101
|
Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathol 2009; 118:553-60. [PMID: 19526244 DOI: 10.1007/s00401-009-0552-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/25/2009] [Accepted: 05/25/2009] [Indexed: 12/12/2022]
Abstract
Pathological transactivation-responsive DNA-binding protein 43 (TDP-43) has been identified as a component of ubiquitinated inclusions in frontotemporal lobar degeneration with motor neuron disease, as well as in sporadic and some forms of familial amyotrophic lateral sclerosis. To clarify whether pathological TDP-43 is present in other neurodegenerative diseases involving the motor neuron system, we immunohistochemically examined the brain and spinal cord affected by two CAG repeat (polyglutamine) diseases, Machado-Joseph disease (MJD) and spinal and bulbar muscular atrophy (SBMA), using polyclonal antibody against TDP-43. In all the MJD cases, TDP-43-immunoreactive (ir) neuronal cytoplasmic inclusions (NCIs), although few in number, were found only in the lower motor neurons in the brainstem and spinal cord. TDP-43-ir NCIs appeared as linear wisp-like, skein-like, or thick, somewhat rod-like bodies. These inclusions were also visualized with antibodies against phosphoserines 409 and 410 of TDP-43, and ubiquitin, but were not recognized by antibody against expanded polyglutamine stretches or ataxin-3. The ultrastructure of the TDP-43-ir NCIs was similar to that of the inclusions seen in sporadic ALS, consisting of bundles of parallel filaments. None of the SBMA cases showed abnormal TDP-43 immunoreactivity in any of the regions examined. Immunoblot analysis failed to recognize hyperphosphorylated TDP-43 at ~23 kDa in two MJD cases examined. However, the immunohistochemical findings strongly suggested that in MJD, in addition to the polyglutamine-dependent disease process, TDP-43-related pathogenesis is associated with degeneration and death of the lower motor neurons.
Collapse
|
102
|
Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics 2009; 11:217-25. [PMID: 19760257 DOI: 10.1007/s10048-009-0218-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/20/2009] [Indexed: 12/12/2022]
Abstract
The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction.
Collapse
|
103
|
Kovacs GG, Murrell JR, Horvath S, Haraszti L, Majtenyi K, Molnar MJ, Budka H, Ghetti B, Spina S. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 2009; 24:1843-7. [PMID: 19609911 DOI: 10.1002/mds.22697] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 has been identified as the pathological protein in the majority of cases of frontotemporal lobar degeneration and amyotrophic lateral sclerosis (ALS). TARDBP mutations have so far been uniquely associated with familial and sporadic ALS. We describe clinicopathological and genetic findings in a carrier of the novel K263E TARDBP variation, who developed frontotemporal dementia, supranuclear palsy, and chorea, but no signs of motor neuron disease. Neuropathologic examination revealed neuronal and glial TDP-43-immunoreactive deposits, predominantly in subcortical nuclei and brainstem. This is the first report of a TARDBP variation associated with a neurodegenerative syndrome other than ALS.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Luquin N, Yu B, Saunderson RB, Trent RJ, Pamphlett R. Genetic variants in the promoter of TARDBP in sporadic amyotrophic lateral sclerosis. Neuromuscul Disord 2009; 19:696-700. [PMID: 19695877 DOI: 10.1016/j.nmd.2009.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
All patients with sporadic amyotrophic lateral sclerosis (SALS) have TDP-43 inclusions in their motor neurons, suggesting this protein plays a major role in the disease. Coding mutations in the gene for TDP-43, TARDBP, have been found in only a few patients with SALS. However, the non-coding regulatory regions of TARDBP have not yet been examined in SALS. We therefore sequenced both coding and non-coding regions of TARDBP in 46 tissue-banked SALS brains (brain DNA was used to detect somatic mutations). Non-coding variants (in the promoter or intron 1) were detected in 16 patients (35%) and coding variants in 4 (9%). Two known promoter variants were found more frequently in SALS patients than in controls. Two other variants, found in one patient each but not in controls, have potential regulatory functions. In addition, a novel exon 2 change with predicted functional effects was found in one patient. In summary, variants in the promoter and other non-coding regions of TARDBP may disturb the regulation of this gene in some patients with SALS.
Collapse
Affiliation(s)
- Natasha Luquin
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, The University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
105
|
|
106
|
Abstract
Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. Familial FTD has been linked to mutations in several genes, including those encoding the microtubule-associated protein tau (MAPT), progranulin (GRN), valosin-containing protein (VCP) and charged multivescicular body protein 2B (CHMP2B). The associated neuropathology is characterised by selective degeneration of the frontal and temporal lobes (frontotemporal lobar degeneration, FTLD), usually with the presence of abnormal intracellular protein accumulations. The current classification of FTLD neuropathology is based on the identity of the predominant protein abnormality, in the belief that this most closely reflects the underlying pathogenic process. Major subgroups include those characterised by the pathological tau, TDP-43, intermediate filaments and a group with cellular inclusions composed of an unidentified ubiquitinated protein. This review will focus on the current understanding of the molecular basis of each of the major FTLD subtypes. It is anticipated that this knowledge will provide the basis of future advances in the diagnosis and treatment of FTD.
Collapse
|
107
|
Moisse K, Mepham J, Volkening K, Welch I, Hill T, Strong MJ. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res 2009; 1296:176-86. [PMID: 19619516 DOI: 10.1016/j.brainres.2009.07.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 12/12/2022]
Abstract
TAR DNA binding protein (TDP-43) mislocalization has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). We have recently reported that TDP-43 and PGRN expression is altered in response to axotomy in C57BL6 mice and that normal expression is restored following recovery. We have performed axotomies in two different presymptomatic models of motor neuron degeneration, low molecular weight neurofilament knockout (NFL(-/-)) mice and mutant SOD1(G93A) transgenic (mtSOD1(G93A)) mice aged 6 weeks, and observed TDP-43 and PGRN expression patterns in axotomized spinal motor neurons over 28 days. In contrast to both C57BL6 mice and mtSOD1(G93A) mice, behavioural deficits in NFL(-/-) mice were sustained. We did not observe differences in TDP-43 or PGRN expression between C57BL6 mice and mtSOD1(G93A) mice throughout the observation period. However, compared to C57BL6 mice and mtSOD1(G93A) mice, NFL(-/-) mice exhibited late upregulation of cytosolic TDP-43 expression and persistent downregulation of neuronal PGRN expression accompanied by caspase 3 activation on post-injury day 28. By post-injury day 42, no cytosolic TDP-43-positive neurons remained in NFL(-/-) mice, suggesting that they had undergone apoptotic cell death. These findings suggest that whereas TDP-43 expression is normally upregulated transiently following axotomy, in the absence of NFL this response is delayed and associated with caspase 3 activation and neuronal death. These results further support that TDP-43 is involved in neurofilament mRNA metabolism and transport, and provide insight into the pathogenesis of motor neuron death in ALS in which NFL mRNA levels are selectively suppressed.
Collapse
Affiliation(s)
- Katie Moisse
- Molecular Brain Research Group, Robarts Research Institute, PO Box 5015, 100 Perth Drive, London ON, Canada
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder with a low survival rate beyond 5 years from symptom onset. Although the genes that cause most cases of ALS are still unknown, several important genetic discoveries have been made recently that will bring substantial insight into some of the mechanisms involved in ALS. Mutations in two genes with related functions were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus on chromosome 16 and the TARDBP gene at the ALS10 locus on chromosome 1. In addition, the first wave of genomewide association studies in ALS has been published. While these studies clearly show that there is no definitive and common highly penetrant allele that causes ALS, some interesting candidate genes emerged from these studies. The findings help to better delineate the types of genes and genetic variants that are involved in ALS and provide substantial material for future research.
Collapse
|
109
|
Dormann D, Capell A, Carlson AM, Shankaran SS, Rodde R, Neumann M, Kremmer E, Matsuwaki T, Yamanouchi K, Nishihara M, Haass C. Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 2009; 110:1082-94. [PMID: 19522733 DOI: 10.1111/j.1471-4159.2009.06211.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuronal and glial deposition of misfolded, proteolytically processed, polyubiquitinated and abnormally phosphorylated C-terminal fragments (CTFs) of the TAR DNA binding protein-43 (TDP-43) is a pathological hallmark of frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U) and certain cases of amyotrophic lateral sclerosis. We demonstrate that TDP-43 can be proteolytically processed by caspases upon induction of apoptosis to a major 35 kDa and a minor 25 kDa CTF. These fragments are initially soluble, but over time they accumulate as insoluble and pathologically phosphorylated derivatives. However, proteolytic processing appears not to be absolutely required for the deposition of insoluble TDP-43 species, since a caspase resistant mutant of TDP-43 is also converted into insoluble species. Phosphorylation at S409/410 apparently occurs late during the conversion of soluble to insoluble TDP-43, suggesting that phosphorylation is not a prerequisite for aggregation. Loss of function of the progranulin (PGRN) gene causes FTLD-U with TDP-43 positive inclusions and has been suggested to lead to caspase activation and subsequent TDP-43 processing. However, siRNA-mediated knockdown of PGRN in cell culture as well as a PGRN gene knockout in mice failed to cause the formation of the disease characterizing CTFs of TDP-43. Our findings therefore suggest that caspase-mediated processing generates CTFs of similar biochemical properties as those occurring in nuclear and cytoplasmic deposits of FTLD-U patients independent of PGRN levels.
Collapse
Affiliation(s)
- Dorothee Dormann
- Deutsches Zentrum für Neurodegenerative Erkrankungen and Adolf-Butenandt-Institute, Department of Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Del Bo R, Ghezzi S, Corti S, Pandolfo M, Ranieri M, Santoro D, Ghione I, Prelle A, Orsetti V, Mancuso M, Sorarù G, Briani C, Angelini C, Siciliano G, Bresolin N, Comi GP. TARDBP(TDP-43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations. Eur J Neurol 2009; 16:727-32. [DOI: 10.1111/j.1468-1331.2009.02574.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
111
|
D'Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, Baralle FE. Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 2009; 37:4116-26. [PMID: 19429692 PMCID: PMC2709582 DOI: 10.1093/nar/gkp342] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor TDP-43 has been reported to play multiple roles in transcription, pre-mRNA splicing, mRNA stability and mRNA transport. From a structural point of view, TDP-43 is a member of the hnRNP protein family whose structure includes two RRM domains flanked by the N-terminus and C-terminal regions. Like many members of this family, the C-terminal region can interact with cellular factors and thus serve to modulate its function. Previously, we have described that TDP-43 binds to several members of the hnRNP A/B family through this region. In this work, we set up a coupled minigene/siRNA cellular system that allows us to obtain in vivo data to address the functional significance of TDP-43-recruited hnRNP complex formation. Using this method, we have finely mapped the interaction between TDP-43 and the hnRNP A2 protein to the region comprised between amino acid residues 321 and 366. Our results provide novel details of protein–protein interactions in splicing regulation. In addition, we provide further insight on TDP-43 functional properties, particularly the lack of effects, as seen with our assays, of the disease-associated mutations that fall within the TDP-43 321-366 region: Q331K, M337V and G348C.
Collapse
Affiliation(s)
- Andrea D'Ambrogio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
112
|
Kamada M, Maruyama H, Tanaka E, Morino H, Wate R, Ito H, Kusaka H, Kawano Y, Miki T, Nodera H, Izumi Y, Kaji R, Kawakami H. Screening for TARDBP mutations in Japanese familial amyotrophic lateral sclerosis. J Neurol Sci 2009; 284:69-71. [PMID: 19411082 DOI: 10.1016/j.jns.2009.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 12/12/2022]
Abstract
TAR-DNA-binding protein 43 (TDP-43), encoded by the TARDBP gene on chromosome 1p36.22, has been identified as the major pathological protein in abnormal inclusions in neurons and glial cells in sporadic amyotrophic lateral sclerosis (SALS), SOD1-negative familial ALS (FALS) and frontotemporal lobar dementia (FTLD). Twenty mutations of TARDBP in SOD1-negative FALS and SALS cases have been reported so far. To investigate the presence and frequency of TARDBP mutations in Japanese SOD1-negative FALS patients, we performed mutational screening of TARDBP in 30 SOD1-negative FALS patients. An N352S mutation was found in one case of FALS, but no TARDBP mutations were found in cases of SALS. It was thought that this mutation increases TDP-43 phosphorylation. This might lead to impaired nuclear cytoplasmic transport or protein-protein interaction, thereby leading to TDP-43 accumulation.
Collapse
Affiliation(s)
- Masaki Kamada
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Mutations in TDP-43, a DNA/RNA-binding protein, cause an inherited form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two recent studies (Kwiatkowski et al., 2009; Vance et al., 2009) now report that mutations in FUS/TLS, another DNA/RNA-binding protein, also trigger premature degeneration of motor neurons. TDP-43 and FUS/TLS have striking structural and functional similarities, implicating alterations in RNA processing as a key event in ALS pathogenesis.
Collapse
Affiliation(s)
- Clotilde Lagier-Tourenne
- Department of Cellular and Molecular Medicine, University of California San Diego, Ludwig Institute for Cancer Research, La Jolla, CA 92093-0670, USA
| | | |
Collapse
|
114
|
Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas-Anterion C, Couratier P, Legallic S, Salachas F, Hannequin D, Decousus M, Lacomblez L, Guedj E, Golfier V, Camu W, Dubois B, Campion D, Meininger V, Brice A. TARDBPmutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 2009; 65:470-3. [DOI: 10.1002/ana.21612] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
115
|
Corrado L, Ratti A, Gellera C, Buratti E, Castellotti B, Carlomagno Y, Ticozzi N, Mazzini L, Testa L, Taroni F, Baralle FE, Silani V, D'Alfonso S. High frequency ofTARDBPgene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat 2009; 30:688-94. [DOI: 10.1002/humu.20950] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
116
|
Kim SH, Shi Y, Hanson KA, Williams LM, Sakasai R, Bowler MJ, Tibbetts RS. Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem 2009; 284:8083-92. [PMID: 19112176 PMCID: PMC2658102 DOI: 10.1074/jbc.m808064200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/24/2008] [Indexed: 12/12/2022] Open
Abstract
TDP-43 (43-kDa TAR DNA-binding domain protein) is a major constituent of ubiquitin-positive cytoplasmic aggregates present in neurons of patients with fronto-temporal lobular dementia and amyotrophic lateral sclerosis (ALS). The pathologic significance of TDP-43 aggregation is not known; however, dominant mutations in TDP-43 cause a subset of ALS cases, suggesting that misfolding and/or altered trafficking of TDP-43 is relevant to the disease process. Here, we show that the presenilin-binding protein ubiquilin 1 (UBQLN) plays a role in TDP-43 aggregation. TDP-43 interacted with UBQLN both in yeast and in vitro, and the carboxyl-terminal ubiquitin-associated domain of UBQLN was both necessary and sufficient for binding to polyubiquitylated forms of TDP-43. Overexpression of UBQLN recruited TDP-43 to detergent-resistant cytoplasmic aggregates that colocalized with the autophagosomal marker, LC3. UBQLN-dependent aggregation required the UBQLN UBA domain, was mediated by non-overlapping regions of TDP-43, and was abrogated by a mutation in UBQLN previously linked to Alzheimer disease. Four ALS-associated alleles of TDP-43 also coaggregated with UBQLN, and the extent of aggregation correlated with in vitro UBQLN binding affinity. Our findings suggest that UBQLN is a polyubiquitin-TDP-43 cochaperone that mediates the autophagosomal delivery and/or proteasome targeting of TDP-43 aggregates.
Collapse
Affiliation(s)
- Sang Hwa Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Kametani F, Nonaka T, Suzuki T, Arai T, Dohmae N, Akiyama H, Hasegawa M. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 2009; 382:405-9. [PMID: 19285963 DOI: 10.1016/j.bbrc.2009.03.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/08/2009] [Indexed: 12/12/2022]
Abstract
TAR DNA-binding protein of 43 kDa (TDP-43) is deposited as hyperphosphorylated cytoplasmic and intranuclear inclusions in brains of patients with frontotemporal lobar degeneration with ubiquitinated inclusions and amyotrophic lateral sclerosis. In this study, we identified 29 phosphorylation sites on recombinant TDP-43 that are phosphorylated by casein kinase-1 (CK1). Interestingly, 18 of them were located in the C-terminal glycine-rich region of TDP-43. Our results indicate that CK1-mediated phosphorylation may play a role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
118
|
Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 2009; 256:1205-14. [PMID: 19271105 DOI: 10.1007/s00415-009-5069-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/09/2009] [Indexed: 12/12/2022]
Abstract
Ever since the significance of pathological 43-kDa transactivating responsive sequence DNA-binding protein (TDP-43) for human disease has been recognized in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U), a number of publications have emerged reporting on this pathology in a variety of neurodegenerative diseases. Given the heterogeneous and, in part, conflicting nature of the recent findings, we here review pathological TDP-43 and its relationship to human disease with a special focus on ALS and FTLD-U. To this end, we propose a classification scheme in which pathological TDP-43 is the major disease defining pathology in one group, or is present in addition to other neurodegenerative hallmark pathologies in a second category. We conclude that the TDP-43 proteinopathies represent a novel class of neurodegenerative disorders akin to alpha-synucleinopathies and tauopathies, with the concept of ALS and FTLD-U to be widened to a broad clinico-pathological multisystem disease, i.e., TDP-43 proteinopathy.
Collapse
|
119
|
Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y, Forman MS, Troost D, Kretzschmar HA, Trojanowski JQ, Lee VMY. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 2009; 117:137-49. [PMID: 19125255 DOI: 10.1007/s00401-008-0477-9] [Citation(s) in RCA: 429] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 12/12/2022]
Abstract
Accumulation of hyperphosphorylated, ubiquitinated and N-terminally truncated TAR DNA-binding protein (TDP-43) is the pathological hallmark lesion in most familial and sporadic forms of FTLD-U and ALS, which can be subsumed as TDP-43 proteinopathies. In order to get more insight into the role of abnormal phosphorylation in the disease process, the identification of specific phosphorylation sites and the generation of phosphorylation-specific antibodies are mandatory. Here, we developed and characterized novel rat monoclonal antibodies (1D3 and 7A9) raised against phosphorylated S409/410 of TDP-43. These antibodies were used to study the presence of S409/410 phosphorylation by immunohistochemistry and biochemical analysis in a large series of 64 FTLD-U cases with or without motor neuron disease including familial cases with mutations in progranulin (n = 5), valosin-containing protein (n = 4) and linkage to chromosome 9p (n = 4), 18 ALS cases as well as other neurodegenerative diseases with concomitant TDP-43 pathology (n = 5). Our data demonstrate that phosphorylation of S409/410 of TDP-43 is a highly consistent feature in pathologic inclusions in the whole spectrum of sporadic and familial forms of TDP-43 proteinopathies. Physiological nuclear TDP-43 was not detectable with these mAbs by immunohistochemistry and by immunoblot analyses. While the accumulation of phosphorylated C-terminal fragments was a robust finding in the cortical brain regions of FTLD-U and ALS, usually being much more abundant than the phosphorylated full-length TDP-43 band, spinal cord samples revealed a predominance of full-length TDP-43 over C-terminal fragments. This argues for a distinct TDP-43 species composition in inclusions in cortical versus spinal cord cells. Overall, these mAbs are powerful tools for the highly specific detection of disease-associated abnormal TDP-43 species and will be extremely useful for the neuropathological routine diagnostics of TDP-43 proteinopathies and for the investigation of emerging cellular and animal models for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Manuela Neumann
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstr. 12, 8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Neumann M. Molecular neuropathology of TDP-43 proteinopathies. Int J Mol Sci 2009; 10:232-246. [PMID: 19333444 PMCID: PMC2662455 DOI: 10.3390/ijms10010232] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/06/2009] [Accepted: 01/08/2009] [Indexed: 12/12/2022] Open
Abstract
The identification of TDP-43 as the major component of the pathologic inclusions in most forms of sporadic and familial frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS) resolved a long-standing enigma concerning the nature of the ubiquitinated disease protein under these conditions. Anti-TDP-43 immunohistochemistry and the recent development of novel tools, such as phosphorylation-specific TDP-43 antibodies, have increased our knowledge about the spectrum of pathological changes associated with FTLD-U and ALS and moreover, facilitated the neuropathological routine diagnosis of these conditions. This review summarizes the recent advances in our understanding on the molecular neuropathology and pathobiology of TDP-43 in FTLD and ALS.
Collapse
Affiliation(s)
- Manuela Neumann
- Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstr. 12, 8091 Zurich, Switzerland
| |
Collapse
|
121
|
Buratti E, Baralle FE. The molecular links between TDP-43 dysfunction and neurodegeneration. ADVANCES IN GENETICS 2009; 66:1-34. [PMID: 19737636 DOI: 10.1016/s0065-2660(09)66001-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 nuclear protein is involved in several major neurodegenerative diseases that include frontotemporal lobar degeneration with ubiquitin (FTLD-U) bodies and amyotrophic lateral sclerosis (ALS). As a consequence, the role played by this protein in both normal and diseased cellular metabolism has come under very close scrutiny. In the neuronal tissues of affected individuals TDP-43 undergoes aberrant localization to the cytoplasm to form insoluble aggregates. Furthermore, it is subject to degradation, ubiquitination, and phosphorylation. Understanding the pathways that lead to these changes will be crucial to define the functional role played by this protein in disease. Several recent biochemical and molecular studies have provided new information regarding the potential physiological consequences of these modifications. Moreover, the discovery of TDP-43 mutations associated with disease in a limited number of cases and the data from existing animal models have strengthened the proposed links between this protein and disease. In this review we will discuss the available data regarding the biochemical and functional changes that transform the wild-type endogenous TDP-43 in its pathological form. Furthermore, we will concentrate on examining the potential pathological mechanisms mediated by TDP-43 in different gain- versus loss-of-function scenarios. In the near future, this knowledge will hopefully increase our knowledge on disease progression and development. Moreover, it will allow the design of innovative therapeutic strategies for these pathologies based on the specific molecular defects causing the disease.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|