1401
|
Abstract
Cellular senescence refers to a process induced by various types of stress that causes irreversible cell cycle arrest and distinct cellular alterations, including profound changes in gene expression, metabolism, and chromatin organization as well as activation/reinforcement of anti-apoptotic pathways and development of a pro-inflammatory secretome or senescence-associated secretory phenotype (SASP). However, because of challenges and technical limitations in identifying and characterizing senescent cells in living organisms, only recently have some of the diverse in vivo roles of these unique cells been discovered. New findings indicate that senescent cells and their SASP can have acute beneficial functions, such as in tissue regeneration and wound healing. However, in contrast, when senescent cells accumulate in excess chronically at sites of pathology or in old tissues they drive multiple age-associated chronic diseases. Senotherapeutics that selectively eliminate senescent cells ("senolytics") or inhibit their detrimental SASP ("senomorphics") have been developed and tested in aged preclinical models. These studies have established that targeting senescence is a powerful anti-aging strategy to improve "healthspan" - i.e., the healthy period of life free of chronic disease. The roles of senescence in mediating age-related bone loss have been a recent focus of rigorous investigation. Studies in mice and humans demonstrate that with aging, at least a subset of most cell types in the bone microenvironment become senescent and develop a heterogeneous SASP. Furthermore, age-related bone loss can be alleviated in old mice, with apparent advantages over anti-resorptive therapy, by reducing the senescent cell burden genetically or pharmacologically with the first class of senolytics or a senomorphic. Collectively, these findings point to targeting senescence as a transformational strategy to extend healthspan, therefore providing strong rationale for identifying and optimizing senotherapeutics to alleviate multiple chronic diseases of aging, including osteoporosis, and set the stage for translating senotherapeutics to humans, with clinical trials currently ongoing.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Sundeep Khosla
- Division of Endocrinology and Metabolism and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
1402
|
Palliyaguru DL, Moats JM, Di Germanio C, Bernier M, de Cabo R. Frailty index as a biomarker of lifespan and healthspan: Focus on pharmacological interventions. Mech Ageing Dev 2019; 180:42-48. [PMID: 30926563 DOI: 10.1016/j.mad.2019.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/09/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Although survival has been the focus of aging research for many years, the field is rapidly evolving towards incorporating healthspan and health indices in studies that explore aging-related outcomes. Frailty is one such measure that is tightly correlated with human aging. Several frailty measures have been developed that focus on phenotypes of aging, including physical, cognitive and metabolic health that define healthspan. The extent at which cumulative deficits associated with frailty predict functional characteristics of healthy aging and longevity is currently unknown. A growing consensus for the use of animal models has emerged to evaluate a composite measure of frailty that provides a translational basis to understanding human frailty. In this review, we will focus on the impact of several anti-aging interventions, some of which have been characterized as caloric restriction (CR) mimetics such as metformin, rapamycin, and resveratrol as well as more novel approaches that are emerging in the field - nicotinamide adenine dinucleotide precursors, small molecule activators of sirtuins, and senolytics - on a number of frailty measurements associated with aging-related outcomes in mice and discuss the translatability of such measures to human frailty.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline M Moats
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
1403
|
Calvello M, Flore MC, Richeldi L. Novel drug targets in idiopathic pulmonary fibrosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1590196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariarosaria Calvello
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Flore
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UniversitàCattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
1404
|
Libertini G, Ferrara N, Rengo G, Corbi G. Elimination of Senescent Cells: Prospects According to the Subtelomere-Telomere Theory. BIOCHEMISTRY (MOSCOW) 2019; 83:1477-1488. [PMID: 30878023 DOI: 10.1134/s0006297918120064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell senescence is an artificially reversible condition activated by various factors and characterized by replicative senescence and typical general alteration of cell functions, including extra-cellular secretion. The number of senescent cells increases with age and contributes strongly to the manifestations of aging. For these reasons, research is under way to obtain "senolytic" compounds, defined as drugs that eliminate senescent cells and therefore reduce aging-associated decay, as already shown in some experiments on animal models. This objective is analyzed in the context of the programmed aging paradigm, as described by the mechanisms of the subtelomere-telomere theory. In this regard, positive effects of the elimination of senescent cells and limits of this method are discussed. For comparison, positive effects and limits of telomerase activation are also analyzed, as well of the combined action of the two methods and the possible association of opportune gene modifications. Ethical issues associated with the use of these methods are outlined.
Collapse
Affiliation(s)
- G Libertini
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy.
| | - N Ferrara
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy
| | - G Rengo
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy
| | - G Corbi
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy
| |
Collapse
|
1405
|
Lujambio A, Banito A. Functional screening to identify senescence regulators in cancer. Curr Opin Genet Dev 2019; 54:17-24. [PMID: 30877988 DOI: 10.1016/j.gde.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Cellular senescence is implicated in numerous biological processes, and can play pleiotropic, sometimes opposing, roles in cancer. Several triggers, cell types, contexts, and senescence-associated phenotypes introduce a multitude of possibilities when studying this process and its biological consequences. Recent studies continue to characterize cellular senescence at different levels, using a combination of functional screens, in silico analysis, omics characterizations and more targeted studies. However, a comprehensive analysis of its context-dependent effects and multiple phenotypes is required. Application of state-of-the-art and emerging technologies will increase our understanding of this complex process and better guide future strategies to harness senescence to our advantage, or to target it when detrimental.
Collapse
Affiliation(s)
- Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ) and Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
1406
|
Kritchevsky SB, Forman DE, Callahan KE, Ely EW, High KP, McFarland F, Pérez-Stable EJ, Schmader KE, Studenski SA, Williams J, Zieman S, Guralnik JM. Pathways, Contributors, and Correlates of Functional Limitation Across Specialties: Workshop Summary. J Gerontol A Biol Sci Med Sci 2019; 74:534-543. [PMID: 29697758 PMCID: PMC6417483 DOI: 10.1093/gerona/gly093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/25/2022] Open
Abstract
Traditional clinical care models focus on the measurement and normalization of individual organ systems and de-emphasize aspects of health related to the integration of physiologic systems. Measures of physical, cognitive and sensory, and psychosocial or emotional function predict important health outcomes like death and disability independently from the severity of a specific disease, cumulative co-morbidity, or disease severity measures. A growing number of clinical scientists in several subspecialties are exploring the utility of functional assessment to predict complication risk, indicate stress resistance, inform disease screening approaches and risk factor interpretation, and evaluate care. Because a substantial number of older adults in the community have some form of functional limitation, integrating functional assessment into clinical medicine could have a large impact. Although interest in functional implications for health and disease management is growing, the science underlying functional capacity, functional limitation, physical frailty, and functional metrics is often siloed among different clinicians and researchers, with fragmented concepts and methods. On August 25-26, 2016, participants at a trans-disciplinary workshop, supported by the National Institute on Aging and the John A. Hartford Foundation, explored what is known about the pathways, contributors, and correlates of physical, cognitive, and sensory functional measures across conditions and disease states; considered social determinants and health disparities; identified knowledge gaps, and suggested priorities for future research. This article summarizes those discussions.
Collapse
Affiliation(s)
- Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniel E Forman
- Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Kathryn E Callahan
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - E Wesley Ely
- VA Tennessee Valley Geriatric Research Education Clinical Center (GRECC) and Department of Medicine, Vanderbilt University, Nashville
| | - Kevin P High
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Frances McFarland
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | - Jack M Guralnik
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
1407
|
Tachikart Y, Malaise O, Mumme M, Jorgensen C, Brondello JM. Seno-suppressive molecules as new therapeutic perspectives in rheumatic diseases. Biochem Pharmacol 2019; 165:126-133. [PMID: 30878551 DOI: 10.1016/j.bcp.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023]
Abstract
Over the past years, through in vitro studies and unique animal models, biologists and clinicians have demonstrated that cellular senescence is at the root of numerous age-related chronic diseases including osteoarthritis and osteoporosis. This non-proliferative cellular syndrome can modify other surrounding tissue-resident cells through the establishment of a deleterious catabolic and inflammatory microenvironment. Targeting these deleterious cells through local or systemic seno-therapeutic agent delivery in pre-clinical models improves dramatically clinical signs and extends health span. In this review, we will summarize the current knowledge on cellular senescence, list the different strategies for identifying seno-suppressive therapeutic agents and their translations to rheumatic diseases.
Collapse
Affiliation(s)
- Yassin Tachikart
- IRMB (Institut of Regenerative Medicine and Biotherapies), Inserm U1183, Univ Montpellier, Montpellier, France
| | - Olivier Malaise
- IRMB (Institut of Regenerative Medicine and Biotherapies), Inserm U1183, Univ Montpellier, Montpellier, France; GIGA Research (Groupe Interdisciplinaire de Genoproteomique Appliquée), CHU de Liège & Université de Liège, Liège, Belgium
| | - Marcus Mumme
- IRMB (Institut of Regenerative Medicine and Biotherapies), Inserm U1183, Univ Montpellier, Montpellier, France; Clinic for Orthopedics and Traumatology, University Hospital of Basel, Basel, Switzerland
| | - Christian Jorgensen
- IRMB (Institut of Regenerative Medicine and Biotherapies), Inserm U1183, Univ Montpellier, Montpellier, France; Service de Rhumatologie, CHU La Peyronie, Montpellier, France
| | - Jean-Marc Brondello
- IRMB (Institut of Regenerative Medicine and Biotherapies), Inserm U1183, Univ Montpellier, Montpellier, France.
| |
Collapse
|
1408
|
Yoshida Y, Shimizu I, Hayashi Y, Ikegami R, Suda M, Katsuumi G, Wakasugi T, Nakao M, Nakagami H, Morishita R, Minamino T. Peptide vaccine for semaphorin3E ameliorates systemic glucose intolerance in mice with dietary obesity. Sci Rep 2019; 9:3858. [PMID: 30846754 PMCID: PMC6405888 DOI: 10.1038/s41598-019-40325-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023] Open
Abstract
We previously demonstrated that cellular aging signals upregulated a secreted class 3 semaphorin E (Sema3E) and its receptor plexinD1 in the adipose tissue of a murine model of dietary obesity and that Sema3E was a chemoattractant, mediating its biological effects by inducing infiltration of plexinD1-positive inflammatory macrophages into the visceral white adipose tissue. This study was performed to develop a peptide vaccine for Sema3E and test its therapeutic potential in a murine model of dietary obesity. Two antigenic peptides were selected to generate neutralizing antibodies for a vaccine. These peptides were conjugated to keyhole limpet hemocyanin (KLH), and were administered with Freund’s adjuvant to obese wild-type male mice. The Sema3E antibody titer was analyzed by ELISA, and the biological effects of the peptides were tested in mice with dietary obesity. Among the two candidate peptides, the Sema3E antibody titer was significantly increased by injection of KLH-conjugated HKEGPEYHWS (Sema3E vaccine). Administration of Sema3E vaccine suppressed the infiltration of plexinD1-positive cells, ameliorated chronic inflammation in visceral white adipose tissue, and improved systemic glucose intolerance in mice with dietary obesity, suggesting that Sema3E vaccine has the potential to become a next generation therapy for obesity and diabetes.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuka Hayashi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takayuki Wakasugi
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nakao
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
1409
|
Serum and nutrient deprivation increase autophagic flux in intervertebral disc annulus fibrosus cells: an in vitro experimental study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:993-1004. [PMID: 30847707 DOI: 10.1007/s00586-019-05910-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/08/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The loss of nutrient supply is a suspected contributor of intervertebral disc degeneration. However, the extent to which low nutrition affects disc annulus fibrosus (AF) cells is unknown as nutrient deprivation has mainly been investigated in disc nucleus pulposus cells. Hence, an experimental study was designed to clarify the effects of limited nutrients on disc AF cell fate, including autophagy, the process by which cells recycle their own damaged components. METHODS Rabbit disc AF cells were cultured in different media with varying serum concentrations under 5% oxygen. Cellular responses to changes in serum and nutrient concentrations were determined by measuring proliferation and metabolic activity. Autophagic flux in AF cells was longitudinally monitored using imaging cytometry and Western blotting for LC3, HMGB1, and p62/SQSTM1. Apoptosis (TUNEL staining and cleaved caspase-3 immunodetection) and cellular senescence (senescence-associated β-galactosidase assay and p16/INK4A immunodetection) were measured. RESULTS Markers of apoptosis and senescence increased, while cell proliferation and metabolic activity decreased under the withdrawal of serum and of nutrients other than oxygen, confirming cellular stress. Time-dependent increases in autophagy markers, including LC3 puncta number per cell, LC3-II expression, and cytoplasmic HMGB1, were observed under conditions of reduced nutrition, while an autophagy substrate, p62/SQSTM1, decreased over time. Collectively, these findings suggest increased autophagic flux in disc AF cells under serum and nutrient deprivation. CONCLUSION Disc AF cells exhibit distinct responses to serum and nutrient deprivation. Cellular responses include cell death and quiescence in addition to reduced proliferation and metabolic activity, as well as activation of autophagy under conditions of nutritional stress. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
1410
|
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019; 29:592-610. [PMID: 30840912 DOI: 10.1016/j.cmet.2019.01.018] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increase in life expectancy has boosted the incidence of age-related pathologies beyond social and economic sustainability. Consequently, there is an urgent need for interventions that revert or at least prevent the pathogenic age-associated deterioration. The permanent or periodic reduction of calorie intake without malnutrition (caloric restriction and fasting) is the only strategy that reliably extends healthspan in mammals including non-human primates. However, the strict and life-long compliance with these regimens is difficult, which has promoted the emergence of caloric restriction mimetics (CRMs). We define CRMs as compounds that ignite the protective pathways of caloric restriction by promoting autophagy, a cytoplasmic recycling mechanism, via a reduction in protein acetylation. Here, we describe the current knowledge on molecular, cellular, and organismal effects of known and putative CRMs in mice and humans. We anticipate that CRMs will become part of the pharmacological armamentarium against aging and age-related cardiovascular, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | | | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science, Suzhou, China.
| |
Collapse
|
1411
|
Demarest TG, Babbar M, Okur MN, Dan X, Croteau DL, Fakouri NB, Mattson MP, Bohr VA. NAD+Metabolism in Aging and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055905] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Tyler G. Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mustafa N. Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiuli Dan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Nima B. Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
1412
|
Nian Y, Maenosono R, Iske J, Elkhal A, Tullius SG. A Contraindication for Transplantation? Consequences of Frailty on Immunity and Immunosuppression. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-0228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
1413
|
Short S, Fielder E, Miwa S, von Zglinicki T. Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine 2019; 41:683-692. [PMID: 30737084 PMCID: PMC6441870 DOI: 10.1016/j.ebiom.2019.01.056] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Cell senescence is a driver of ageing, frailty, age-associated disease and functional decline. In oncology, tumour cell senescence may contribute to the effect of adjuvant therapies, as it blocks tumour growth. However, this is frequently incomplete, and tumour cells that recover from senescence may gain a more stem-like state with increased proliferative potential. This might be exaggerated by the induction of senescence in the surrounding niche cells. Finally, senescence will spread through bystander effects, possibly overwhelming the capacity of the immune system to ablate senescent cells. This induces a persistent system-wide senescent cell accumulation, which we hypothesize is the cause for the premature frailty, multi-morbidity and increased mortality in cancer survivors. Senolytics, drugs that selectively kill senescent cells, have been developed recently and have been proposed as second-line adjuvant tumour therapy. Similarly, by blocking accelerated senescence following therapy, senolytics might prevent and potentially even revert premature frailty in cancer survivors. Adjuvant senostatic interventions, which suppress senescence-associated bystander signalling, might also have therapeutic potential. This becomes pertinent because treatments that are senostatic in vitro (e.g. dietary restriction mimetics) persistently reduce numbers of senescent cells in vivo, i.e. act as net senolytics in immunocompetent hosts.
Collapse
Affiliation(s)
- Susan Short
- Leeds Institute of Cancer and Pathology, Wellcome Trust Brenner Building, St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - Edward Fielder
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Satomi Miwa
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas von Zglinicki
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
1414
|
|
1415
|
Tabasso AFS, Jones DJL, Jones GDD, Macip S. Radiotherapy-Induced Senescence and its Effects on Responses to Treatment. Clin Oncol (R Coll Radiol) 2019; 31:283-289. [PMID: 30826201 DOI: 10.1016/j.clon.2019.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Abstract
Radiotherapy is still a treatment of choice for many malignancies, often in combination with other strategies. However, its efficacy is limited by the dose that can be safely administered without eliciting serious side-effects, as well as the fact that recurrence is common, particularly in large tumours. Combining radiotherapy with drugs that could sensitise cells to radiation and/or reduce the factors that promote the recovery of the surviving cancer cells is a promising approach. Ionising radiation has been shown to induce senescence and the accumulation of senescent cells creates a microenvironment that facilitates neoplastic growth. This provides a rationale to test the addition of anti-senescent drugs, some of which are already available in the clinic, to radiotherapy protocols. Here, we discuss the relevance of radiotherapy-induced senescent cell accumulation and the potential interventions to minimise its negative effects.
Collapse
Affiliation(s)
- A F S Tabasso
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, UK; Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - D J L Jones
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, UK
| | - G D D Jones
- Leicester Cancer Research Centre, Leicester Royal Infirmary, University of Leicester, Leicester, UK
| | - S Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
1416
|
Antonangeli F, Zingoni A, Soriani A, Santoni A. Senescent cells: Living or dying is a matter of NK cells. J Leukoc Biol 2019; 105:1275-1283. [DOI: 10.1002/jlb.mr0718-299r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fabrizio Antonangeli
- Department of Molecular MedicineSapienza University of RomeLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti Rome Italy
| | - Alessandra Zingoni
- Department of Molecular MedicineSapienza University of RomeLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti Rome Italy
| | - Alessandra Soriani
- Department of Molecular MedicineSapienza University of RomeLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti Rome Italy
| | - Angela Santoni
- Department of Molecular MedicineSapienza University of RomeLaboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti Rome Italy
- Neuromed I.R.C.C.S. Pozzilli (IS) Italy
| |
Collapse
|
1417
|
Melo Pereira S, Ribeiro R, Logarinho E. Approaches towards Longevity: Reprogramming, Senolysis, and Improved Mitotic Competence as Anti-Aging Therapies. Int J Mol Sci 2019; 20:E938. [PMID: 30795536 PMCID: PMC6413205 DOI: 10.3390/ijms20040938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Mainstream approaches that are currently used as anti-aging therapies primarily explore the senescence and epigenetic drift aging hallmarks and they are at two ends of the spectrum. While senolytic therapies include either the selective elimination of senescent cells or the disruption of their secretome with the use of drugs or natural compounds, cellular reprogramming uses genetic manipulation to revert cells all the way back to pluripotency. Here, we describe the progress that has been made on these therapies, while highlighting the major challenges involved. Moreover, based on recent findings elucidating the impact of mitotic shutdown and aneuploidy in cellular senescence, we discuss the modulation of mitotic competence as an alternative strategy to delay the hallmarks of aging. We propose that a regulated rise in mitotic competence of cells could circumvent certain limitations that are present in the senolytic and reprogramming approaches, by acting to decelerate senescence and possibly restore the epigenetic landscape.
Collapse
Affiliation(s)
- Sofia Melo Pereira
- Ageing and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Ribeiro
- Ageing and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Elsa Logarinho
- Ageing and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Cell Division Unit, Faculty of Medicine, Department of Experimental Biology, Universidade do Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
1418
|
Habiballa L, Salmonowicz H, Passos JF. Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic Biol Med 2019; 132:3-10. [PMID: 30336251 DOI: 10.1016/j.freeradbiomed.2018.10.417] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Musculoskeletal ageing and its associated diseases are major contributors to the loss of independence and reduced quality of life in older people. Several recent studies indicate that cellular senescence is a contributor to age-related loss of function in various organs including muscle, bones and joints. Importantly, these studies indicate that therapies targeting specifically senescent cells have great therapeutic potential in improving musculoskeletal health during ageing. Senescent cells are characterised by dramatic changes in mitochondrial function, metabolism and homeostasis. Mitochondrial dysfunction has been shown to contribute to senescence and the SASP. Here we review the role of cellular senescence in musculoskeletal ageing as well as the potential mechanisms by which mitochondrial dysfunction may impact on the induction and development of the senescent phenotype.
Collapse
Affiliation(s)
- Leena Habiballa
- Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
1419
|
Maksimenko EV, Lekar AV, Borisenko SN, Khizrieva SS, Vetrova EV, Borisenko NI, Minkin VI. The Development of a One-Step Method for Production of the Antioxidant Quercetin from Flower Buds of the Sophora Japonica (Sophora japonica L.) in a Subcritical Water Medium. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2019. [DOI: 10.1134/s1990793118080092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
1420
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
1421
|
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD, Le O, Beauséjour C, Ambati J, Ambati K, Simon M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019; 566:73-78. [PMID: 30728521 PMCID: PMC6519963 DOI: 10.1038/s41586-018-0784-9] [Citation(s) in RCA: 798] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
Retrotransposable elements are deleterious at many levels, and the failure of host surveillance systems for these elements can thus have negative consequences. However, the contribution of retrotransposon activity to ageing and age-associated diseases is not known. Here we show that during cellular senescence, L1 (also known as LINE-1) retrotransposable elements become transcriptionally derepressed and activate a type-I interferon (IFN-I) response. The IFN-I response is a phenotype of late senescence and contributes to the maintenance of the senescence-associated secretory phenotype. The IFN-I response is triggered by cytoplasmic L1 cDNA, and is antagonized by inhibitors of the L1 reverse transcriptase. Treatment of aged mice with the nucleoside reverse transcriptase inhibitor lamivudine downregulated IFN-I activation and age-associated inflammation (inflammaging) in several tissues. We propose that the activation of retrotransposons is an important component of sterile inflammation that is a hallmark of ageing, and that L1 reverse transcriptase is a relevant target for the treatment of age-associated disorders.
Collapse
Affiliation(s)
- Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Takahiro Ito
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Amy E Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicholas J Skvir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Steven W Criscione
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Alberto Caligiana
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Greta Brocculi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emily M Adney
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Oanh Le
- Centre de Recherche CHU Ste-Justine, and Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Christian Beauséjour
- Centre de Recherche CHU Ste-Justine, and Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Jayakrishna Ambati
- Center for Advanced Vision Science and Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science and Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
1422
|
Zhang B, Lam EWF, Sun Y. Senescent cells: A new Achilles' heel to exploit for cancer medicine? Aging Cell 2019; 18:e12875. [PMID: 30450821 PMCID: PMC6351840 DOI: 10.1111/acel.12875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is a typical tumor‐suppressive mechanism that restricts the proliferation of premalignant cells. However, mounting evidence suggests that senescent cells, which also persist in vivo, can promote the incidence of aging‐related disorders principally via the senescence‐associated secretory phenotype (SASP), among which cancer is particularly devastating. Despite the beneficial effects of the SASP on certain physiological events such as wound healing and tissue repair, more studies have demonstrated that senescent cells can substantially contribute to pathological conditions and accelerate disease exacerbation, particularly cancer resistance, relapse and metastasis. To limit the detrimental properties while retaining the beneficial aspects of senescent cells, research advancements that support screening, design and optimization of anti‐aging therapeutic agents are in rapid progress in the setting of prospective development of clinical strategies, which together represent a new wave of efforts to control human malignancies or mitigate degenerative complications.
Collapse
Affiliation(s)
- Boyi Zhang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Shanghai China
| | - Eric W.-F. Lam
- Department of Surgery and Cancer; Imperial College London; London UK
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Shanghai China
- Department of Medicine and VAPSHCS; University of Washington; Seattle Washington
| |
Collapse
|
1423
|
Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 2019; 18:e12841. [PMID: 30346102 PMCID: PMC6351832 DOI: 10.1111/acel.12841] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
1424
|
Abstract
Originally thought of as a stress response end point, the view of cellular senescence has since evolved into one encompassing a wide range of physiological and pathological functions, including both protumorignic and antitumorigenic features. It has also become evident that senescence is a highly dynamic and heterogenous process. Efforts to reconcile the beneficial and detrimental features of senescence suggest that physiological functions require the transient presence of senescent cells in the tissue microenvironment. Here, we propose the concept of a physiological "senescence life cycle," which has pathological consequences if not executed in its entirety.
Collapse
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
1425
|
Hobson S, Arefin S, Kublickiene K, Shiels PG, Stenvinkel P. Senescent Cells in Early Vascular Ageing and Bone Disease of Chronic Kidney Disease-A Novel Target for Treatment. Toxins (Basel) 2019; 11:toxins11020082. [PMID: 30717151 PMCID: PMC6409791 DOI: 10.3390/toxins11020082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Together with bone-mineral disorders, premature vascular ageing is a common feature of the uremic phenotype. A detailed understanding of mechanisms involved remains unclear and warrants further research. Available treatment options for end stage renal disease are principally dialysis and organ transplantation, as other treatment alternatives have proven insufficient. Chronic kidney disease (CKD) has been proposed as a model of early vascular and bone ageing, with accumulating evidence supporting the contribution of cellular senescence and the senescence-associated secretory phenotype (SASP) to cardiovascular pathology in CKD. Correspondingly, novel therapies based around the use of senolytic compounds and nuclear factor-erythroid-2-related factor 2 (Nrf2) agonists, have been suggested as attractive novel treatment options. In this review, we detail the contribution of the uremic environment to these processes underpinning ageing and how these relate to vascular health.
Collapse
Affiliation(s)
- Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| | - Paul G Shiels
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow G61 1QH, UK.
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|
1426
|
Li W, He Y, Zhang R, Zheng G, Zhou D. The curcumin analog EF24 is a novel senolytic agent. Aging (Albany NY) 2019; 11:771-782. [PMID: 30694217 PMCID: PMC6366974 DOI: 10.18632/aging.101787] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 05/07/2023]
Abstract
Cellular senescence is a hallmark of aging because senescent cells (SCs) accumulate with aging and play a causative role in age-related diseases. Selectively eliminating SCs has been emerging as a new strategy for treating age-related diseases and extending healthspan. Curcumin and its analogs have some anti-aging activities. However, the mechanisms of their action have not been fully elucidated. In the present study, we investigated whether various curcumin analogs can function as a senolytic agent. The results from our studies show that among these curcumin analogs EF24 is the most potent and broad-spectrum senolytic agent. Mechanistically, EF24 selectively kills SCs by inducing SC apoptosis in a reactive oxygen species (ROS) production independent manner but associated with an increase in the proteasome degradation of the Bcl-2 anti-apoptotic protein family proteins known to play an important role in protecting SCs from apoptosis. In addition, EF24 can synergistically kill SCs with ABT-263, a Bcl-2 and Bcl-xl inhibitor and a known senolytic agent. These findings provide new insights into the mechanisms by which curcumin analogs function as an anti-aging agent and suggest that the curcumin analog EF24 has the potential to be used as a novel senolytic agent for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Wen Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Rongping Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
1427
|
Evans CH, Ghivizzani SC, Robbins PD. Gene Delivery to Joints by Intra-Articular Injection. Hum Gene Ther 2019; 29:2-14. [PMID: 29160173 DOI: 10.1089/hum.2017.181] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Most forms of arthritis are incurable, difficult to treat, and a major cause of disability in Western countries. Better local treatment of arthritis is impaired by the pharmacokinetics of the joint that make it very difficult to deliver drugs to joints at sustained, therapeutic concentrations. This is especially true of biologic drugs, such as proteins and RNA, many of which show great promise in preclinical studies. Gene transfer provides a strategy for overcoming this limitation. The basic concept is to deliver cDNAs encoding therapeutic products by direct intra-articular injection, leading to sustained, endogenous synthesis of the gene products within the joint. Proof of concept has been achieved for both in vivo and ex vivo gene delivery using a variety of vectors, genes, and cells in several different animal models. There have been a small number of clinical trials for rheumatoid arthritis (RA) and osteoarthritis (OA) using retrovirus vectors for ex vivo gene delivery and adeno-associated virus (AAV) for in vivo delivery. AAV is of particular interest because, unlike other viral vectors, it is able to penetrate deep within articular cartilage and transduce chondrocytes in situ. This property is of particular importance in OA, where changes in chondrocyte metabolism are thought to be fundamental to the pathophysiology of the disease. Authorities in Korea have recently approved the world's first arthritis gene therapy. This targets OA by the injection of allogeneic chondrocytes that have been transduced with a retrovirus carrying transforming growth factor-β1 cDNA. Phase III studies are scheduled to start in the United States soon. Meanwhile, two additional Phase I trials are listed on Clinicaltrials.gov , both using AAV. One targets RA by transferring interferon-β, and the other targets OA by transferring interleukin-1 receptor antagonist. The field is thus gaining momentum and promises to improve the treatment of these common and debilitating diseases.
Collapse
Affiliation(s)
- Christopher H Evans
- 1 Rehabilitation Medicine Research Center, Mayo Clinic , Rochester, Minnesota
| | - Steven C Ghivizzani
- 2 Department of Orthopedics and Rehabilitation, University of Florida College of Medicine , Gainesville, Florida
| | - Paul D Robbins
- 3 Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, Florida
| |
Collapse
|
1428
|
Varela-Nieto I, Palmero I, Magariños M. Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear Res 2019; 376:86-96. [PMID: 30711386 DOI: 10.1016/j.heares.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
Abstract
The development of the inner ear complex cytoarchitecture and functional geometry requires the exquisite coordination of a variety of cellular processes in a temporal manner. At early stages of inner ear development several rounds of cell proliferation in the otocyst promote the growth of the structure. The apoptotic program is initiated in exceeding cells to adjust cell type numbers. Apoptotic cells are cleared by phagocytic cells that recognize the phosphatidylserine residues exposed in the cell membrane thanks to the energy supplied by autophagy. Specific molecular programs determine hair and supporting cell fate, these populations are responsible for the functions of the adult sensory organ: detection of sound, position and acceleration. The neurons that transmit auditory and balance information to the brain are also born at the otocyst by neurogenesis facilitated by autophagy. Cellular senescence participates in tissue repair, cancer and aging, situations in which cells enter a permanent cell cycle arrest and acquire a highly secretory phenotype that modulates their microenvironment. More recently, senescence has also been proposed to take place during vertebrate development in a limited number of transitory structures and organs; among the later, the endolymphatic duct in the inner ear. Here, we review these cellular processes during the early development of the inner ear, focusing on how the most recently described cellular senescence participates and cooperates with proliferation, apoptosis and autophagy to achieve otic morphogenesis and differentiation.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ignacio Palmero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Biology Department, Faculty of Sciences, Autonomous University of Madrid (UAM), Madrid, Spain.
| |
Collapse
|
1429
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 786] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
1430
|
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39:1515-1552. [PMID: 30648267 DOI: 10.1002/med.21559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Biomedical Sciences; University of the Pacific, Arthur Dugoni School of Dentistry; San Francisco California
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University; Taoyuan Taiwan Republic of China
- Department of Microbiology and Immunology; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| |
Collapse
|
1431
|
Prattichizzo F. Ageing as a druggable process: Moving forward. EBioMedicine 2019; 40:15-16. [PMID: 30655208 PMCID: PMC6413337 DOI: 10.1016/j.ebiom.2019.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/08/2022] Open
|
1432
|
Fuentealba M, Dönertaş HM, Williams R, Labbadia J, Thornton JM, Partridge L. Using the drug-protein interactome to identify anti-ageing compounds for humans. PLoS Comput Biol 2019; 15:e1006639. [PMID: 30625143 PMCID: PMC6342327 DOI: 10.1371/journal.pcbi.1006639] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/22/2019] [Accepted: 11/14/2018] [Indexed: 01/07/2023] Open
Abstract
Advancing age is the dominant risk factor for most of the major killer diseases in developed countries. Hence, ameliorating the effects of ageing may prevent multiple diseases simultaneously. Drugs licensed for human use against specific diseases have proved to be effective in extending lifespan and healthspan in animal models, suggesting that there is scope for drug repurposing in humans. New bioinformatic methods to identify and prioritise potential anti-ageing compounds for humans are therefore of interest. In this study, we first used drug-protein interaction information, to rank 1,147 drugs by their likelihood of targeting ageing-related gene products in humans. Among 19 statistically significant drugs, 6 have already been shown to have pro-longevity properties in animal models (p < 0.001). Using the targets of each drug, we established their association with ageing at multiple levels of biological action including pathways, functions and protein interactions. Finally, combining all the data, we calculated a ranked list of drugs that identified tanespimycin, an inhibitor of HSP-90, as the top-ranked novel anti-ageing candidate. We experimentally validated the pro-longevity effect of tanespimycin through its HSP-90 target in Caenorhabditis elegans. Human life expectancy is continuing to increase worldwide, as a result of successive improvements in living conditions and medical care. Although this trend is to be celebrated, advancing age is the major risk factor for multiple impairments and chronic diseases. As a result, the later years of life are often spent in poor health and lowered quality of life. However, these effects of ageing are not inevitable, because very long-lived people often suffer rather little ill-health at the end of their lives. Furthermore, laboratory experiments have shown that animals fed with specific drugs can live longer and with fewer age-related diseases than their untreated companions. We therefore need to identify drugs with anti-ageing properties for humans. We have used publically available data and a computer-based approach to search for drugs that affect components and processes known to be important in human ageing. This approach worked, because it was able to re-discover several drugs known to increase lifespan in animal models, plus some new ones, including one that we tested experimentally and validated in this study. These drugs are now a high priority for animal testing and for exploring effects on human ageing.
Collapse
Affiliation(s)
- Matías Fuentealba
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Johnathan Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- * E-mail:
| |
Collapse
|
1433
|
Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians. Cell Death Differ 2019; 26:1845-1858. [PMID: 30622304 DOI: 10.1038/s41418-018-0255-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
Current literature agrees on the notion that efficient DNA repair favors longevity across evolution. The DNA damage response machinery activates inflammation and type I interferon signaling. Both pathways play an acknowledged role in the pathogenesis of a variety of age-related diseases and are expected to be detrimental for human longevity. Here, we report on the anti-inflammatory molecular make-up of centenarian's fibroblasts (low levels of IL-6, type 1 interferon beta, and pro-inflammatory microRNAs), which is coupled with low level of DNA damage (measured by comet assay and histone-2AX activation) and preserved telomere length. In the same cells, high levels of the RNAseH2C enzyme subunit and low amounts of RNAseH2 substrates, i.e. cytoplasmic RNA:DNA hybrids are present. Moreover, RNAseH2C locus is hypo-methylated and RNAseH2C knock-down up-regulates IL-6 and type 1 interferon beta in centenarian's fibroblasts. Interestingly, RNAseH2C locus is hyper-methylated in vitro senescent cells and in tissues from atherosclerotic plaques and breast tumors. Finally, extracellular vesicles from centenarian's cells up-regulate RNAseH2C expression and dampen the pro-inflammatory phenotype of fibroblasts, myeloid, and cancer cells. These data suggest that centenarians are endowed with restrained DNA damage-induced inflammatory response, that may facilitate their escape from the deleterious effects of age-related chronic inflammation.
Collapse
|
1434
|
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 2019; 40:554-563. [PMID: 30616998 PMCID: PMC6412088 DOI: 10.1016/j.ebiom.2018.12.052] [Citation(s) in RCA: 796] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023] Open
Abstract
Background Cellular senescence is a key mechanism that drives age-related diseases, but has yet to be targeted therapeutically in humans. Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal cellular senescence-associated disease. Selectively ablating senescent cells using dasatinib plus quercetin (DQ) alleviates IPF-related dysfunction in bleomycin-administered mice. Methods A two-center, open-label study of intermittent DQ (D:100 mg/day, Q:1250 mg/day, three-days/week over three-weeks) was conducted in participants with IPF (n = 14) to evaluate feasibility of implementing a senolytic intervention. The primary endpoints were retention rates and completion rates for planned clinical assessments. Secondary endpoints were safety and change in functional and reported health measures. Associations with the senescence-associated secretory phenotype (SASP) were explored. Findings Fourteen patients with stable IPF were recruited. The retention rate was 100% with no DQ discontinuation; planned clinical assessments were complete in 13/14 participants. One serious adverse event was reported. Non-serious events were primarily mild-moderate, with respiratory symptoms (n = 16 total events), skin irritation/bruising (n = 14), and gastrointestinal discomfort (n = 12) being most frequent. Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinically-meaningfully improved (p < .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulat.ing SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and pro-inflammatory cytokines (23/48 markers r ≥ 0.50). Interpretation Our first-in-humans open-label pilot supports study feasibility and provides initial evidence that senolytics may alleviate physical dysfunction in IPF, warranting evaluation of DQ in larger randomized controlled trials for senescence-related diseases. ClinicalTrials.gov identifier: NCT02874989 (posted 2016–2018).
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| | - Anoop M Nambiar
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Sciences Center at San Antonio (UTHSCSA) and South Texas Veterans Health Care System, San Antonio, TX 78229, United States.
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Rodolfo Pascual
- Internal Medicine - Pulmonary, Critical Care, Allergy, Immunologic Medicine, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| | - Shahrukh K Hashmi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Larissa Prata
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, United States.
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine (WFSM), 1 Medical Center Blvd, Winston-Salem, NC 27157, United States.
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX 78229, United States; San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, United States.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
1435
|
Lau A, Kennedy BK, Kirkland JL, Tullius SG. Mixing old and young: enhancing rejuvenation and accelerating aging. J Clin Invest 2019; 129:4-11. [PMID: 30601138 DOI: 10.1172/jci123946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Donor age and recipient age are factors that influence transplantation outcomes. Aside from age-associated differences in intrinsic graft function and alloimmune responses, the ability of young and old cells to exert either rejuvenating or aging effects extrinsically may also apply to the transplantation of hematopoietic stem cells or solid organ transplants. While the potential for rejuvenation mediated by the transfer of youthful cells is currently being explored for therapeutic applications, aspects that relate to accelerating aging are no less clinically significant. Those effects may be particularly relevant in transplantation with an age discrepancy between donor and recipient. Here, we review recent advances in understanding the mechanisms by which young and old cells modify their environments to promote rejuvenation- or aging-associated phenotypes. We discuss their relevance to clinical transplantation and highlight potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Ashley Lau
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Institute for Clinical Sciences, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore.,Buck Institute for Research on Aging, Novato, California, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
1436
|
Mahmoudi S, Xu L, Brunet A. Turning back time with emerging rejuvenation strategies. Nat Cell Biol 2019; 21:32-43. [PMID: 30602763 DOI: 10.1038/s41556-018-0206-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023]
Abstract
Ageing is associated with the functional decline of all tissues and a striking increase in many diseases. Although ageing has long been considered a one-way street, strategies to delay and potentially even reverse the ageing process have recently been developed. Here, we review four emerging rejuvenation strategies-systemic factors, metabolic manipulations, senescent cell ablation and cellular reprogramming-and discuss their mechanisms of action, cellular targets, potential trade-offs and application to human ageing.
Collapse
Affiliation(s)
- Salah Mahmoudi
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
1437
|
The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21:94-101. [PMID: 30602768 DOI: 10.1038/s41556-018-0249-2] [Citation(s) in RCA: 414] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
Cellular senescence is implicated in physiological and pathological processes spanning development, wound healing, age-related decline in organ functions and cancer. Here, we discuss cell-autonomous and non-cell-autonomous properties of senescence in the context of tumour formation and anticancer therapy, and characterize these properties, such as reprogramming into stemness, tissue remodelling and immune crosstalk, as far more dynamic than suggested by the common view of senescence as an irreversible, static condition.
Collapse
|
1438
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 965] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
1439
|
de Almeida Alvarenga L, Borges NA, Moreira LDSG, Resende Teixeira KT, Carraro-Eduardo JC, Dai L, Stenvinkel P, Lindholm B, Mafra D. Cranberries – potential benefits in patients with chronic kidney disease. Food Funct 2019; 10:3103-3112. [DOI: 10.1039/c9fo00375d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with chronic kidney disease (CKD) present many complications that potentially could be linked to increased cardiovascular mortality such as inflammation, oxidative stress, cellular senescence and gut dysbiosis.
Collapse
Affiliation(s)
| | - Natália Alvarenga Borges
- Graduate Program in Nutrition Sciences
- Fluminense Federal University (UFF)
- Niterói
- Brazil
- Graduate Program in Cardiovascular Sciences
| | | | | | | | - Lu Dai
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Denise Mafra
- Graduate Program in Medical Sciences
- Fluminense Federal University (UFF)
- Niterói
- Brazil
- Graduate Program in Nutrition Sciences
| |
Collapse
|
1440
|
Pignolo RJ, Wang H, Kaplan FS. Fibrodysplasia Ossificans Progressiva (FOP): A Segmental Progeroid Syndrome. Front Endocrinol (Lausanne) 2019; 10:908. [PMID: 31998237 PMCID: PMC6966325 DOI: 10.3389/fendo.2019.00908] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Segmental progeroid syndromes are commonly represented by genetic conditions which recapitulate aspects of physiological aging by similar, disparate, or unknown mechanisms. Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease caused by mutations in the gene for ACVR1/ALK2 encoding Activin A receptor type I/Activin-like kinase 2, a bone morphogenetic protein (BMP) type I receptor, and results in the formation of extra-skeletal ossification and a constellation of others features, many of which resemble accelerated aging. The median estimated lifespan of individuals with FOP is approximately 56 years of age. Characteristics of precocious aging in FOP include both those that are related to dysregulated BMP signaling as well as those secondary to early immobilization. Progeroid features that may primarily be associated with mutations in ACVR1 include osteoarthritis, hearing loss, alopecia, subcutaneous lipodystrophy, myelination defects, heightened inflammation, menstrual abnormalities, and perhaps nephrolithiasis. Progeroid features that may secondarily be related to immobilization from progressive heterotopic ossification include decreased vital capacity, osteoporosis, fractures, sarcopenia, and predisposition to respiratory infections. Some manifestations of precocious aging may be attributed to both primary and secondary effects of FOP. At the level of lesion formation in FOP, soft tissue injury resulting in hypoxia, cell damage, and inflammation may lead to the accumulation of senescent cells as in aged tissue. Production of Activin A, platelet-derived growth factor, metalloproteinases, interleukin 6, and other inflammatory cytokines as part of the senescence-associated secretory phenotype could conceivably mediate the initial signaling cascade that results in the intense fibroproliferative response as well as the tissue-resident stem cell reprogramming leading up to ectopic endochondral bone formation. Consideration of FOP as a segmental progeroid syndrome offers a unique perspective into potential mechanisms of normal aging and may also provide insight for identification of new targets for therapeutic interventions in FOP.
Collapse
Affiliation(s)
- Robert J. Pignolo
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Department of Physiology-Biomedical Engineering, Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Kogod Center on Aging, Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- *Correspondence: Robert J. Pignolo
| | - Haitao Wang
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Department of Physiology-Biomedical Engineering, Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Kogod Center on Aging, Mayo Clinic Alix School of Medicine, Rochester, MN, United States
| | - Frederick S. Kaplan
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Center for Research in FOP and Related Disorders, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
1441
|
Qian M, Liu B. Advances in pharmacological interventions of aging in mice. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
1442
|
Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures. Methods Mol Biol 2019; 2045:93-105. [PMID: 31020633 DOI: 10.1007/7651_2019_217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a tumor suppressor mechanism that removes potentially neoplastic cells from the proliferative pool. Senescent cells naturally accumulate with advancing age; however, excessive/aberrant accumulation of senescent cells can disrupt normal tissue function. Multipotent mesenchymal stromal cells (MSCs), which are actively evaluated as cell-based therapy, can undergo replicative senescence or stress-induced premature senescence. The molecular characterization of MSCs senescence can be useful not only for understanding the clinical correlations between MSCs biology and human age or age-related diseases but also for identifying competent MSCs for therapeutic applications. Because MSCs are involved in regulating the hematopoietic stem cell niche, and MSCs dysfunction has been implicated in age-related diseases, the identification and selective removal of senescent MSC may represent a potential therapeutic target. Cellular senescence is generally defined by senescence-associated (SA) permanent proliferation arrest (SAPA) accompanied by persistent DNA damage response (DDR) signaling emanating from persistent DNA lesions including damaged telomeres. Alongside SA cell cycle arrest and DDR signaling, a plethora of phenotypic hallmarks help define the overall senescent phenotype including a potent SA secretory phenotype (SASP) with many microenvironmental functions. Due to the complexity of the senescence phenotype, no single hallmark is alone capable of identifying senescent MSCs. This protocol highlights strategies to validate MSCs senescence through the measurements of several key SA hallmarks including lysosomal SA Beta-galactosidase activity (SA-βgal), cell cycle arrest, persistent DDR signaling, and the inflammatory SASP.
Collapse
|
1443
|
Bertschmann J, Thalappilly S, Riabowol K. The ING1a model of rapid cell senescence. Mech Ageing Dev 2019; 177:109-117. [DOI: 10.1016/j.mad.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/21/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022]
|
1444
|
Xu T, Cai Y, Zhong X, Zhang L, Zheng D, Gao Z, Pan X, Wang F, Chen M, Yang Z. β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chem Commun (Camb) 2019; 55:7175-7178. [DOI: 10.1039/c9cc03056e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We introduced a novel strategy of β-galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells.
Collapse
|
1445
|
Van Vliet T, Kohli J, Demaria M. Consequences of senotherapies for tissue repair and reprogramming. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
1446
|
Zhang L, Yousefzadeh MJ, Suh Y, Niedernhofer LJ, Robbins PD. Signal Transduction, Ageing and Disease. Subcell Biochem 2019; 91:227-247. [PMID: 30888655 DOI: 10.1007/978-981-13-3681-2_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ageing is defined by the loss of functional reserve over time, leading to a decreased tissue homeostasis and increased age-related pathology. The accumulation of damage including DNA damage contributes to driving cell signaling pathways that, in turn, can drive different cell fates, including senescence and apoptosis, as well as mitochondrial dysfunction and inflammation. In addition, the accumulation of cell autonomous damage with time also drives ageing through non-cell autonomous pathways by modulation of signaling pathways. Interestingly, genetic and pharmacologic analysis of factors able to modulate lifespan and healthspan in model organisms and even humans have identified several key signaling pathways including IGF-1, NF-κB, FOXO3, mTOR, Nrf-2 and sirtuins. This review will discuss the roles of several of these key signaling pathways, in particular NF-κB and Nrf2, in modulating ageing and age-related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yousin Suh
- Departments of Genetics and Medicine and the Institute for Ageing Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
1447
|
|
1448
|
Hillson O, Gonzalez S, Rallis C. Prospects of Pharmacological Interventions to Organismal Aging. Biomol Concepts 2018; 9:200-215. [DOI: 10.1515/bmc-2018-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
AbstractIntense research in the areas of cellular and organismal aging using diverse laboratory model systems has enriched our knowledge in the processes and the signalling pathways involved in normal and pathological conditions. The field finds itself in a position to take decisive steps towards clinical applications and interventions not only for targeted age-related diseases such as cardiovascular conditions and neurodegeneration but also for the modulation of health span and lifespan of a whole organism. Beyond nutritional interventions such as dietary restriction without malnutrition and various regimes of intermittent fasting, accumulating evidence provides promise for pharmacological interventions. The latter, mimic caloric or dietary restriction, tune cellular and organismal stress responses, affect the metabolism of microbiome with subsequent effects on the host or modulate repair pathways, among others. In this mini review, we summarise some of the evidence on drugs that can alter organismal lifespan and the prospects they might offer for promoting healthspan and delaying age-related diseases.
Collapse
Affiliation(s)
- Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Water Lane, E15 4LZ, London, United Kingdom
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Water Lane, E15 4LZ, London, United Kingdom
| | - Charalampos Rallis
- School of Health, Sport and Bioscience, University of East London, Water Lane, E15 4LZ, London, United Kingdom
| |
Collapse
|
1449
|
Sedlackova L, Korolchuk VI. Mitochondrial quality control as a key determinant of cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:575-587. [PMID: 30594496 DOI: 10.1016/j.bbamcr.2018.12.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
Mitochondria are the energy producing dynamic double-membraned organelles essential for cellular and organismal survival. A multitude of intra- and extra-cellular signals involved in the regulation of energy metabolism and cell fate determination converge on mitochondria to promote or prevent cell survival by modulating mitochondrial function and structure. Mitochondrial fitness is maintained by mitophagy, a pathway of selective degradation of dysfunctional organelles. Mitophagy impairment and altered clearance results in increased levels of dysfunctional and structurally aberrant mitochondria, changes in energy production, loss of responsiveness to intra- and extra-cellular signals and ultimately cell death. The decline of mitochondrial function and homeostasis with age is reported to be central to age-related pathologies. Here we discuss the molecular mechanisms controlling mitochondrial dynamics, mitophagy and cell death signalling and how their perturbation may contribute to ageing and age-related illness.
Collapse
Affiliation(s)
- Lucia Sedlackova
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
1450
|
Saleh T, Tyutyunyk-Massey L, Murray GF, Alotaibi MR, Kawale AS, Elsayed Z, Henderson SC, Yakovlev V, Elmore LW, Toor A, Harada H, Reed J, Landry JW, Gewirtz DA. Tumor cell escape from therapy-induced senescence. Biochem Pharmacol 2018; 162:202-212. [PMID: 30576620 DOI: 10.1016/j.bcp.2018.12.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023]
Abstract
H460 non-small cell lung, HCT116 colon and 4T1 breast tumor cell lines induced into senescence by exposure to either etoposide or doxorubicin were able to recover proliferative capacity both in mass culture and when enriched for the senescence-like phenotype by flow cytometry (based on β-galactosidase staining and cell size, and a senescence-associated reporter, BTG1-RFP). Recovery was further established using both real-time microscopy and High-Speed Live-Cell Interferometry (HSLCI) and was shown to be accompanied by the attenuation of the Senescence-Associated Secretory Phenotype (SASP). Cells enriched for the senescence-like phenotype were also capable of forming tumors when implanted in both immunodeficient and immunocompetent mice. As chemotherapy-induced senescence has been identified in patient tumors, our results suggest that certain senescence-like phenotypes may not reflect a terminal state of growth arrest, as cells that recover with self-renewal capacity may ultimately contribute to disease recurrence.
Collapse
Affiliation(s)
- Tareq Saleh
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutyunyk-Massey
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Graeme F Murray
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Ajinkya S Kawale
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Zeinab Elsayed
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Lynne W Elmore
- Department of Extramural Research, American Cancer Society, Atlanta, GA, United States
| | - Amir Toor
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - David A Gewirtz
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|