be described, focusing on the role of poly(ADP-ribose) as a signaling molecule.
Collapse
Affiliation(s)
- Francesca Aredia
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
1358
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
1359
|
Li K, Wu D, Chen X, Zhang T, Zhang L, Yi Y, Miao Z, Jin N, Bi X, Wang H, Xu J, Wang D. Current and emerging biomarkers of cell death in human disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:690103. [PMID: 24949464 PMCID: PMC4052120 DOI: 10.1155/2014/690103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023]
Abstract
Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases.
Collapse
Affiliation(s)
- Kongning Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Deng Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xi Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ting Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhengqiang Miao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Nana Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaoman Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianzhen Xu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
1360
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
1361
|
Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJM, Vandenabeele P. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 2014; 7:971-81. [PMID: 24813885 DOI: 10.1016/j.celrep.2014.04.026] [Citation(s) in RCA: 750] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/09/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022] Open
Abstract
Although mixed lineage kinase domain-like (MLKL) protein has emerged as a specific and crucial protein for necroptosis induction, how MLKL transduces the death signal remains poorly understood. Here, we demonstrate that the full four-helical bundle domain (4HBD) in the N-terminal region of MLKL is required and sufficient to induce its oligomerization and trigger cell death. Moreover, we found that a patch of positively charged amino acids on the surface of the 4HBD binds to phosphatidylinositol phosphates (PIPs) and allows recruitment of MLKL to the plasma membrane. Importantly, we found that recombinant MLKL, but not a mutant lacking these positive charges, induces leakage of PIP-containing liposomes as potently as BAX, supporting a model in which MLKL induces necroptosis by directly permeabilizing the plasma membrane. Accordingly, we found that inhibiting the formation of PI(5)P and PI(4,5)P2 specifically inhibits tumor necrosis factor (TNF)-mediated necroptosis but not apoptosis.
Collapse
Affiliation(s)
- Yves Dondelinger
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Wim Declercq
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Ria Roelandt
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Amanda Goncalves
- Microscopy Core Facility, VIB Inflammation Research Center, VIB/Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Inge Bruggeman
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Paco Hulpiau
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Kathrin Weber
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Clark A Sehon
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Robert W Marquis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Savvas Savvides
- Unit for Structural Biology and Biophysics, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | - Mathieu J M Bertrand
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium
| | - Peter Vandenabeele
- VIB Inflammation Research Center, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium; Methusalem Program, Ghent University, Technologiepark 927, 9052 Zwijnaarde-Ghent, Belgium.
| |
Collapse
|
1362
|
The novel thymidylate synthase inhibitor trifluorothymidine (TFT) and TRAIL synergistically eradicate non-small cell lung cancer cells. Cancer Chemother Pharmacol 2014; 73:1273-83. [PMID: 24744163 DOI: 10.1007/s00280-014-2465-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE TRAIL, a tumor selective anticancer agent, may be used for the treatment of non-small cell lung cancer (NSCLC). However, TRAIL resistance is frequently encountered. Here, the combined use of TRAIL with trifluorothymidine (TFT), a thymidylate synthase inhibitor, was examined for sensitizing NSCLC cells to TRAIL. METHODS Interactions between TRAIL and TFT were studied in NSCLC cells using growth inhibition and apoptosis assays. Western blotting and flow cytometry were used to investigate underlying mechanisms. RESULTS The combined treatment of TFT and TRAIL showed synergistic cytotoxicity in A549, H292, H322 and H460 cells. For synergistic activity, the sequence of administration was important; TFT treatment followed by TRAIL exposure did not show sensitization. Combined TFT and TRAIL treatment for 24 h followed by 48 h of TFT alone was synergistic in all cell lines, with combination index values below 0.9. The treatments affected cell cycle progression, with TRAIL inducing a G1 arrest and TFT, a G2/M arrest. TFT activated Chk2 and reduced Cdc25c levels known to cause G2/M arrest. TRAIL-induced caspase-dependent apoptosis was enhanced by TFT, whereas TFT alone mainly induced caspase-independent death. TFT increased the expression of p53 and p21/WAF1, and p53 was involved in the increase of TRAIL-R2 surface expression. TFT also caused downregulation of cFLIP and XIAP and increased Bax expression. CONCLUSIONS TFT enhances TRAIL-induced apoptosis in NSCLC cells by sensitizing the apoptotic machinery at different levels in the TRAIL pathway. Our findings suggest a possible therapeutic benefit of the combined use of TFT and TRAIL in NSCLC.
Collapse
|
1363
|
Allam R, Kumar SVR, Darisipudi MN, Anders HJ. Extracellular histones in tissue injury and inflammation. J Mol Med (Berl) 2014; 92:465-72. [PMID: 24706102 DOI: 10.1007/s00109-014-1148-z] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
Abstract
Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.
Collapse
Affiliation(s)
- Ramanjaneyulu Allam
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | | | | | |
Collapse
|
1364
|
Estornes Y, Bertrand MJM. IAPs, regulators of innate immunity and inflammation. Semin Cell Dev Biol 2014; 39:106-14. [PMID: 24718315 DOI: 10.1016/j.semcdb.2014.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/06/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022]
Abstract
As indicated by their name, members of the Inhibitor of APoptosis (IAP) family were first believed to be functionally restricted to apoptosis inhibition. It is now clear that IAPs have a much wider spectrum of action, and recent studies even suggest that some of its members primarily regulate inflammatory responses. Inflammation, the first response of the immune system to infection or tissue injury, is highly regulated by ubiquitylation - a posttranslational modification of proteins with various consequences. In this review, we focus on the recently reported functions of XIAP, cIAP1 and cIAP2 as ubiquitin ligases regulating innate immunity and inflammation.
Collapse
Affiliation(s)
- Yann Estornes
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium.
| |
Collapse
|
1365
|
Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, Ishizaka M, Sonoda Y, Tomino Y. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol 2014; 306:F1335-47. [PMID: 24647715 DOI: 10.1152/ajprenal.00509.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-A(y) mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-A(y) mice were significantly decreased compared with untreated KK-A(y) mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.
Collapse
Affiliation(s)
- Keisuke Omote
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Tomohito Gohda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Maki Murakoshi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yu Sasaki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Saiko Kazuno
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masanori Ishizaka
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yuji Sonoda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| |
Collapse
|