101
|
Paraskevis D, Kostaki E, Gargalianos P, Xylomenos G, Lazanas M, Chini M, Skoutelis A, Papastamopoulos V, Paraskeva D, Antoniadou A, Papadopoulos A, Psichogiou M, Daikos GL, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Sipsas NV, Lada M, Panagopoulos P, Maltezos E, Drimis S, Hatzakis A. Transmission Dynamics of HIV-1 Drug Resistance among Treatment-Naïve Individuals in Greece: The Added Value of Molecular Epidemiology to Public Health. Genes (Basel) 2017; 8:genes8110322. [PMID: 29137167 PMCID: PMC5704235 DOI: 10.3390/genes8110322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
The presence of human immunodeficiency virus type 1 (HIV-1) drug resistance among drug-naïve patients remains stable, although the proportion of patients with virological failure to therapy is decreasing. The dynamics of transmitted resistance among drug-naïve patients remains largely unknown. The prevalence of non-nucleoside reverse transcriptase inhibitors (NNRTI) resistance was 16.9% among treatment-naïve individuals in Greece. We aimed to investigate the transmission dynamics and the effective reproductive number (Re) of the locally transmitted NNRTI resistance. We analyzed sequences with dominant NNRTI resistance mutations (E138A and K103N) found within monophyletic clusters (local transmission networks (LTNs)) from patients in Greece. For the K103N LTN, the Re was >1 between 2008 and the first half of 2013. For all E138A LTNs, the Re was >1 between 1998 and 2015, except the most recent one (E138A_4), where the Re was >1 between 2006 and 2011 and approximately equal to 1 thereafter. K103N and E138A_4 showed similar characteristics with a more recent origin, higher Re during the first years of the sub-epidemics, and a declining trend in the number of transmissions during the last two years. In the remaining LTNs the epidemic was still expanding. Our study highlights the added value of molecular epidemiology to public health.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (E.K.); (A.H.)
- Correspondence:
| | - Evangelia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (E.K.); (A.H.)
| | - Panagiotis Gargalianos
- 1st Department of Internal Medicine, G. Genimatas GH, 11527 Athens, Greece; (P.G.); (G.X.)
| | - Georgios Xylomenos
- 1st Department of Internal Medicine, G. Genimatas GH, 11527 Athens, Greece; (P.G.); (G.X.)
| | - Marios Lazanas
- 3rd Internal Medicine Department-Infectious Diseases, Red Cross Hospital, 11526 Athens, Greece; (M.L.); (M.C.)
| | - Maria Chini
- 3rd Internal Medicine Department-Infectious Diseases, Red Cross Hospital, 11526 Athens, Greece; (M.L.); (M.C.)
| | - Athanasios Skoutelis
- 5th Department of Medicine and Infectious Diseases, Evaggelismos GH, 10676 Athens, Greece; (A.S.); (V.P.)
| | - Vasileios Papastamopoulos
- 5th Department of Medicine and Infectious Diseases, Evaggelismos GH, 10676 Athens, Greece; (A.S.); (V.P.)
| | - Dimitra Paraskeva
- Hellenic Center for Disease Control & Prevention, 15123 Athens, Greece;
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon GH, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon GH, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon GH, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (G.L.D.)
| | - Georgios L. Daikos
- 1st Department of Medicine, Laikon GH, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (G.L.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio GH, 18536 Piraeus, Greece; (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration GH, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon GH, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion GH, 15126 Athens, Greece;
| | - Periklis Panagopoulos
- Department of Internal Medicine, University GH, Democritus University of Thrace, 67100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Efstratios Maltezos
- Department of Internal Medicine, University GH, Democritus University of Thrace, 67100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Stylianos Drimis
- Department of Internal Medicine, Tzaneio GH, 18536 Piraeus, Greece; (G.C.); (S.D.)
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (E.K.); (A.H.)
| |
Collapse
|
102
|
SahBandar IN, Samonte G, Telan E, Siripong N, Belcaid M, Schanzenbach D, Leano S, Chagan-Yasutan H, Hattori T, Shikuma CM, Ndhlovu LC. Ultra-Deep Sequencing Analysis on HIV Drug-Resistance-Associated Mutations Among HIV-Infected Individuals: First Report from the Philippines. AIDS Res Hum Retroviruses 2017; 33:1099-1106. [PMID: 28569550 DOI: 10.1089/aid.2016.0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sharp increase in the number of people living with HIV has been documented in the Philippines. In response, the government has instituted antiretroviral therapy (ART) nationwide through HIV treatment hubs. However, no data presently exist on the status of ART drug-resistance-associated mutations (DRMs). In this study, we aim at analyzing DRM profiles in the Philippines and at providing comprehensive data on DRMs to guide treatment decisions and prevent viral failures. We conducted a cross-sectional study in 119 volunteers who tested positive for HIV from more than 8,000 participants screened for HIV across the nation through the 2013 Integrated HIV Behavioral and Serologic Surveillance (IHBSS) program. Amplicons were generated from plasma RNA by using primers designed to analyze diverse HIV-1 isolates targeting the reverse transcriptase region and sequenced on a 454 ultra-deep sequencing (UDS) platform to assess DRMs. DRMs were defined by using the Stanford HIV drug resistance database, and we found only 2 from 110 evaluable individuals with major HIV variants (>20% prevalence) that were highly resistant to the non-nucleoside reverse transcriptase inhibitor (NNRTI: efavirenz and nevirapine). However, a larger fraction of individuals harbored minority drug-resistant HIV variants (0.5%-20% prevalence) and they were highly resistant to NNRTI nevirapine (89/110), rilpivirine (5/110), and efavirenz (49/110). This study is the first report on the presence of HIV drug resistance in the Philippines and demonstrates the utility of UDS in assisting the detection of HIV minor variants. Monitoring for ART-DRMs will assist in improving HIV management strategies in curtailing the evolving epidemic in the Philippines.
Collapse
Affiliation(s)
- Ivo N. SahBandar
- Hawaii Center for AIDS, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
| | - Genesis Samonte
- Department of Health, National Epidemiology Center, Manila, Philippines
| | - Elizabeth Telan
- National Reference Laboratory, STD AIDS Cooperative Central Laboratory, Manila, Philippines
| | - Nalyn Siripong
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mahdi Belcaid
- Pacific Center for Emerging Infectious Diseases Research, University of Hawaii, Honolulu, Hawaii
| | - David Schanzenbach
- Pacific Center for Emerging Infectious Diseases Research, University of Hawaii, Honolulu, Hawaii
| | - Susan Leano
- National Reference Laboratory, STD AIDS Cooperative Central Laboratory, Manila, Philippines
| | - Haorile Chagan-Yasutan
- International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan
| | - Toshio Hattori
- Department of Occupational Therapy, KIBI International University, Takahashi, Japan
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
| | - Lishomwa C. Ndhlovu
- Hawaii Center for AIDS, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
| |
Collapse
|
103
|
No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J Virol 2017; 91:JVI.00769-17. [PMID: 28794047 DOI: 10.1128/jvi.00769-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
During primary HIV infection, the presence of minority drug resistance mutations (DRM) may be a consequence of sexual transmission, de novo mutations, or technical errors in identification. Baseline blood samples were collected from 24 HIV-infected antiretroviral-naive, genetically and epidemiologically linked source and recipient partners shortly after the recipient's estimated date of infection. An additional 32 longitudinal samples were available from 11 recipients. Deep sequencing of HIV reverse transcriptase (RT) was performed (Roche/454), and the sequences were screened for nucleoside and nonnucleoside RT inhibitor DRM. The likelihood of sexual transmission and persistence of DRM was assessed using Bayesian-based statistical modeling. While the majority of DRM (>20%) were consistently transmitted from source to recipient, the probability of detecting a minority DRM in the recipient was not increased when the same minority DRM was detected in the source (Bayes factor [BF] = 6.37). Longitudinal analyses revealed an exponential decay of DRM (BF = 0.05) while genetic diversity increased. Our analysis revealed no substantial evidence for sexual transmission of minority DRM (BF = 0.02). The presence of minority DRM during early infection, followed by a rapid decay, is consistent with the "mutation-selection balance" hypothesis, in which deleterious mutations are more efficiently purged later during HIV infection when the larger effective population size allows more efficient selection. Future studies using more recent sequencing technologies that are less prone to single-base errors should confirm these results by applying a similar Bayesian framework in other clinical settings.IMPORTANCE The advent of sensitive sequencing platforms has led to an increased identification of minority drug resistance mutations (DRM), including among antiretroviral therapy-naive HIV-infected individuals. While transmission of DRM may impact future therapy options for newly infected individuals, the clinical significance of the detection of minority DRM remains controversial. In the present study, we applied deep-sequencing techniques within a Bayesian hierarchical framework to a cohort of 24 transmission pairs to investigate whether minority DRM detected shortly after transmission were the consequence of (i) sexual transmission from the source, (ii) de novo emergence shortly after infection followed by viral selection and evolution, or (iii) technical errors/limitations of deep-sequencing methods. We found no clear evidence to support the sexual transmission of minority resistant variants, and our results suggested that minor resistant variants may emerge de novo shortly after transmission, when the small effective population size limits efficient purge by natural selection.
Collapse
|
104
|
Pessôa R, Sanabani SS. High prevalence of HIV-1 transmitted drug-resistance mutations from proviral DNA massively parallel sequencing data of therapy-naïve chronically infected Brazilian blood donors. PLoS One 2017; 12:e0185559. [PMID: 28953964 PMCID: PMC5617215 DOI: 10.1371/journal.pone.0185559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND An improved understanding of the prevalence of low-abundance transmitted drug-resistance mutations (TDRM) in therapy-naïve HIV-1-infected patients may help determine which patients are the best candidates for therapy. In this study, we aimed to obtain a comprehensive picture of the evolving HIV-1 TDRM across the massive parallel sequences (MPS) of the viral entire proviral genome in a well-characterized Brazilian blood donor naïve to antiretroviral drugs. MATERIALS AND METHODS The MPS data from 128 samples used in the analysis were sourced from Brazilian blood donors and were previously classified by less-sensitive (LS) or "detuned" enzyme immunoassay as non-recent or longstanding HIV-1 infections. The Stanford HIV Resistance Database (HIVDBv 6.2) and IAS-USA mutation lists were used to interpret the pattern of drug resistance. The minority variants with TDRM were identified using a threshold of ≥ 1.0% and ≤ 20% of the reads sequenced. The rate of TDRM in the MPS data of the proviral genome were compared with the corresponding published consensus sequences of their plasma viruses. RESULTS No TDRM were detected in the integrase or envelope regions. The overall prevalence of TDRM in the protease (PR) and reverse transcriptase (RT) regions of the HIV-1 pol gene was 44.5% (57/128), including any mutations to the nucleoside analogue reverse transcriptase inhibitors (NRTI) and non-nucleoside analogue reverse transcriptase inhibitors (NNRTI). Of the 57 subjects, 43 (75.4%) harbored a minority variant containing at least one clinically relevant TDRM. Among the 43 subjects, 33 (76.7%) had detectable minority resistant variants to NRTIs, 6 (13.9%) to NNRTIs, and 16 (37.2%) to PR inhibitors. The comparison of viral sequences in both sources, plasma and cells, would have detected 48 DNA provirus disclosed TDRM by MPS previously missed by plasma bulk analysis. CONCLUSION Our findings revealed a high prevalence of TDRM found in this group, as the use of MPS drastically increased the detection of these mutations. Sequencing proviral DNA provided additional information about TDRM, which may impact treatment decisions. The overall results emphasize the importance of continuous monitoring.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Sabri S. Sanabani
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
- Clinical Laboratory, Department of Pathology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
105
|
Clutter DS, Zhou S, Varghese V, Rhee SY, Pinsky BA, Jeffrey Fessel W, Klein DB, Spielvogel E, Holmes SP, Hurley LB, Silverberg MJ, Swanstrom R, Shafer RW. Prevalence of Drug-Resistant Minority Variants in Untreated HIV-1-Infected Individuals With and Those Without Transmitted Drug Resistance Detected by Sanger Sequencing. J Infect Dis 2017; 216:387-391. [PMID: 28859436 DOI: 10.1093/infdis/jix338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 11/14/2022] Open
Abstract
Minority variant human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations are associated with an increased risk of virological failure during treatment with NNRTI-containing regimens. To determine whether individuals to whom variants with isolated NNRTI-associated drug resistance were transmitted are at increased risk of virological failure during treatment with a non-NNRTI-containing regimen, we identified minority variant resistance mutations in 33 individuals with isolated NNRTI-associated transmitted drug resistance and 49 matched controls. We found similar proportions of overall and nucleoside reverse transcriptase inhibitor-associated minority variant resistance mutations in both groups, suggesting that isolated NNRTI-associated transmitted drug resistance may not be a risk factor for virological failure during treatment with a non-NNRTI-containing regimen.
Collapse
Affiliation(s)
| | - Shuntai Zhou
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill
| | - Vici Varghese
- Division of Infectious Diseases and Geographic Medicine
| | - Soo-Yon Rhee
- Division of Infectious Diseases and Geographic Medicine
| | - Benjamin A Pinsky
- Division of Infectious Diseases and Geographic Medicine.,Department of Pathology, Stanford University School of Medicine
| | - W Jeffrey Fessel
- Department of Internal Medicine, San Francisco Medical Center, Kaiser Permanente Northern California,San Francisco
| | - Daniel B Klein
- Department of Infectious Diseases, San Leandro Medical Center, Kaiser Permanente Northern California,San Leandro
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill
| | | | - Leo B Hurley
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Michael J Silverberg
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill
| | | |
Collapse
|
106
|
Epaulard O, Signori-Schmuck A, Larrat S, Kulkarni O, Blum MG, Fusillier K, Blanc M, Leclercq P, François O, Morand P. Ultradeep sequencing of B and non-B HIV-1 subtypes: Viral diversity and drug resistance mutations before and after one month of antiretroviral therapy in naive patients. J Clin Virol 2017; 95:13-19. [PMID: 28830014 DOI: 10.1016/j.jcv.2017.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ultradeep pyrosequencing technologies permit an assessment of the genetic diversity and the presence and frequency of minority variants in a viral population. The effect of these parameters on the outcome of highly active antiretroviral therapy (HAART) in HIV-infected patients is poorly understood. OBJECTIVES The present study used the pyrosequencing Roche 454 prototype assay to determine whether antiretroviral efficacy is correlated with viral diversity and minority drug resistance mutations in HIV-infected treatment-naive patients and to compare assay performance in B and non-B subtypes. STUDY DESIGN The study included 30 HIV-1 infected naive patients (20 with subtype non-B and 10 with subtype B). Ultradeep pyrosequencing of protease and reverse transcriptase genes was performed at baseline and 1 month after HAART initiation. Plasma HIV VL was measured at 0 and after 1, 3, and 6 months of HAART. RESULTS Pre-HAART minority drug resistance mutations were observed to NRTI in 4 patients, to NNRTI in 6 patients, and to PI in 1 patient; there was no difference in HAART-induced VL decay between patients. Pre-HAART diversity was significantly correlated with the time elapsed since HIV-1 infection diagnosis, but not with the subtype, VL, or CD4 count. Patients with an undetectable VL after 3 months of HAART had a higher pre-HAART diversity. Pre- and post-HAART diversities were not statistically different. There was no difference in assay performance between subtype B and non-B. CONCLUSIONS A high pre-HAART viral diversity might have a positive effect on the outcome of HAART. Pre-therapeutic minority drug resistance mutations are uncommon in naive patients.
Collapse
Affiliation(s)
- Olivier Epaulard
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France.
| | - Anne Signori-Schmuck
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Sylvie Larrat
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Om Kulkarni
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Michael G Blum
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Katia Fusillier
- Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Myriam Blanc
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France
| | - Pascale Leclercq
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France
| | - Olivier François
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Patrice Morand
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| |
Collapse
|
107
|
Multimethod Longitudinal HIV Drug Resistance Analysis in Antiretroviral-Therapy-Naive Patients. J Clin Microbiol 2017; 55:2785-2800. [PMID: 28659324 DOI: 10.1128/jcm.00634-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
The global intensification of antiretroviral therapy (ART) can lead to increased rates of HIV drug resistance (HIVDR) mutations in treated and also in ART-naive patients. ART-naive HIV-1-infected patients from Cameroon were subjected to a multimethod HIVDR analysis using amplification-refractory mutation system (ARMS)-PCR, Sanger sequencing, and longitudinal next-generation sequencing (NGS) to determine their profiles for the mutations K103N, Y181C, K65R, M184V, and T215F/Y. We processed 66 ART-naive HIV-1-positive patients with highly diverse subtypes that underlined the predominance of CRF02_AG and the increasing rate of F2 and other recombinant forms in Cameroon. We compared three resistance testing methods for 5 major mutation sites. Using Sanger sequencing, the overall prevalence of HIVDR mutations was 7.6% (5/66) and included all studied mutations except K65R. Comparing ARMS-PCR with Sanger sequencing as a reference, we obtained a sensitivity of 100% (5/5) and a specificity of 95% (58/61), caused by three false-positive calls with ARMS-PCR. For 32/66 samples, we obtained NGS data and we observed two additional mismatches made up of minority variants (7% and 18%) that might not be clinically relevant. Longitudinal NGS analyses revealed changes in HIVDR mutations in all five positive subjects that could not be attributed to treatment. In one of these cases, superinfection led to the temporary masking of a resistant virus. HIVDR mutations can be sensitively detected by ARMS-PCR and sequencing methods with comparable performances. Longitudinal changes in HIVDR mutations have to be considered even in the absence of treatment.
Collapse
|
108
|
HIV-1 Drug Resistance by Ultra-Deep Sequencing Following Short Course Zidovudine, Single-Dose Nevirapine, and Single-Dose Tenofovir with Emtricitabine for Prevention of Mother-to-Child Transmission. J Acquir Immune Defic Syndr 2017; 73:384-389. [PMID: 27327263 PMCID: PMC5172515 DOI: 10.1097/qai.0000000000001116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Antiretroviral drug resistance following pMTCT strategies remains a significant problem. With rapid advancements in next generation sequencing technologies, there is more focus on HIV drug-resistant variants of low frequency, or the so-called minority variants. In South Africa, AZT monotherapy for pMTCT, similar to World Health Organization option A, has been used since 2008. In 2010, a single dose of co-formulated TDF/FTC was included in the strategy for prevention of resistance conferred by single-dose nevirapine (sd NVP). The study was conducted in KwaZulu-Natal, South Africa, among pMTCT participants who received AZT monotherapy from 14 weeks of gestation, intrapartum AZT and sd NVP, and postpartum sd TDF/FTC. Twenty-six specimens collected at 6 weeks post-delivery were successfully sequenced using 454 ultra-deep sequencing. Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance was detected in 17 of 26 (65%) patients, 2 (7%) had Thymidine analogue mutations, and 3 (11%) had K65R. Of the 17 patients with NNRTI resistance, 11 (65%) had high-level NNRTI resistance, whereas 6 (35%) had intermediate NNRTI resistance. The levels of NNRTI resistance are much higher than would be expected, given the inclusion of antepartum AZT and postpartum TDF/FTC. This high level of NNRTI resistance could impact future NNRTI-containing treatment for a large proportion of pMTCT-exposed women. The detection of Thymidine analogue mutations highlights the need to understand the clinical impact of these on AZT-containing antiretroviral treatment in women exposed to AZT monotherapy.
Collapse
|
109
|
Machnowska P, Hauser A, Meixenberger K, Altmann B, Bannert N, Rempis E, Schnack A, Decker S, Braun V, Busingye P, Rubaihayo J, Harms G, Theuring S. Decreased emergence of HIV-1 drug resistance mutations in a cohort of Ugandan women initiating option B+ for PMTCT. PLoS One 2017; 12:e0178297. [PMID: 28562612 PMCID: PMC5451067 DOI: 10.1371/journal.pone.0178297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Since 2012, WHO guidelines for the prevention of mother-to-child transmission (PMTCT) of HIV-1 in resource-limited settings recommend the initiation of lifelong antiretroviral combination therapy (cART) for all pregnant HIV-1 positive women independent of CD4 count and WHO clinical stage (Option B+). However, long-term outcomes regarding development of drug resistance are lacking until now. Therefore, we analysed the emergence of drug resistance mutations (DRMs) in women initiating Option B+ in Fort Portal, Uganda, at 12 and 18 months postpartum (ppm). METHODS AND FINDINGS 124 HIV-1 positive pregnant women were enrolled within antenatal care services in Fort Portal, Uganda. Blood samples were collected at the first visit prior starting Option B+ and postpartum at week six, month six, 12 and 18. Viral load was determined by real-time RT-PCR. An RT-PCR covering resistance associated positions in the protease and reverse transcriptase HIV-1 genomic region was performed. PCR-positive samples at 12/18 ppm and respective baseline samples were analysed by next generation sequencing regarding HIV-1 drug resistant variants including low-frequency variants. Furthermore, vertical transmission of HIV-1 was analysed. 49/124 (39.5%) women were included into the DRM analysis. Virological failure, defined as >1000 copies HIV-1 RNA/ml, was observed in three and seven women at 12 and 18 ppm, respectively. Sequences were obtained for three and six of these. In total, DRMs were detected in 3/49 (6.1%) women. Two women displayed dual-class resistance against all recommended first-line regimen drugs. Of 49 mother-infant-pairs no infant was HIV-1 positive at 12 or 18 ppm. CONCLUSION Our findings suggest that the WHO-recommended Option B+ for PMTCT is effective in a cohort of Ugandan HIV-1 positive pregnant women with regard to the low selection rate of DRMs and vertical transmission. Therefore, these results are encouraging for other countries considering the implementation of lifelong cART for all pregnant HIV-1 positive women.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | - Andrea Hauser
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | | | - Britta Altmann
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | - Eva Rempis
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Schnack
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Decker
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Braun
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - John Rubaihayo
- Department of Public Health, Mountains of the Moon University, Fort Portal, Uganda
| | - Gundel Harms
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Theuring
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
110
|
Response to Therapy in Antiretroviral Therapy-Naive Patients With Isolated Nonnucleoside Reverse Transcriptase Inhibitor-Associated Transmitted Drug Resistance. J Acquir Immune Defic Syndr 2017; 72:171-6. [PMID: 26855248 PMCID: PMC4866916 DOI: 10.1097/qai.0000000000000942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nonnucleoside reverse transcriptase inhibitor (NNRTI)-associated transmitted drug resistance (TDR) is the most common type of TDR. Few data guide the selection of antiretroviral therapy (ART) for patients with such resistance. METHODS We reviewed treatment outcomes in a cohort of HIV-1-infected patients with isolated NNRTI TDR who initiated ART between April 2002 and May 2014. In an as-treated analysis, virological failure (VF) was defined as not reaching undetectable virus levels within 24 weeks, virological rebound, or switching regimens during viremia. In an intention-to-treat analysis, failure was defined more broadly as VF, loss to follow-up, and switching during virological suppression. RESULTS Of 3245 patients, 131 (4.0%) had isolated NNRTI TDR; 122 received a standard regimen comprising 2 NRTIs plus a boosted protease inhibitor (bPI; n = 54), an integrase strand transfer inhibitor (INSTI; n = 52), or an NNRTI (n = 16). The median follow-up was 100 weeks. In the as-treated analysis, VF occurred in 15% (n = 8), 2% (n = 1), and 25% (n = 4) of patients in the bPI, INSTI, and NNRTI groups, respectively. In multivariate regression, there was a trend toward a lower risk of VF with INSTIs than with bPIs (hazard ratio: 0.14; 95% confidence interval: 0.02 to 1.1; P = 0.07). In intention-to-treat multivariate regression, INSTIs had a lower risk of failure than bPIs (hazard ratio: 0.38; 95% confidence interval: 0.18 to 0.82; P = 0.01). CONCLUSIONS Patients with isolated NNRTI TDR experienced low VF rates with INSTIs and bPIs. INSTIs were noninferior to bPIs in an analysis of VF but superior to bPIs when frequency of switching and loss to follow-up were also considered.
Collapse
|
111
|
Rusconi S. The impact of adherence to HIV/AIDS antiretroviral therapy on the development of drug resistance. Future Virol 2017. [DOI: 10.2217/fvl-2017-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Stefano Rusconi
- Infectious Diseases Unit, DIBIC Luigi Sacco, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| |
Collapse
|
112
|
Todesco E, Charpentier C, Bertine M, Wirden M, Storto A, Desire N, Grude M, Nguyen T, Sayon S, Yazdanpanah Y, Katlama C, Descamps D, Calvez V, Marcelin AG. Disparities in HIV-1 transmitted drug resistance detected by ultradeep sequencing between men who have sex with men and heterosexual populations. HIV Med 2017; 18:696-700. [PMID: 28444829 DOI: 10.1111/hiv.12508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Transmitted drug resistance (TDR) can impair the response to first-line antiretroviral therapy. In treatment-naïve patients chronically infected with HIV type 1 (HIV-1), it was previously shown through Sanger sequencing that TDR was more common in men who have sex with men (MSM) than in other transmission risk groups. We aimed to compare two HIV-1 transmission groups in terms of the presence of TDR mutations. METHODS We investigated, through Sanger sequencing and ultradeep sequencing (UDS), the presence of resistance mutations, both in majority (> 20%) and in minority (1-20%) proportions, in 70 treatment-naïve MSM and 70 treatment-naïve heterosexual patients who recently screened positive for HIV-1. RESULTS The global prevalence of TDR was not significantly different between the two groups, either by Sanger or by UDS. Nevertheless, a higher frequency of nucleoside reverse transcriptase inhibitor TDR was observed among heterosexual patients (P = 0.04). There was also a trend for a higher frequency of TDR among MSM infected with HIV-1 subtype B compared with MSM infected with HIV-1 non-B subtypes (P = 0.06). CONCLUSIONS Ultradeep sequencing UDS allowed sensitive monitoring of TDR, and highlighted some disparities between transmission groups.
Collapse
Affiliation(s)
- E Todesco
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - C Charpentier
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - M Bertine
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - M Wirden
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A Storto
- Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - N Desire
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - M Grude
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - T Nguyen
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - S Sayon
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Y Yazdanpanah
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Infectious Diseases, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - C Katlama
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Infectious Diseases, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - D Descamps
- INSERM, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Paris, France.,Department of Virology, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - V Calvez
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A G Marcelin
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,Department of Virology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
113
|
Characterization of the Drug Resistance Profiles of Patients Infected with CRF07_BC Using Phenotypic Assay and Ultra-Deep Pyrosequencing. PLoS One 2017; 12:e0170420. [PMID: 28107423 PMCID: PMC5249062 DOI: 10.1371/journal.pone.0170420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
The usefulness of ultra-deep pyrosequencing (UDPS) for the diagnosis of HIV-1 drug resistance (DR) remains to be determined. Previously, we reported an explosive outbreak of HIV-1 circulating recombinant form (CRF) 07_BC among injection drug users (IDUs) in Taiwan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using different assays including UDPS. Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004–2005) and 3 from late epidemic (collected in 2008) were obtained from treatment-naïve patient’s peripheral blood mononuclear cells. Viral RNA was extracted directly from patient’s plasma or from cultural supernatant and the pol sequences were determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug susceptibility assay using MAGIC-5 cells (in-house phenotypic assay) and Antivirogram were performed. In-house phenotypic assay showed that all the early epidemic and none of the late epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs) (4.4–47.3 fold). Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed that early epidemic isolates contained 0.01–0.08% of PI DR major mutations. Furthermore, the combinations of major and accessory PI DR mutations significantly correlated with the phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic assays in the detection of DR variants with a frequency as low as 0.01%.
Collapse
|
114
|
Zanini F, Puller V, Brodin J, Albert J, Neher RA. In vivo mutation rates and the landscape of fitness costs of HIV-1. Virus Evol 2017; 3:vex003. [PMID: 28458914 PMCID: PMC5399928 DOI: 10.1093/ve/vex003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quantitative understanding of evolution. Using whole genome deep sequencing data from longitudinal samples during untreated HIV-1 infection, we estimated mutation rates and fitness costs in HIV-1 from the dynamics of genetic variation. At approximately neutral sites, mutations accumulate with a rate of 1.2 × 10-5 per site per day, in agreement with the rate measured in cell cultures. We estimated the rate from G to A to be the largest, followed by the other transitions C to T, T to C, and A to G, while transversions are less frequent. At other sites, mutations tend to reduce virus replication. We estimated the fitness cost of mutations at every site in the HIV-1 genome using a model of mutation selection balance. About half of all non-synonymous mutations have large fitness costs (>10 percent), while most synonymous mutations have costs <1 percent. The cost of synonymous mutations is especially low in most of pol where we could not detect measurable costs for the majority of synonymous mutations. In contrast, we find high costs for synonymous mutations in important RNA structures and regulatory regions. The intra-patient fitness cost estimates are consistent across multiple patients, indicating that the deleterious part of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.
Collapse
Affiliation(s)
- Fabio Zanini
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vadim Puller
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Richard A. Neher
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| |
Collapse
|
115
|
Brumme CJ, Poon AFY. Promises and pitfalls of Illumina sequencing for HIV resistance genotyping. Virus Res 2016; 239:97-105. [PMID: 27993623 DOI: 10.1016/j.virusres.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Genetic sequencing ("genotyping") plays a critical role in the modern clinical management of HIV infection. This virus evolves rapidly within patients because of its error-prone reverse transcriptase and short generation time. Consequently, HIV variants with mutations that confer resistance to one or more antiretroviral drugs can emerge during sub-optimal treatment. There are now multiple HIV drug resistance interpretation algorithms that take the region of the HIV genome encoding the major drug targets as inputs; expert use of these algorithms can significantly improve to clinical outcomes in HIV treatment. Next-generation sequencing has the potential to revolutionize HIV resistance genotyping by lowering the threshold that rare but clinically significant HIV variants can be detected reproducibly, and by conferring improved cost-effectiveness in high-throughput scenarios. In this review, we discuss the relative merits and challenges of deploying the Illumina MiSeq instrument for clinical HIV genotyping.
Collapse
Affiliation(s)
- Chanson J Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
116
|
Abstract
The advent of combination antiretroviral therapy (ART) has significantly decreased AIDS-related morbidity and mortality. Nevertheless, the benefits of ART are only realized through adherence to lifelong treatment. Though contemporary antiretroviral (ARV) drugs have fewer adverse effects in comparison to older ARV drugs, many agents are associated with negative or unknown long-term effects. There is increasing evidence that two-drug (dual-therapy) regimens may be an effective alternative to the currently recommended three-drug (triple-therapy) regimens. In this review, we provide a comprehensive and critical review of recently completed and ongoing trials of dual-therapy regimens in treatment-naïve and treatment-experienced HIV-1-infected patients. We also review current HIV/AIDS society recommendations regarding dual therapy as well as future therapeutic possibilities.
Collapse
Affiliation(s)
- Sean G Kelly
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 645 N Michigan Ave, Suite 900, Chicago, IL, 60611, USA
| | - Amesika N Nyaku
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 645 N Michigan Ave, Suite 900, Chicago, IL, 60611, USA
| | - Babafemi O Taiwo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 645 N Michigan Ave, Suite 900, Chicago, IL, 60611, USA. .,Center for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
117
|
Martín V, Perales C, Fernández-Algar M, Dos Santos HG, Garrido P, Pernas M, Parro V, Moreno M, García-Pérez J, Alcamí J, Torán JL, Abia D, Domingo E, Briones C. An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies. PLoS One 2016; 11:e0166902. [PMID: 27959928 PMCID: PMC5154500 DOI: 10.1371/journal.pone.0166902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
The response of human immunodeficiency virus type 1 (HIV-1) quasispecies to antiretroviral therapy is influenced by the ensemble of mutants that composes the evolving population. Low-abundance subpopulations within HIV-1 quasispecies may determine the viral response to the administered drug combinations. However, routine sequencing assays available to clinical laboratories do not recognize HIV-1 minority variants representing less than 25% of the population. Although several alternative and more sensitive genotyping techniques have been developed, including next-generation sequencing (NGS) methods, they are usually very time consuming, expensive and require highly trained personnel, thus becoming unrealistic approaches in daily clinical practice. Here we describe the development and testing of a HIV-1 genotyping DNA microarray that detects and quantifies, in majority and minority viral subpopulations, relevant mutations and amino acid insertions in 42 codons of the pol gene associated with drug- and multidrug-resistance to protease (PR) and reverse transcriptase (RT) inhibitors. A customized bioinformatics protocol has been implemented to analyze the microarray hybridization data by including a new normalization procedure and a stepwise filtering algorithm, which resulted in the highly accurate (96.33%) detection of positive/negative signals. This microarray has been tested with 57 subtype B HIV-1 clinical samples extracted from multi-treated patients, showing an overall identification of 95.53% and 89.24% of the queried PR and RT codons, respectively, and enough sensitivity to detect minority subpopulations representing as low as 5–10% of the total quasispecies. The developed genotyping platform represents an efficient diagnostic and prognostic tool useful to personalize antiviral treatments in clinical practice.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona. Barcelona, Spain
| | - María Fernández-Algar
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
| | - Helena G. Dos Santos
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
| | - Patricia Garrido
- Biotherapix, SLU. Parque Tecnológico de Madrid, Tres Cantos, Madrid. Spain
| | - María Pernas
- Biotherapix, SLU. Parque Tecnológico de Madrid, Tres Cantos, Madrid. Spain
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
| | - Miguel Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
| | - Javier García-Pérez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - José Luis Torán
- Biotherapix, SLU. Parque Tecnológico de Madrid, Tres Cantos, Madrid. Spain
| | - David Abia
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO, CSIC-UAM). Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Briones
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA). Torrejón de Ardoz, Madrid, Spain
- * E-mail:
| |
Collapse
|
118
|
Mulato A, Hansen D, Thielen A, Porter D, Stepan G, White K, Daeumer M, Cihlar T, Yant SR. Rapid In Vitro Evaluation of Antiretroviral Barrier to Resistance at Therapeutic Drug Levels. AIDS Res Hum Retroviruses 2016; 32:1237-1247. [PMID: 27356854 DOI: 10.1089/aid.2016.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Failure of combination antiretroviral (ARV) therapy in HIV-infected patients is often associated with the emergence of drug resistance-associated mutations (RAMs). To facilitate analysis of the barrier to resistance at therapeutically relevant ARV concentrations, we performed fixed-dose in vitro HIV-1 drug resistance selection assays using the immortalized MT-2 T-cell line and primary human CD4+ T cells with a panel of FDA-approved ARVs, each at their respective cell culture equivalent clinical trough concentration (CCE Cmin). At high multiples of its CCE Cmin, emtricitabine (FTC) selected for the rapid emergence of M184I/V, a result consistent with resistance emergence in vivo. While the rate of viral breakthrough in the presence of rilpivirine or efavirenz was delayed relative to FTC, both inhibitors selected for virus with known clinically relevant RAMs. No viral breakthrough was observed for the protease inhibitor atazanavir even at subtherapeutic drug concentrations, which is consistent with its previously characterized high in vivo barrier to resistance. Depending on assay conditions, treatment with integrase inhibitors elvitegravir and raltegravir resulted in breakthrough of both resistant and wild-type virus. The RAMs observed in drug selections were not detected above a 2% threshold by deep sequencing in the in vitro virus inoculum, and only rarely in isolates from treatment-naive HIV+ patients. These new viral breakthrough assays facilitate the analysis of multiple experimental replicates and conditions in parallel and provide a rapid quantitative means to evaluate drug resistance emergence at therapeutically relevant drug concentrations, which should facilitate the identification of new ARVs with a high barrier to resistance.
Collapse
|
119
|
High levels of pre-treatment HIV drug resistance and treatment failure in Nigerian children. J Int AIDS Soc 2016; 19:21140. [PMID: 27836020 PMCID: PMC5106466 DOI: 10.7448/ias.19.1.21140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/09/2016] [Accepted: 10/06/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction Pre-treatment HIV drug resistance (PDR) is an increasing problem in sub-Saharan Africa. Children are an especially vulnerable population to develop PDR given that paediatric second-line treatment options are limited. Although monitoring of PDR is important, data on the paediatric prevalence in sub-Saharan Africa and its consequences for treatment outcomes are scarce. We designed a prospective paediatric cohort study to document the prevalence of PDR and its effect on subsequent treatment failure in Nigeria, the country with the second highest number of HIV-infected children in the world. Methods HIV-1-infected children ≤12 years, who had not been exposed to drugs for the prevention of mother-to-child transmission (PMTCT), were enrolled between 2012 and 2013, and followed up for 24 months in Lagos, Nigeria. Pre-antiretroviral treatment (ART) population-based pol genotypic testing and six-monthly viral load (VL) testing were performed. Logistic regression analysis was used to assess the effect of PDR (World Health Organization (WHO) list for transmitted drug resistance) on subsequent treatment failure (two consecutive VL measurements >1000 cps/ml or death). Results Of the total 82 PMTCT-naïve children, 13 (15.9%) had PDR. All 13 children harboured non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations, of whom seven also had nucleoside reverse transcriptase inhibitor resistance. After 24 months, 33% had experienced treatment failure. Treatment failure was associated with PDR and a higher log VL before treatment initiation (adjusted odds ratio (aOR) 7.53 (95%CI 1.61–35.15) and 2.85 (95%CI 1.04–7.78), respectively). Discussion PDR was present in one out of six Nigerian children. These high numbers corroborate with recent findings in other African countries. The presence of PDR was relevant as it was the strongest predictor of first-line treatment failure. Conclusions Our findings stress the importance of implementing fully active regimens in children living with HIV. This includes the implementation of protease inhibitor (PI)-based first-line ART, as is recommended by the WHO for all HIV-infected children <3 years of age. Overcoming practical barriers to implement PI-based regimens is essential to ensure optimal treatment for HIV-infected children in sub-Saharan Africa. In countries where individual VL or resistance testing is not possible, more attention should be given to paediatric PDR surveys.
Collapse
|
120
|
Casadellà M, Paredes R. Deep sequencing for HIV-1 clinical management. Virus Res 2016; 239:69-81. [PMID: 27818211 DOI: 10.1016/j.virusres.2016.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
The emerging HIV-1 resistance epidemic is threatening the impressive global advances in HIV-1 infection treatment and prevention achieved in the last decade. Next-generation sequencing is improving our ability to understand, diagnose and prevent HIV-1 resistance, being increasingly cost-effective and more accessible. However, NGS still faces a number of limitations that need to be addressed to enable its widespread use. Here, we will review the main NGS platforms available for HIV-1 diagnosis, the factors affecting the clinical utility of NGS testing and the evidence supporting -or not- ultrasensitive genotyping over Sanger sequencing for routine HIV-1 diagnosis. Now that global HIV-1 eradication might be within our reach, making NGS accessible also to LMICs has become a priority. Reductions in sequencing costs, particularly in library preparation, and accessibility to low-cost, robust but simplified automated bioinformatic analyses of NGS data will remain essential to end the HIV-1 pandemic.
Collapse
Affiliation(s)
- Maria Casadellà
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Catalonia, Spain.
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Catalonia, Spain; Universitat de Vic - Central de Catalunya, Vic, Catalonia, Spain; HIV-1 Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| |
Collapse
|
121
|
Eriksen J, Albert J, Blaxhult A, Carlander C, Flamholc L, Gisslén M, Josephson F, Karlström O, Navér L, Svedhem V, Yilmaz A, Sönnerborg A. Antiretroviral treatment for HIV infection: Swedish recommendations 2016. Infect Dis (Lond) 2016; 49:1-34. [PMID: 27804313 DOI: 10.1080/23744235.2016.1247495] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The Swedish Medical Products Agency and the Swedish Reference Group for Antiviral Therapy (RAV) have jointly published recommendations for the treatment of HIV infection on seven previous occasions (2002, 2003, 2005, 2007, 2009, 2011 and 2014). In February 2016, an expert group under the guidance of RAV once more revised the guidelines. The most important updates in the present guidelines are as follows: Tenofovir alafenamide (TAF) has recently been registered. TAF has several advantages over tenofovir disoproxilfumarate (TDF) and is recommended instead of TDF in most cases. First-line treatment for previously untreated individuals includes dolutegravir, boosted darunavir or efavirenz with either abacavir/lamivudine or tenofovir (TDF/TAF)/emtricitabine. Pre-exposure prophylaxis (PrEP) is recommended for high-risk individuals. As in the case of the previous publication, recommendations are evidence-graded in accordance with the Oxford Centre for Evidence Based Medicine ( http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ ) ( Table 1 ). This document does not cover treatment of opportunistic infections and tumours. [Table: see text].
Collapse
Affiliation(s)
- Jaran Eriksen
- a Department of Clinical Pharmacology , Karolinska University Hospital and Division of Clinical Pharmacology and Department of Laboratory Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Jan Albert
- b Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet and Department of Clinical Microbiology, Karolinska University Hospital , Stockholm , Sweden
| | - Anders Blaxhult
- c Venhälsan, Södersjukhuset and The Swedish Agency for Public Health , Stockholm , Sweden
| | - Christina Carlander
- d Clinic of Infectious Diseases , Västmanland County Hospital , Västerås , Sweden
| | - Leo Flamholc
- e Department of Infectious Diseases , Skåne University Hospital , Malmö , Sweden
| | - Magnus Gisslén
- f Department of Infectious Diseases , Sahlgrenska Academy, University of Gothenburg , Sweden
| | | | - Olof Karlström
- h The Swedish Medical Products Agency, Uppsala and Department of Infectious Diseases , Karolinska University Hospital , Stockholm , Sweden
| | - Lars Navér
- i Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Department of Pediatrics , Karolinska University Hospital , Stockholm , Sweden
| | - Veronica Svedhem
- j Department of Infectious Diseases , Karolinska University Hospital and Division of Infectious Diseases and Department of Medicine Huddinge, Karolinska Institutet , Stockholm , Sweden
| | - Aylin Yilmaz
- k Department of Infectious Diseases , Sahlgrenska Academy, University of Gothenburg , Sweden
| | - Anders Sönnerborg
- l Division of Infectious Diseases, Department of Medicine Huddinge , Karolinska Institutet , Stockholm , Sweden ; All members of the Swedish Reference Group for Antiviral Therapy
| |
Collapse
|
122
|
Cunningham E, Chan YT, Aghaizu A, Bibby DF, Murphy G, Tosswill J, Harris RJ, Myers R, Field N, Delpech V, Cane PA, Gill ON, Mbisa JL. Enhanced surveillance of HIV-1 drug resistance in recently infected MSM in the UK. J Antimicrob Chemother 2016; 72:227-234. [PMID: 27742812 DOI: 10.1093/jac/dkw404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the prevalence of inferred low-frequency HIV-1 transmitted drug resistance (TDR) in MSM in the UK and its predicted effect on first-line therapy. METHODS The HIV-1 pol gene was amplified from 442 newly diagnosed MSM identified as likely recently infected by serological avidity testing in 2011-13. The PCR products were sequenced by next-generation sequencing with a mutation frequency threshold of >2% and TDR mutations defined according to the 2009 WHO surveillance drug resistance mutations list. RESULTS The majority (75.6%) were infected with subtype B and 6.6% with rare complex or unique recombinant forms. At a mutation frequency threshold of >20%, 7.2% (95% CI 5.0%-10.1%) of the sequences had TDR and this doubled to 15.8% (95% CI 12.6%-19.6%) at >2% mutation frequency (P < 0.0001). The majority (26/42, 62%) of low-frequency variants were against PIs. The most common mutations detected at >20% and 2%-20% mutation frequency differed for each drug class, these respectively being: L90M (n = 7) and M46IL (n = 10) for PIs; T215rev (n = 9) and D67GN (n = 4) for NRTIs; and K103N (n = 5) and G190E (n = 2) for NNRTIs. Combined TDR was more frequent in subtype B than non-B (OR = 0.38; 95% CI = 0.17-0.88; P = 0.024) and had minimal predicted effect on recommended first-line therapies. CONCLUSIONS The data suggest differences in the types of low-frequency compared with majority TDR variants that require a better understanding of the origins and clinical significance of low-frequency variants. This will better inform diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Emma Cunningham
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Yuen-Ting Chan
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Adamma Aghaizu
- HIV and STI Department, National Infection Service, Public Health England, London, UK
| | - David F Bibby
- Virus Reference Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Gary Murphy
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Jennifer Tosswill
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Ross J Harris
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, London, UK
| | - Richard Myers
- Virus Reference Department, National Infection Service, Public Health England, London, UK
| | - Nigel Field
- HIV and STI Department, National Infection Service, Public Health England, London, UK
| | - Valerie Delpech
- HIV and STI Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Patricia A Cane
- Virus Reference Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - O Noel Gill
- HIV and STI Department, National Infection Service, Public Health England, London, UK.,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| | - Jean L Mbisa
- Virus Reference Department, National Infection Service, Public Health England, London, UK .,National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Blood Borne and Sexually Transmitted Infections, University College London, London, UK
| |
Collapse
|
123
|
Mzingwane ML, Tiemessen CT, Richter KL, Mayaphi SH, Hunt G, Bowyer SM. Pre-treatment minority HIV-1 drug resistance mutations and long term virological outcomes: is prediction possible? Virol J 2016; 13:170. [PMID: 27733203 PMCID: PMC5062819 DOI: 10.1186/s12985-016-0628-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Although the use of highly active antiretroviral therapy in HIV positive individuals has proved to be effective in suppressing the virus to below detection limits of commonly used assays, virological failure associated with drug resistance is still a major challenge in some settings. The prevalence and effect of pre-treatment resistance associated variants on virological outcomes may also be underestimated because of reliance on conventional population sequencing data which excludes minority species. We investigated long term virological outcomes and the prevalence and pattern of pre-treatment minority drug resistance mutations in individuals initiating HAART at a local HIV clinic. Methods Patient’s records of viral load results and CD4 cell counts from routine treatment monitoring were used and additional pre-treatment blood samples for Sanger sequencing were obtained. A selection of pre-treatment samples from individuals who experienced virological failure were evaluated for minority resistance associated mutations to 1 % prevalence and compared to individuals who achieved viral suppression. Results At least one viral load result after 6 months or more of treatment was available for 65 out of 78 individuals followed for up to 33 months. Twenty (30.8 %) of the 65 individuals had detectable viremia and eight (12.3 %) of them had virological failure (viral load > 1000 RNA copies/ml) after at least 6 months of HAART. Viral suppression, achieved by month 8 to month 13, was followed by low level viremia in 10.8 % of patients and virological failure in one patient after month 20. There was potentially reduced activity to Emtricitabine or Tenofovir in three out of the eight cases in which minority drug resistance associated variants were investigated but detectable viremia occurred in one of these cases while the activity of Efavirenz was generally reduced in all the eight cases. Conclusions Early viral suppression was followed by low level viremia for some patients which may be an indication of failure to sustain viral suppression over time. The low level viremia may also be representing early stages of resistance development. The mutation patterns detected in the minority variants showed potential reduced drug sensitivity which highlights their potential to dominate after treatment initiation. Trial registration Not applicable. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0628-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M L Mzingwane
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa. .,Department of Pathology, National University of Science & Technology, Faculty of Medicine, P. O Box AC939, Ascot, Bulawayo, Zimbabwe.
| | - C T Tiemessen
- Centre for HIV and Sexually Transmitted Infections, National Institute of communicable Diseases, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - K L Richter
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Services Tswane Academic Division, Pretoria, South Africa
| | - S H Mayaphi
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Services Tswane Academic Division, Pretoria, South Africa
| | - G Hunt
- Centre for HIV and Sexually Transmitted Infections, National Institute of communicable Diseases, Johannesburg, South Africa
| | - S M Bowyer
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Services Tswane Academic Division, Pretoria, South Africa
| |
Collapse
|
124
|
Hamers RL, Paredes R. Next-generation sequencing and HIV drug resistance surveillance. Lancet HIV 2016; 3:e553-e554. [PMID: 27658866 DOI: 10.1016/s2352-3018(16)30151-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Raph L Hamers
- Departments of Global Health and Internal Medicine, Division of Infectious Diseases, Academic Medical Center of the University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands.
| | - Roger Paredes
- HIV Unit and irsiCaixa AIDS Research Institute, Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Universitat de Vic-UCC, Badalona, Catalonia, Spain
| |
Collapse
|
125
|
HIV-1 drug resistance and resistance testing. INFECTION GENETICS AND EVOLUTION 2016; 46:292-307. [PMID: 27587334 DOI: 10.1016/j.meegid.2016.08.031] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/23/2022]
Abstract
The global scale-up of antiretroviral (ARV) therapy (ART) has led to dramatic reductions in HIV-1 mortality and incidence. However, HIV drug resistance (HIVDR) poses a potential threat to the long-term success of ART and is emerging as a threat to the elimination of AIDS as a public health problem by 2030. In this review we describe the genetic mechanisms, epidemiology, and management of HIVDR at both individual and population levels across diverse economic and geographic settings. To describe the genetic mechanisms of HIVDR, we review the genetic barriers to resistance for the most commonly used ARVs and describe the extent of cross-resistance between them. To describe the epidemiology of HIVDR, we summarize the prevalence and patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) in both high-income and low- and middle-income countries (LMICs). We also review to two categories of HIVDR with important public health relevance: (i) pre-treatment drug resistance (PDR), a World Health Organization-recommended HIVDR surveillance metric and (ii) and pre-exposure prophylaxis (PrEP)-related drug resistance, a type of ADR that can impact clinical outcomes if present at the time of treatment initiation. To summarize the implications of HIVDR for patient management, we review the role of genotypic resistance testing and treatment practices in both high-income and LMIC settings. In high-income countries where drug resistance testing is part of routine care, such an understanding can help clinicians prevent virological failure and accumulation of further HIVDR on an individual level by selecting the most efficacious regimens for their patients. Although there is reduced access to diagnostic testing and to many ARVs in LMIC, understanding the scientific basis and clinical implications of HIVDR is useful in all regions in order to shape appropriate surveillance, inform treatment algorithms, and manage difficult cases.
Collapse
|
126
|
Rohr JK, Ive P, Horsburgh CR, Berhanu R, Shearer K, Maskew M, Long L, Sanne I, Bassett J, Ebrahim O, Fox MP. Marginal Structural Models to Assess Delays in Second-Line HIV Treatment Initiation in South Africa. PLoS One 2016; 11:e0161469. [PMID: 27548695 PMCID: PMC4993510 DOI: 10.1371/journal.pone.0161469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Background South African HIV treatment guidelines call for patients who fail first-line antiretroviral therapy (ART) to be switched to second-line ART, yet logistical issues, clinician decisions and patient preferences make delay in switching to second-line likely. We explore the impact of delaying second-line ART after first-line treatment failure on rates of death and virologic failure. Methods We include patients with documented virologic failure on first-line ART from an observational cohort of 9 South African clinics. We explored predictors of delayed second-line switch and used marginal structural models to analyze rates of death following first-line failure by categorical time to switch to second-line. Cox proportional hazards models were used to examine virologic failure on second-line ART among patients who switched to second-line. Results 5895 patients failed first-line ART, and 63% switched to second-line. Among patients who switched, median time to switch was 3.4 months (IQR: 1.1–8.7 months). Longer time to switch was associated with higher CD4 counts, lower viral loads and more missed visits prior to first-line failure. Worse outcomes were associated with delay in second-line switch among patients with a peak CD4 count on first-line treatment ≤100 cells/mm3. Among these patients, marginal structural models showed increased risk of death (adjusted HR for switch in 6–12 months vs. 0–1.5 months = 1.47 (95% CI: 0.94–2.29), and Cox models showed increased rates of second-line virologic failure despite the presence of survivor bias (adjusted HR for switch in 3–6 months vs. 0–1.5 months = 2.13 (95% CI: 1.01–4.47)). Conclusions Even small delays in switch to second-line ART were associated with increased death and second-line failure among patients with low CD4 counts on first-line. There is opportunity for healthcare providers to switch patients to second-line more quickly.
Collapse
Affiliation(s)
- Julia K. Rohr
- Center for Global Health & Development, Boston University, Boston, United States of America
- * E-mail:
| | - Prudence Ive
- Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C. Robert Horsburgh
- Center for Global Health & Development, Boston University, Boston, United States of America
- Department of Epidemiology, Boston University School of Public Health, Boston, United States of America
| | - Rebecca Berhanu
- Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kate Shearer
- Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mhairi Maskew
- Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lawrence Long
- Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian Sanne
- Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Right to Care, Johannesburg, South Africa
| | - Jean Bassett
- Witkoppen Health and Welfare Centre, Johannesburg, South Africa
| | - Osman Ebrahim
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Matthew P. Fox
- Center for Global Health & Development, Boston University, Boston, United States of America
- Department of Epidemiology, Boston University School of Public Health, Boston, United States of America
- Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
127
|
Darcissac E, Nacher M, Adriouch L, Berlioz-Arthaud A, Boukhari R, Couppié P, Djossou F, Donato D, El Guedj M, Lavergne A, Papot E, Pouliquen JF, Tanguy E, Vantilcke V, Lacoste V. HIV-1 Pol Gene Polymorphism and Antiretroviral Resistance Mutations in Treatment-Naive Adult Patients in French Guiana Between 2006 and 2012. AIDS Res Hum Retroviruses 2016; 32:801-11. [PMID: 27009561 DOI: 10.1089/aid.2016.0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little information is available on the molecular epidemiologic profile of HIV-1 in French Guiana, the French department with the highest HIV/AIDS incidence. To follow the evolution of HIV-1 diversity, we carried out a molecular analysis of HIV-1 isolates from 305 treatment-naive patients between 2006 and 2012. Protease and reverse-transcriptase sequences were obtained for subtype characterization, polymorphism analysis, and identification of drug resistance mutations. Of 305 HIV-1 strains, 95.1% were subtype B viruses. The overall prevalence of transmitted drug-resistance mutations (TDRMs) was 4.6% (14/305), ranging from 1.9% to 7.1% depending on the year. This study shows a low level of HIV-1 genetic diversity and a moderate prevalence of TDRMs with no evidence of an increasing trend over the study period. Nevertheless, the strong genetic polymorphism observed on both genes may be of concern for long-term treatment of people living with HIV-1 and thus deserves continuous monitoring.
Collapse
Affiliation(s)
- Edith Darcissac
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| | - Mathieu Nacher
- Hôpital de Jour Adultes, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
- Centre d'Investigation Clinique—Epidemiologie Clinique (CIC-EC) Antilles Guyane, INSERM CIE 802, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
| | - Leila Adriouch
- Hôpital de Jour Adultes, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
| | - Alain Berlioz-Arthaud
- Laboratoire de Biologie Médicale, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| | - Rachida Boukhari
- Service de Biologie Médicale, Centre Hospitalier de l'Ouest Guyanais “Franck Joly,” Saint Laurent du Maroni, Guyane Française
| | - Pierre Couppié
- Service de Dermatologie, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
| | - Felix Djossou
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| | - Myriam El Guedj
- Hôpital de Jour Adultes, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| | - Emmanuelle Papot
- Service de Dermatologie, Centre Hospitalier de Cayenne “Andrée Rosemon,” Cayenne Cedex, Guyane Française
| | - Jean-François Pouliquen
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| | - Edouard Tanguy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| | - Vincent Vantilcke
- Hôpital de Jour Adultes, Centre Hospitalier de l'Ouest Guyanais “Franck Joly,” Saint Laurent du Maroni, Guyane Française
| | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, Guyane Française
| |
Collapse
|
128
|
Singh D, McMillan J, Hilaire J, Gautam N, Palandri D, Alnouti Y, Gendelman HE, Edagwa B. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine (Lond) 2016; 11:1913-27. [PMID: 27456759 DOI: 10.2217/nnm-2016-0164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A myristoylated abacavir (ABC) prodrug was synthesized to extend drug half-life and bioavailability. METHODS Myristoylated ABC (MABC) was made by esterifying myristic acid to the drug's 5-hydroxy-cyclopentene group. Chemical composition, antiretroviral activity, cell uptake and retention and cellular trafficking of free MABC and poloxamer nanoformulations of MABC were assessed by proton nuclear magnetic resonance and tested in human monocyte-derived macrophages. Pharmacokinetics of ABC and nanoformulated MABC were evaluated after intramuscular injection into mice. RESULTS MABC antiretroviral activity in monocyte-derived macrophages was comparable to native drug. Encasement of MABC into poloxamer nanoparticles extended drug bioavailability for 2 weeks. CONCLUSION MABC synthesis and encasement in polymeric nanoformulations improved intracellular drug accumulation and demonstrate translational potential as part of a long-acting antiretroviral regimen.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
129
|
Dimitrov DT, Boily MC, Hallett TB, Albert J, Boucher C, Mellors JW, Pillay D, van de Vijver DAMC. How Much Do We Know about Drug Resistance Due to PrEP Use? Analysis of Experts' Opinion and Its Influence on the Projected Public Health Impact. PLoS One 2016; 11:e0158620. [PMID: 27391094 PMCID: PMC4938235 DOI: 10.1371/journal.pone.0158620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/20/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Randomized controlled trials reported that pre-exposure prophylaxis (PrEP) with tenofovir and emtricitabine rarely selects for drug resistance. However, drug resistance due to PrEP is not completely understood. In daily practice, PrEP will not be used under the well-controlled conditions available in the trials, suggesting that widespread use of PrEP can result in increased drug resistance. METHODS We surveyed expert virologists with questions about biological assumptions regarding drug resistance due to PrEP use. The influence of these assumptions on the prevalence of drug resistance and the fraction of HIV transmitted resistance was studied with a mathematical model. For comparability, 50% PrEP-coverage of and 90% per-act efficacy of PrEP in preventing HIV acquisition are assumed in all simulations. RESULTS Virologists disagreed on the following: the time until resistance emergence (range: 20-180 days) in infected PrEP users with breakthrough HIV infections; the efficacy of PrEP against drug-resistant HIV (25%-90%); and the likelihood of resistance acquisition upon transmission (10%-75%). These differences translate into projections of 0.6%- 1% and 3.5%-6% infected individuals with detectable resistance 10 years after introducing PrEP, assuming 100% and 50% adherence, respectively. The rate of resistance emergence following breakthrough HIV infection and the rate of resistance reversion after PrEP use is discontinued, were the factors identified as most influential on the expected resistance associated with PrEP. Importantly, 17-23% infected individuals could virologically fail treatment as a result of past PrEP use or transmitted resistance to PrEP with moderate adherence. CONCLUSIONS There is no broad consensus on quantification of key biological processes that underpin the emergence of PrEP-associated drug resistance. Despite this, the contribution of PrEP use to the prevalence of the detectable drug resistance is expected to be small. However, individuals who become infected despite the use of PrEP should be closely monitored due to higher risk of virological failure when initiating antiretroviral treatment in the future.
Collapse
Affiliation(s)
- Dobromir T. Dimitrov
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Marie-Claude Boily
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Timothy B. Hallett
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Boucher
- Department of Virology, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - John W. Mellors
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deenan Pillay
- Research Department of Infection, University College Medical School, London, United Kingdom
| | | |
Collapse
|
130
|
Presence of Minority Resistant Variants After Failure of a Tenofovir, Emtricitabine, and Rilpivirine Regimen. J Acquir Immune Defic Syndr 2016; 72:e43-5. [DOI: 10.1097/qai.0000000000000935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
131
|
Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure. Antimicrob Agents Chemother 2016; 60:3380-97. [PMID: 27001818 DOI: 10.1128/aac.00038-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/11/2016] [Indexed: 12/27/2022] Open
Abstract
Most patients failing antiretroviral treatment in Uganda continue to fail their treatment regimen even if a dominant drug-resistant HIV-1 genotype is not detected. In a recent retrospective study, we observed that approximately 30% of HIV-infected individuals in the Joint Clinical Research Centre (Kampala, Uganda) experienced virologic failure with a susceptible HIV-1 genotype based on standard Sanger sequencing. Selection of minority drug-resistant HIV-1 variants (not detectable by Sanger sequencing) under antiretroviral therapy pressure can lead to a shift in the viral quasispecies distribution, becoming dominant members of the virus population and eventually causing treatment failure. Here, we used a novel HIV-1 genotyping assay based on deep sequencing (DeepGen) to quantify low-level drug-resistant HIV-1 variants in 33 patients failing a first-line antiretroviral treatment regimen in the absence of drug-resistant mutations, as screened by standard population-based Sanger sequencing. Using this sensitive assay, we observed that 64% (21/33) of these individuals had low-frequency (or minority) drug-resistant variants in the intrapatient HIV-1 population, which correlated with treatment failure. Moreover, the presence of these minority HIV-1 variants was associated with higher intrapatient HIV-1 diversity, suggesting a dynamic selection or fading of drug-resistant HIV-1 variants from the viral quasispecies in the presence or absence of drug pressure, respectively. This study identified low-frequency HIV drug resistance mutations by deep sequencing in Ugandan patients failing antiretroviral treatment but lacking dominant drug resistance mutations as determined by Sanger sequencing methods. We showed that these low-abundance drug-resistant viruses could have significant consequences for clinical outcomes, especially if treatment is not modified based on a susceptible HIV-1 genotype by Sanger sequencing. Therefore, we propose to make clinical decisions using more sensitive methods to detect minority HIV-1 variants.
Collapse
|
132
|
Hawkins C, Ulenga N, Liu E, Aboud S, Mugusi F, Chalamilla G, Sando D, Aris E, Carpenter D, Fawzi W. HIV virological failure and drug resistance in a cohort of Tanzanian HIV-infected adults. J Antimicrob Chemother 2016; 71:1966-74. [PMID: 27076106 DOI: 10.1093/jac/dkw051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES There are few data on ART failure rates and drug resistance from Tanzania, where there is a wide diversity of non-B HIV subtypes. We assessed rates and predictors of virological failure in HIV-infected Tanzanians and describe drug resistance patterns in a subgroup of these patients. METHODS ART-naive, HIV-1-infected adults enrolled in a randomized controlled trial between November 2006 and 2008 and on ≥24 weeks of first-line NNRTI-containing ART were included. Population-based genotyping of HIV-1 protease and reverse transcriptase was performed on stored plasma from patients with virological failure (viral load >1000 copies/mL at ≥24 weeks of ART) and at baseline, where available. RESULTS A total of 2403 patients [median (IQR) age 37 (32-43) years; 70% female] were studied. The median (IQR) baseline CD4+ T cell count was 128 (62-190) cells/μL. Predominant HIV subtypes were A, C and D (92.2%). The overall rate of virological failure was 14.9% (95% CI 13.2%-16.1%). In adjusted analyses, significant predictors of virological failure were lower CD4+ T cell count (P = 0.01) and non-adherence to ART (P < 0.01). Drug resistance mutations were present in 87/115 samples (75.7%); the most common were M184V/I (52.2%) and K103N (35%). Thymidine analogue mutations were uncommon (5.2%). The prevalence of mutations in 45 samples pre-ART was 22%. CONCLUSIONS High levels of early ART failure and drug resistance were observed among Tanzanian HIV-1-infected adults enrolled in a well-monitored study. Initiating treatment early and ensuring optimal adherence are vital for the success and durability of first-line ART in these settings.
Collapse
Affiliation(s)
- Claudia Hawkins
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nzovu Ulenga
- Management and Development for Health, Dar es Salaam, Tanzania Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Enju Liu
- Departments of Nutrition, Epidemiology, Biostatistics, and Global Health and Population, Harvard School of Public Health, Boston, MA, USA
| | - Said Aboud
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ferdinand Mugusi
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - David Sando
- Management and Development for Health, Dar es Salaam, Tanzania
| | - Eric Aris
- Management and Development for Health, Dar es Salaam, Tanzania
| | | | - Wafaie Fawzi
- Department of Global Health and Population, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
133
|
Hughes P, Deng W, Olson SC, Coombs RW, Chung MH, Frenkel LM. Short Communication: Analysis of Minor Populations of Human Immunodeficiency Virus by Primer Identification and Insertion-Deletion and Carry Forward Correction Pipelines. AIDS Res Hum Retroviruses 2016; 32:296-302. [PMID: 26537573 DOI: 10.1089/aid.2015.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate analysis of minor populations of drug-resistant HIV requires analysis of a sufficient number of viral templates. We assessed the effect of experimental conditions on the analysis of HIV pol 454 pyrosequences generated from plasma using (1) the "Insertion-deletion (indel) and Carry Forward Correction" (ICC) pipeline, which clusters sequence reads using a nonsubstitution approach and can correct for indels and carry forward errors, and (2) the "Primer Identification (ID)" method, which facilitates construction of a consensus sequence to correct for sequencing errors and allelic skewing. The Primer ID and ICC methods produced similar estimates of viral diversity, but differed in the number of sequence variants generated. Sequence preparation for ICC was comparably simple, but was limited by an inability to assess the number of templates analyzed and allelic skewing. The more costly Primer ID method corrected for allelic skewing and provided the number of viral templates analyzed, which revealed that amplifiable HIV templates varied across specimens and did not correlate with clinical viral load. This latter observation highlights the value of the Primer ID method, which by determining the number of templates amplified, enables more accurate assessment of minority species in the virus population, which may be relevant to prescribing effective antiretroviral therapy.
Collapse
Affiliation(s)
- Paul Hughes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Scott C. Olson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Robert W. Coombs
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Michael H. Chung
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
134
|
HIV Drug Resistance Mutations (DRMs) Detected by Deep Sequencing in Virologic Failure Subjects on Therapy from Hunan Province, China. PLoS One 2016; 11:e0149215. [PMID: 26895182 PMCID: PMC4760947 DOI: 10.1371/journal.pone.0149215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/28/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Determine HIV drug resistance mutations (DRMs) prevalence at low and high levels in ART-experienced patients experiencing virologic failure (VF). Methods 29 subjects from 18 counties in Hunan Province that experienced VF were evaluated for the prevalence of DRMs (Stanford DRMs with an algorithm value ≥15, include low-, intermediate and high-level resistance) by both Sanger sequencing (SS) and deep sequencing (DS) to 1% frequency levels. Results DS was performed on samples from 29 ART-experienced subjects; the median viral load 4.95×104 c/ml; 82.76% subtype CRF01_AE. 58 DRMs were detected by DS. 18 DRMs were detected by SS. Of the 58 mutations detected by DS, 40 were at levels <20% frequency (26 NNRTI, 12 NRTI and 2 PI) and the majority of these 95.00% (38/40) were not detected by standard genotyping. Of these 40 low-level DRMs, 16 (40%) were detected at frequency levels of 1–4% and 24 (60%) at levels of 5–19%. SS detected 15 of 17 (88.24%) DRMs at levels ≥ 20% that were detected by DS. The only variable associated with the detection of DRMs by DS was ART adherence (missed doses in the prior 7 days); all patients that reported missing a dose in the last 7 days had DRMs detected by DS. Conclusions DS of VF samples from treatment experienced subjects infected with primarily AE subtype frequently identified Stanford HIVdb NRTI and NNRTI resistance mutations with an algorithm value 15. Low frequency level resistant variants detected by DS were frequently missed by standard genotyping in VF specimens from antiretroviral-experienced subjects.
Collapse
|
135
|
Smith SJ, Pauly GT, Akram A, Melody K, Rai G, Maloney DJ, Ambrose Z, Thomas CJ, Schneider JT, Hughes SH. Rilpivirine analogs potently inhibit drug-resistant HIV-1 mutants. Retrovirology 2016; 13:11. [PMID: 26880034 PMCID: PMC4754833 DOI: 10.1186/s12977-016-0244-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a class of antiretroviral compounds that bind in an allosteric binding pocket in HIV-1 RT, located about 10 Å from the polymerase active site. Binding of an NNRTI causes structural changes that perturb the alignment of the primer terminus and polymerase active site, preventing viral DNA synthesis. Rilpivirine (RPV) is the most recent NNRTI approved by the FDA, but like all other HIV-1 drugs, suboptimal treatment can lead to the development of resistance. To generate better compounds that could be added to the current HIV-1 drug armamentarium, we have developed several RPV analogs to combat viral variants that are resistant to the available NNRTIs. Results Using a single-round infection assay, we identified several RPV analogs that potently inhibited a broad panel of NNRTI resistant mutants. Additionally, we determined that several resistant mutants selected by either RPV or Doravirine (DOR) caused only a small increase in susceptibility to the most promising RPV analogs. Conclusions The antiviral data suggested that there are RPV analogs that could be candidates for further development as NNRTIs, and one of the most promising compounds was modeled in the NNRTI binding pocket. This model can be used to explain why this compound is broadly effective against the panel of NNRTI resistance mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Gary T Pauly
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Aamir Akram
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Kevin Melody
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Zandrea Ambrose
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Joel T Schneider
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
136
|
St. John EP, Simen BB, Turenchalk GS, Braverman MS, Abbate I, Aerssens J, Bouchez O, Gabriel C, Izopet J, Meixenberger K, Di Giallonardo F, Schlapbach R, Paredes R, Sakwa J, Schmitz-Agheguian GG, Thielen A, Victor M, Metzner KJ, Däumer MP. A Follow-Up of the Multicenter Collaborative Study on HIV-1 Drug Resistance and Tropism Testing Using 454 Ultra Deep Pyrosequencing. PLoS One 2016; 11:e0146687. [PMID: 26756901 PMCID: PMC4710461 DOI: 10.1371/journal.pone.0146687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance. METHODS A multicenter study was conducted to validate an updated assay design for 454 Life Sciences' GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity. The study included 30 HIV-1 subtype B and 6 subtype non-B samples with viral titers (VT) of 3,940-447,400 copies/mL, two dilution series (52,129-1,340 and 25,130-734 copies/mL), and triplicate samples. Amplicons spanning PR codons 10-99, RT codons 1-251 and the entire V3 region were generated using barcoded primers. Analysis was performed using the GS Amplicon Variant Analyzer and geno2pheno for tropism. For comparison, population sequencing was performed using the ViroSeq HIV-1 genotyping system. RESULTS The median sequencing depth across the 11 sites was 1,829 reads per position for RTP (IQR 592-3,488) and 2,410 for V3 (IQR 786-3,695). 10 preselected drug resistant variants were measured across sites and showed high inter-laboratory correlation across all sites with data (P<0.001). The triplicate samples of a plasmid mixture confirmed the high inter-laboratory consistency (mean% ± stdev: 4.6 ±0.5, 4.8 ±0.4, 4.9 ±0.3) and revealed good intra-laboratory consistency (mean% range ± stdev range: 4.2-5.2 ± 0.04-0.65). In the two dilutions series, no variants >20% were missed, variants 2-10% were detected at most sites (even at low VT), and variants 1-2% were detected by some sites. All mutations detected by population sequencing were also detected by UDS. CONCLUSIONS This assay design results in an accurate and reproducible approach to analyze HIV-1 mutant spectra, even at variant frequencies well below those routinely detectable by population sequencing.
Collapse
Affiliation(s)
| | - Birgitte B. Simen
- 454 Life Sciences, A Roche Company, Branford, CT, United States of America
| | | | | | - Isabella Abbate
- National Institute for Infectious Diseases “L. Spallanzani, Rome, Italy
| | - Jeroen Aerssens
- Janssen Infectious Diseases—Diagnostics bvba, Beerse, Belgium
| | - Olivier Bouchez
- Plateforme Génomique Toulouse/Laboratoire Génétique Cellulaire, Toulouse, France
| | | | | | | | - Francesca Di Giallonardo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Roger Paredes
- Institut de Recerca de la SIDA–IrsiCaixa, Badalona, Spain
| | - James Sakwa
- Technology Innovation Agency-National Genomics Platform, Durban, South Africa
| | | | | | | | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | | | | |
Collapse
|
137
|
Quantifying Next Generation Sequencing Sample Pre-Processing Bias in HIV-1 Complete Genome Sequencing. Viruses 2016; 8:v8010012. [PMID: 26751471 PMCID: PMC4728572 DOI: 10.3390/v8010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Genetic analyses play a central role in infectious disease research. Massively parallelized “mechanical cloning” and sequencing technologies were quickly adopted by HIV researchers in order to broaden the understanding of the clinical importance of minor drug-resistant variants. These efforts have, however, remained largely limited to small genomic regions. The growing need to monitor multiple genome regions for drug resistance testing, as well as the obvious benefit for studying evolutionary and epidemic processes makes complete genome sequencing an important goal in viral research. In addition, a major drawback for NGS applications to RNA viruses is the need for large quantities of input DNA. Here, we use a generic overlapping amplicon-based near full-genome amplification protocol to compare low-input enzymatic fragmentation (Nextera™) with conventional mechanical shearing for Roche 454 sequencing. We find that the fragmentation method has only a modest impact on the characterization of the population composition and that for reliable results, the variation introduced at all steps of the procedure—from nucleic acid extraction to sequencing—should be taken into account, a finding that is also relevant for NGS technologies that are now more commonly used. Furthermore, by applying our protocol to deep sequence a number of pre-therapy plasma and PBMC samples, we illustrate the potential benefits of a near complete genome sequencing approach in routine genotyping.
Collapse
|
138
|
Bellecave P, Recordon-Pinson P, Fleury H. Evaluation of Automatic Analysis of Ultradeep Pyrosequencing Raw Data to Determine Percentages of HIV Resistance Mutations in Patients Followed-Up in Hospital. AIDS Res Hum Retroviruses 2016; 32:85-92. [PMID: 26529549 DOI: 10.1089/aid.2015.0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A major obstacle to using next generation sequencing (NGS) technology in clinical routine practice is reliable data analysis. Thousands of sequences need to be aligned and validated, to exclude sequencing artifacts and generate accurate results. We compared two analysis pipelines for Roche 454 ultradeep pyrosequencing (UDPS) raw data generated from HIV-1 clinical samples: a commercial and fully automated Web-based software NGS HIV-1 Module (SmartGene, Zug, Switzerland) vs. the Amplicon Variant Analyzer software (AVA, 454 Life Sciences; Roche). Results were also compared to those obtained with Sanger sequencing. HIV-1 reverse transcriptase and protease genes from 34 plasma samples were submitted to Sanger sequencing and GS Junior UDPS. Raw UDPS data (sff files) from all samples were analyzed with AVA 2.7 software plus manual review of the alignments and the fully automated SmartGene NGS HIV-1 Module prototype (SMG). Results obtained with both analysis pipelines showed good correlation (85.0%). Divergent results were mainly observed at homopolymer positions, such as K101, where the frame-aware alignment and error corrections of the automated approach were more efficient and more accurate, both in terms of detecting and quantifying drug resistance mutations. Our study shows that NGS data can easily be analyzed via a fully automated analysis pipeline, here the SmartGene NGS HIV-1 Module, thus minimizing the need for manual review of alignments by the user, otherwise essential to ensure accurate results. Such automated analysis pipelines may facilitate the adoption of NGS platforms in the routine clinical laboratory.
Collapse
Affiliation(s)
- Pantxika Bellecave
- CNRS-UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université Bordeaux Segalen, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux (CHU), Laboratoire de Virologie, Bordeaux, France
| | - Patricia Recordon-Pinson
- CNRS-UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université Bordeaux Segalen, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux (CHU), Laboratoire de Virologie, Bordeaux, France
| | - Hervé Fleury
- CNRS-UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université Bordeaux Segalen, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux (CHU), Laboratoire de Virologie, Bordeaux, France
| |
Collapse
|
139
|
Porter DP, Daeumer M, Thielen A, Chang S, Martin R, Cohen C, Miller MD, White KL. Emergent HIV-1 Drug Resistance Mutations Were Not Present at Low-Frequency at Baseline in Non-Nucleoside Reverse Transcriptase Inhibitor-Treated Subjects in the STaR Study. Viruses 2015; 7:6360-70. [PMID: 26690199 PMCID: PMC4690866 DOI: 10.3390/v7122943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023] Open
Abstract
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.
Collapse
Affiliation(s)
| | - Martin Daeumer
- Seq-IT GmbH & Co. KG, Pfaffplatz 10, 67655 Kaiserslautern, Germany.
| | | | - Silvia Chang
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Ross Martin
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Cal Cohen
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Michael D Miller
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| | - Kirsten L White
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA.
| |
Collapse
|
140
|
Cheriro W, Kiptoo M, Kikuvi G, Mining S, Emonyi W, Songok E. High Prevalence of HIV Low Abundance Drug-Resistant Variants in a Treatment-Naive Population in North Rift Kenya. AIDS Res Hum Retroviruses 2015; 31:1274-7. [PMID: 26414430 DOI: 10.1089/aid.2015.0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The advent of antiretroviral treatment (ART) has resulted in a dramatic reduction in AIDS-related morbidity and mortality. However, the emergence and spread of antiretroviral drug resistance (DR) threaten to negatively impact treatment regimens and compromise efforts to control the epidemic. It is recommended that surveillance of drug resistance occur in conjunction with scale-up efforts to ensure that appropriate first-line therapy is offered relative to the resistance that exists. However, standard resistance testing methods used in Sub-Saharan Africa rely on techniques that do not include low abundance DR variants (LADRVs) that have been documented to contribute to treatment failure. The use of next generation sequencing (NGS) has been shown to be more sensitive to LADRVS. We have carried out a preliminary investigation using NGS to determine the prevalence of LDRVS among a drug-naive population in North Rift Kenya. Antiretroviral-naive patients attending a care clinic in North Rift Kenya were requested to provide and with consent provided blood samples for DR analysis. DNA was extracted and amplified and nested PCR was conducted on the pol RT region using primers tagged with multiplex identifiers (MID). Resulting PCR amplicons were purified, quantified, and pyrosequenced using a GS FLX Titanium PicoTiterPlate (Roche). Valid pyrosequencing reads were aligned with HXB-2 and the frequency and distribution of nucleotide and amino acid changes were determined using an in-house Perl script. DR mutations were identified using the IAS-USA HIV DR mutation database. Sixty samples were successfully sequenced of which 26 were subtype A, 9 were subtype D, 2 were subtype C, and the remaining were recombinants. Forty-six (76.6%) had at least one drug resistance mutation, with 25 (41.6%) indicated as major and the remaining 21 (35%) indicated as minor. The most prevalent mutation was NRTI position K219Q/R (11/46, 24%) followed by NRTI M184V (5/46, 11%) and NNRTI K103N (4/46, 9%). Our use of NGS technology revealed a high prevalence of LADRVs among drug-naive populations in Kenya, a region with predominantly non-B subtypes. The impact of these mutations on the clinical outcome of ART can be ascertained only through long-term follow-up.
Collapse
Affiliation(s)
- Winfrida Cheriro
- 1 Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
- 2 Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Michael Kiptoo
- 1 Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
- 3 Kenya Medical Research Institute, Nairobi, Kenya
| | - Gideon Kikuvi
- 1 Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Simeon Mining
- 4 School of Medicine, Moi University, Eldoret, Kenya
| | | | - Elijah Songok
- 1 Institute of Tropical Medicine and Infectious Diseases, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
- 3 Kenya Medical Research Institute, Nairobi, Kenya
- 5 Department of Medical Microbiology, University of Manitoba, Winnipeg, MN, Canada
| |
Collapse
|
141
|
Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism. Sci Rep 2015; 5:16944. [PMID: 26585833 PMCID: PMC4653658 DOI: 10.1038/srep16944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/22/2015] [Indexed: 11/11/2022] Open
Abstract
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.
Collapse
|
142
|
Russo G, Paganotti GM, Soeria-Atmadja S, Haverkamp M, Ramogola-Masire D, Vullo V, Gustafsson LL. Pharmacogenetics of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in resource-limited settings: Influence on antiretroviral therapy response and concomitant anti-tubercular, antimalarial and contraceptive treatments. INFECTION GENETICS AND EVOLUTION 2015; 37:192-207. [PMID: 26602158 DOI: 10.1016/j.meegid.2015.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023]
Abstract
The burden of human immunodeficiency virus (HIV) is mainly concentrated to resources-limited countries where the response to available antiretroviral therapy is often limited by the occurrence of toxicity or by the emergence of HIV drug resistance. Efavirenz and nevirapine are the antiretroviral drugs most prescribed in resources-limited countries as part of antiretroviral combination therapy. Their metabolism and conjugation are largely influenced by enzymatic genetic polymorphisms. The genetic variability of their metabolism could be associated to different metabolic phenotypes causing reduced patients' adherence because of toxicity or drug-drug interactions with concomitant therapies. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to efavirenz and nevirapine, the influence of concomitant anti-tubercular, anti-malarial or contraceptive treatments, and the impact of human genetic variation and drug-drug interaction on the virologic and immunologic response to antiretroviral therapy in resources-limited countries.
Collapse
Affiliation(s)
- Gianluca Russo
- Department of Public Health and Infectious Diseases, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana; Medical Education Partnership Laboratory, c/o Faculty of Medicine, University of Botswana, Pvt Bag 00713, Gaborone, Botswana.
| | - Sandra Soeria-Atmadja
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, B57, SE-141 86, Stockholm, Sweden
| | - Miriam Haverkamp
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana
| | - Doreen Ramogola-Masire
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157 ACH, Gaborone, Botswana
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lars Lennart Gustafsson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| |
Collapse
|
143
|
Tambuyzer L, Thys K, Hoogstoel A, Nijs S, Tomaka F, Opsomer M, De Meyer S, Vingerhoets J. Assessment of etravirine resistance in HIV-1-infected paediatric patients using population and deep sequencing: final results of the PIANO study. Antivir Ther 2015; 21:317-27. [PMID: 26566161 DOI: 10.3851/imp3011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND We assessed etravirine resistance in treatment-experienced, HIV-1-infected children (n=41)/adolescents (n=60) who received twice-daily etravirine 5.2 mg/kg and a background regimen (boosted protease inhibitor plus nucleoside/nucleotide reverse transcriptase inhibitors, optional enfuvirtide/raltegravir) in a Phase II, open-label, multicentre trial (PIANO). METHODS In addition to phenotypes, viral genotypes were assessed by population and deep sequencing (PS and DS) in virological failures (VFs; baseline and end point) and responders (baseline). Minority resistance-associated mutations (RAMs) were defined as those with frequencies above 1% and not detected with PS. RESULTS By week 48, 41/101 (40.6%) patients experienced VF; 17/41 (41.5%) VFs and 22/54 (40.8%) responders had ≥1 baseline etravirine RAM by PS, mainly A98G, K101E, V106I and G190A. Baseline minority etravirine RAMs (n) were detected in 8/40 VFs (V90I [2], A98G [1], L100I [1], V106I [1], E138G [1] and Y181C [2]) and 5/38 responders (V90I [3], A98G [1], V106I [1] and E138G [1]). The most frequent emerging non-nucleoside reverse transcriptase inhibitor RAMs detected by PS (≥3 VFs; n) were the etravirine RAMs Y181C (8), V90I (3), L100I (3) and E138A (3). In 15 of 29 (51.7%) VFs with baseline DS/PS and end point PS data, ≥1 emerging etravirine RAM was detected by PS, which was not detected at baseline by DS in most cases (12/15 [80.0%]). In 10/26 (38.5%) VFs with baseline/end point DS data, ≥1 additional emerging minority etravirine RAM was detected. CONCLUSIONS Patterns of etravirine resistance in adults, adolescents and children experiencing VF are similar. The presence of minority etravirine RAMs at baseline was not consistently associated with treatment failure. ClinicalTrials.gov: NCT00665847.
Collapse
|
144
|
Identification of minority resistance mutations in the HIV-1 integrase coding region using next generation sequencing. J Clin Virol 2015; 73:95-100. [PMID: 26587787 DOI: 10.1016/j.jcv.2015.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The current widely applied standard method to screen for HIV-1 genotypic resistance is based on Sanger population sequencing (Sseq), which does not allow for the identification of minority variants (MVs) below the limit of detection for the Sseq-method in patients receiving integrase strand-transfer inhibitors (INSTI). Next generation sequencing (NGS) has facilitated the detection of MVs at a much deeper level than Sseq. OBJECTIVES Here, we compared Illumina MiSeq and Sseq approaches to evaluate the detection of MVs involved in resistance to the three commonly used INSTI: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). STUDY DESIGN NGS and Sseq were used to analyze RT-PCR products of the HIV-1 integrase coding region from six patients and in serial samples from two patients. NGS sequences were assembled and analyzed using the low frequency variant detection (LFVDT) tool in CLC genomic workbench. RESULTS Sseq detected INSTI resistance and accessory mutations in three of the patients (called INSTI Res+), while no resistance or accessory mutations were detected in the remaining three patients (called INSTI Res-). Additional INSTI resistance and/or accessory mutations were detected by NGS analysis of integrase sequences from all three INSTI Res+ and one INSTI Res- patient. CONCLUSION Our observations suggested that NGS demonstrated a higher sensitivity than sSEQ in the identification of INSTI relevant MVs both in patients at treatment baseline and in patients receiving INSTI therapy. Thus NGS can be a valuable tool in monitoring of antiretroviral minority resistance in patients receiving INSTI therapy.
Collapse
|
145
|
Baxter JD, Dunn D, White E, Sharma S, Geretti AM, Kozal MJ, Johnson MA, Jacoby S, Llibre JM, Lundgren J. Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med 2015; 16 Suppl 1:77-87. [PMID: 25711326 DOI: 10.1111/hiv.12236] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVES HIV-1 transmitted drug resistance (TDR) in treatment-naïve individuals is a well-described phenomenon. Baseline genotypic resistance testing is considered standard of care in most developed areas of the world. The aim of this analysis was to characterize HIV-1 TDR and the use of resistance testing in START trial participants. METHODS In the Strategic Timing of AntiRetroviral Treatment (START) trial, baseline genotypic resistance testing results were collected at study entry and analysed centrally to determine the prevalence of TDR in the study population. Resistance was based on a modified 2009 World Health Organization definition to reflect newer resistance mutations. RESULTS Baseline resistance testing was available in 1946 study participants. Higher rates of testing occurred in Europe (86.7%), the USA (81.3%) and Australia (89.9%) as compared with Asia (22.2%), South America (1.8%) and Africa (0.1%). The overall prevalence of TDR was 10.1%, more commonly to nonnucleoside reverse transcriptase inhibitors (4.5%) and nucleoside reverse transcriptase inhibitors (4%) compared with protease inhibitors (2.8%). The most frequent TDR mutations observed were M41L, D67N/G/E, T215F/Y/I/S/C/D/E/V/N, 219Q/E/N/R, K103N/S, and G190A/S/E in reverse transcriptase, and M46I/L and L90M in protease. By country, the prevalence of TDR was highest in Australia (17.5%), France (16.7%), the USA (12.6%) and Spain (12.6%). No participant characteristics were identified as predictors of the presence of TDR. CONCLUSIONS START participants enrolled in resource-rich areas of the world were more likely to have baseline resistance testing. In Europe, the USA and Australia, TDR prevalence rates varied by country.
Collapse
Affiliation(s)
- J D Baxter
- Cooper University Hospital/Cooper Medical School of Rowan University, Camden, NJ, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Sluis-Cremer N, Wainberg MA, Schinazi RF. Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiol 2015; 10:1773-82. [PMID: 26517190 DOI: 10.2217/fmb.15.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitors that target the retroviral enzyme reverse transcriptase (RT) have played an indispensable role in the treatment and prevention of HIV-1 infection. They can be grouped into two distinct therapeutic groups, namely the nucleoside and nucleotide RT inhibitors (NRTIs), and the non-nucleoside RT inhibitors (NNRTIs). NRTIs form the backbones of most first- and second-line antiretroviral therapy (ART) regimens formulated for the treatment of HIV-1 infection. They are also used to prevent mother-to-child transmission, and as pre-exposure prophylaxis in individuals at risk of HIV-1 infection. The NNRTIs nevirapine (NVP), efavirenz and rilpivirine also used to form part of first-line ART regimens, although this is no longer recommended, while etravirine can be used in salvage ART regimens. A single-dose of NVP administered to both mother and child has routinely been used in resource-limited settings to reduce the rate of HIV-1 transmission. Unfortunately, the development of HIV-1 resistance to RT inhibitors can compromise the efficacy of these antiviral drugs in both the treatment and prevention arenas. Here, we provide an up-to-date review on drug-resistance mutations in HIV-1 RT, and discuss their cross-resistance profiles, molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Department of Medicine S817 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Mark A Wainberg
- McGill University AIDS Center, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Health Sciences Research Building, Room E-418, 1760 Haygood Drive, Atlanta, GA 30322, USA.,Veterans Affairs Medical Center, 1670 Clairmont Rd, Atlanta, GA 30033, USA
| |
Collapse
|
147
|
Contribution of APOBEC3G/F activity to the development of low-abundance drug-resistant human immunodeficiency virus type 1 variants. Clin Microbiol Infect 2015; 22:191-200. [PMID: 26482266 DOI: 10.1016/j.cmi.2015.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/07/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022]
Abstract
Plasma drug-resistant minority human immunodeficiency virus type 1 variants (DRMVs) increase the risk of virological failure to first-line non-nucleoside reverse transcriptase inhibitor antiretroviral therapy (ART). The origin of DRMVs in ART-naive patients, however, remains unclear. In a large pan-European case-control study investigating the clinical relevance of pre-existing DRMVs using 454 pyrosequencing, the six most prevalent plasma DRMVs detected corresponded to G-to-A nucleotide mutations (V90I, V106I, V108I, E138K, M184I and M230I). Here, we evaluated if such DRMVs could have emerged from apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3G/F (APOBEC3G/F) activity. Out of 236 ART-naive subjects evaluated, APOBEC3G/F hypermutation signatures were detected in plasma viruses of 14 (5.9%) individuals. Samples with minority E138K, M184I, and M230I mutations, but not those with V90I, V106I or V108I, were significantly associated with APOBEC3G/F activity (Fisher's P < 0.005), defined as the presence of > 0.5% of sample sequences with an APOBEC3G/F signature. Mutations E138K, M184I and M230I co-occurred in the same sequence as APOBEC3G/F signatures in 3/9 (33%), 5/11 (45%) and 4/8 (50%) of samples, respectively; such linkage was not found for V90I, V106I or V108I. In-frame STOP codons were observed in 1.5% of all clonal sequences; 14.8% of them co-occurred with APOBEC3G/F signatures. APOBEC3G/F-associated E138K, M184I and M230I appeared within clonal sequences containing in-frame STOP codons in 2/3 (66%), 5/5 (100%) and 4/4 (100%) of the samples. In a re-analysis of the parent case control study, the presence of APOBEC3G/F signatures was not associated with virological failure. In conclusion, the contribution of APOBEC3G/F editing to the development of DRMVs is very limited and does not affect the efficacy of non-nucleoside reverse transcriptase inhibitor ART.
Collapse
|
148
|
Van Eygen V, Thys K, Van Hove C, Rimsky LT, De Meyer S, Aerssens J, Picchio G, Vingerhoets J. Deep sequencing analysis of HIV-1 reverse transcriptase at baseline and time of failure in patients receiving rilpivirine in the phase III studies ECHO and THRIVE. J Med Virol 2015; 88:798-806. [PMID: 26412111 DOI: 10.1002/jmv.24395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 11/10/2022]
Abstract
Minority variants (1.0-25.0%) were evaluated by deep sequencing (DS) at baseline and virological failure (VF) in a selection of antiretroviral treatment-naïve, HIV-1-infected patients from the rilpivirine ECHO/THRIVE phase III studies. Linkage between frequently emerging resistance-associated mutations (RAMs) was determined. DS (llIumina®) and population sequencing (PS) results were available at baseline for 47 VFs and time of failure for 48 VFs; and at baseline for 49 responders matched for baseline characteristics. Minority mutations were accurately detected at frequencies down to 1.2% of the HIV-1 quasispecies. No baseline minority rilpivirine RAMs were detected in VFs; one responder carried 1.9% F227C. Baseline minority mutations associated with resistance to other non-nucleoside reverse transcriptase inhibitors (NNRTIs) were detected in 8/47 VFs (17.0%) and 7/49 responders (14.3%). Baseline minority nucleoside/nucleotide reverse transcriptase inhibitor (NRTI) RAMs M184V and L210W were each detected in one VF (none in responders). At failure, two patients without NNRTI RAMs by PS carried minority rilpivirine RAMs K101E and/or E138K; and five additional patients carried other minority NNRTI RAMs V90I, V106I, V179I, V189I, and Y188H. Overall at failure, minority NNRTI RAMs and NRTI RAMs were found in 29/48 (60.4%) and 16/48 VFs (33.3%), respectively. Linkage analysis showed that E138K and K101E were usually not observed on the same viral genome. In conclusion, baseline minority rilpivirine RAMs and other NNRTI/NRTI RAMs were uncommon in the rilpivirine arm of the ECHO and THRIVE studies. DS at failure showed emerging NNRTI resistant minority variants in seven rilpivirine VFs who had no detectable NNRTI RAMs by PS.
Collapse
Affiliation(s)
| | - Kim Thys
- Janssen Infectious Diseases BVBA, Beerse, Belgium
| | | | | | | | | | - Gaston Picchio
- Janssen Research and Development, Titusville, New Jersey
| | | |
Collapse
|
149
|
HIV-1 genotypic drug resistance testing: digging deep, reaching wide? Curr Opin Virol 2015; 14:16-23. [DOI: 10.1016/j.coviro.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022]
|
150
|
Gega A, Kozal MJ, Chiarella J, Lee E, Peterson J, Hecht FM, Liegler T, St John EP, Simen BB, Price RW, Spudich SS. Deep sequencing of HIV-1 variants from paired plasma and cerebrospinal fluid during primary HIV infection. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30926-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|