101
|
Tao L, Dong Z, Zannis-Hadjopoulos M, Price GB. Immortalization of human WI38 cells is associated with differential activation of the c-myc origins. J Cell Biochem 2001; 82:522-34. [PMID: 11500928 DOI: 10.1002/jcb.1173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To study the possible relationships between origin activities and cellular processes leading to malignancy, we used an isogenic system of human embryo lung fibroblast cells WI38 and a SV40-transformed variant, WI38 VA13 2RA (WI38(SV40)). We found that the activities of all initiation sites at the c-myc locus were approximately two-fold as high in WI38(SV40) cells as in WI38 cells. Thus, higher initiation frequency of origins at certain loci is induced with cell immortalization, one of the steps in the multi-step process leading to malignancy. We measured the activities of the four c-myc promoters P0, P1, P2, and P3 with nuclear runon assay in the two cell lines in order to detect potential individual promoter changes that may be also associated with immortalization by SV40 virus. The results show that the activities of the promoters P0, P1, and P3 did not significantly change, but the activity of the major promoter P2 in WI38(SV40) cells was about 7.5- to 8.0-fold as high as that in WI38 cells. The increased activity of promoter P2, although approximately 600 bp downstream of one of the major DNA replication initiation sites, had no preferential influence on the major sites of origin activity. Since the distribution of nascent strand abundance was not significantly altered, binding of transcription factors does not seem to facilitate the assembly of pre-replication complex (pre-RC) or otherwise preferentially alter the activities of the DNA replication proteins at this major initiation site.
Collapse
Affiliation(s)
- L Tao
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
102
|
Takahashi T, Masukata H. Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins. Genes Cells 2001; 6:837-49. [PMID: 11683912 DOI: 10.1046/j.1365-2443.2001.00468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Eukaryotic DNA replication is initiated from distinct regions on the chromosome. However, the mechanism for recognition of replication origins is not known for most eukaryotes. In fission yeast, replication origins are isolated as autonomously replicating sequences (ARSs). Multiple adenine/thymine clusters are essential for replication, but no short consensus sequences are found. In this paper, we examined the interaction of adenine/thymine clusters with the replication initiation factor ORC. RESULTS The SpOrc1 or SpOrc2 immunoprecipitates (IPs) containing at least four subunits of SpORC, interacted with the ars2004 fragment, which is derived from a predominant replication origin on the chromosome. SpORC-IPs preferentially interacted with two regions of the ars2004, which consist of consecutive adenines and AAAAT repeats and are essential for ARS activity. The nucleotide sequences required for the interaction with SpORC-IPs correspond closely to those necessary for in vivo ARS activity. CONCLUSION Our results suggest that the SpORC interacts with adenine/thymine stretches, which have been shown to be the most important component in the fission yeast replication origin. The presence of multiple SpORC-binding sites, with certain sequence variations, is characteristic for the fission yeast replication origins.
Collapse
Affiliation(s)
- T Takahashi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 Japan
| | | |
Collapse
|
103
|
Abstract
Site-specific initiation of DNA replication is a conserved function in all organisms. In Escherichia coli and Saccharomyces cerevisiae, DNA replication origins are sequence specific, but in multicellular organisms, origins are not so clearly defined. In this article, I present a model of origin specification by epigenetic mechanisms that allows the establishment of stable chromatin domains, which are characterized by autonomous replication. According to this model, origins of DNA replication help to establish domains of gene expression for the generation of cell diversity.
Collapse
Affiliation(s)
- M Méchali
- Marcel Méchali is at the Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141 rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
104
|
Eberharter A, Ferrari S, Längst G, Straub T, Imhof A, Varga-Weisz P, Wilm M, Becker PB. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 2001; 20:3781-8. [PMID: 11447119 PMCID: PMC125259 DOI: 10.1093/emboj/20.14.3781] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The chromatin accessibility complex (CHRAC) was originally defined biochemically as an ATP-dependent 'nucleosome remodelling' activity. Central to its activity is the ATPase ISWI, which catalyses the transfer of histone octamers between DNA segments in cis. In addition to ISWI, four other potential subunits were observed consistently in active CHRAC fractions. We have now identified the p175 subunit of CHRAC as Acf1, a protein known to associate with ISWI in the ACF complex. Interaction of Acf1 with ISWI enhances the efficiency of nucleosome sliding by an order of magnitude. Remarkably, it also modulates the nucleosome remodelling activity of ISWI qualitatively by altering the directionality of nucleosome movements and the histone 'tail' requirements of the reaction. The Acf1-ISWI heteromer tightly interacts with the two recently identified small histone fold proteins CHRAC-14 and CHRAC-16. Whether topoisomerase II is an integral subunit has been controversial. Refined analyses now suggest that topoisomerase II should not be considered a stable subunit of CHRAC. Accordingly, CHRAC can be molecularly defined as a complex consisting of ISWI, Acf1, CHRAC-14 and CHRAC-16.
Collapse
Affiliation(s)
| | - Simona Ferrari
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | | | | | | | - Patrick Varga-Weisz
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | - Matthias Wilm
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | - Peter B. Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| |
Collapse
|
105
|
Affiliation(s)
- J J Blow
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
106
|
Demeret C, Vassetzky Y, Méchali M. Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene 2001; 20:3086-93. [PMID: 11420724 DOI: 10.1038/sj.onc.1204333] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Organization of DNA into chromatin is likely to participate in the control of the timing and selection of DNA replication origins. Reorganization of the chromatin is carried out by chromatin remodelling machines, which may affect the choice of replication origins and efficiency of replication. Replication itself causes a profound rearrangement in the chromatin structure, from nucleosomes to DNA loop domains, allowing to retain or switch an epigenetic state. The present review considers the effects of chromatin remodelling on replication and vice versa.
Collapse
Affiliation(s)
- C Demeret
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | |
Collapse
|
107
|
Montigny WJ, Houchens CR, Illenye S, Gilbert J, Coonrod E, Chang YC, Heintz NH. Condensation by DNA looping facilitates transfer of large DNA molecules into mammalian cells. Nucleic Acids Res 2001; 29:1982-8. [PMID: 11328883 PMCID: PMC37261 DOI: 10.1093/nar/29.9.1982] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST-Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST-Z2 is able to condense 130-150 kb bacterial artificial chromosomes (BACs) into protein-DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein-BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR(-) cells by GST-Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST-Z2-mediated gene transfer. Because DNA condensation by GST-Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.
Collapse
Affiliation(s)
- W J Montigny
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Theis JF, Newlon CS. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol Cell Biol 2001; 21:2790-801. [PMID: 11283258 PMCID: PMC86909 DOI: 10.1128/mcb.21.8.2790-2801.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.
Collapse
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
109
|
Lengronne A, Pasero P, Bensimon A, Schwob E. Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains. Nucleic Acids Res 2001; 29:1433-42. [PMID: 11266543 PMCID: PMC31278 DOI: 10.1093/nar/29.7.1433] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Revised: 02/01/2001] [Accepted: 02/01/2001] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic chromosome replication is initiated from numerous origins and its activation is temporally controlled by cell cycle and checkpoint mechanisms. Yeast has been very useful in defining the genetic elements required for initiation of DNA replication, but simple and precise tools to monitor S phase progression are lacking in this model organism. Here we describe a TK(+) yeast strain and conditions that allow incorporation of exogenous BrdU into genomic DNA, along with protocols to detect the sites of DNA synthesis in yeast nuclei or on combed DNA molecules. S phase progression is monitored by quantification of BrdU in total yeast DNA or on individual chromosomes. Using these tools we show that yeast chromosomes replicate synchronously and that DNA synthesis occurs at discrete subnuclear foci. Analysis of BrdU signals along single DNA molecules from hydroxyurea-arrested cells reveals that replication forks stall 8-9 kb from origins that are placed 46 kb apart on average. Quantification of total BrdU incorporation suggests that 190 'early' origins have fired in these cells and that late replicating territories might represent up to 40% of the yeast genome. More generally, the methods outlined here will help understand the kinetics of DNA replication in wild-type yeast and refine the phenotypes of several mutants.
Collapse
Affiliation(s)
- A Lengronne
- Institute of Molecular Genetics, CNRS UMR 5535 and Université Montpellier II, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
110
|
Speck C, Messer W. Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA. EMBO J 2001; 20:1469-76. [PMID: 11250912 PMCID: PMC145534 DOI: 10.1093/emboj/20.6.1469] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The initiator protein DnaA of Escherichia coli binds to a 9mer consensus sequence, the DnaA box (5'-TT(A/T)TNCACA). If complexed with ATP it adopts a new binding specificity for a 6mer consensus sequence, the ATP-DnaA box (5'-AGatct). Using DNase footprinting and surface plasmon resonance we show that binding to ATP-DnaA boxes in the AT-rich region of oriC of E.coli requires binding to the 9mer DnaA box R1. Cooperative binding of ATP-DnaA to the AT-rich region results in its unwinding. ATP-DnaA subsequently binds to the single-stranded region, thereby stabilizing it. This demonstrates an additional binding specificity of DnaA protein to single-stranded ATP-DnaA boxes. Binding affinities, as judged by the DnaA concentrations required for site protection in footprinting, were approximately 1 nM for DnaA box R1, 400 nM for double-stranded ATP-DnaA boxes and 40 nM for single-stranded ATP-DnaA boxes, respectively. We propose that sequential recognition of high- and low-affinity sites, and binding to single-stranded origin DNA may be general properties of initiator proteins in initiation complexes.
Collapse
Affiliation(s)
- Christian Speck
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA Corresponding author e-mail:
| | - Walter Messer
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA Corresponding author e-mail:
| |
Collapse
|
111
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
112
|
Abstract
Chromosomal origins of DNA replication in eukaryotic cells not only are crucial for understanding the basic process of DNA duplication but also provide a tool to analyze how cell cycle regulators are linked to the replication machinery. During the past decade much progress has been made in identifying replication origins in eukaryotic genomes. More recently, replication initiation point (RIP) mapping has allowed us to detect start sites for DNA synthesis at the nucleotide level and thus to monitor replication initiation events at the origin very precisely. Beyond giving us the precise positions of start sites, the application of RIP mapping in yeast and human cells has revealed a single, defined start point at which replication initiates, a scenario very reminiscent of transcription initiation. More importantly, studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Therefore, in our pursuit of identifying ORC-binding sites in higher eukaryotes, RIP mapping may lead the way.
Collapse
Affiliation(s)
- A K Bielinsky
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
113
|
Altman AL, Fanning E. The Chinese hamster dihydrofolate reductase replication origin beta is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity. Mol Cell Biol 2001; 21:1098-110. [PMID: 11158297 PMCID: PMC99564 DOI: 10.1128/mcb.21.4.1098-1110.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify cis-acting genetic elements essential for mammalian chromosomal DNA replication, a 5.8-kb fragment from the Chinese hamster dihydrofolate reductase (DHFR) locus containing the origin beta (ori-beta) initiation region was stably transfected into random ectopic chromosomal locations in a hamster cell line lacking the endogenous DHFR locus. Initiation at ectopic ori-beta in uncloned pools of transfected cells was measured using a competitive PCR-based nascent strand abundance assay and shown to mimic that at the endogenous ori-beta region in Chinese hamster ovary K1 cells. Initiation activity of three ectopic ori-beta deletion mutants was reduced, while the activity of another deletion mutant was enhanced. The results suggest that a 5.8-kb fragment of the DHFR ori-beta region is sufficient to direct initiation and that specific DNA sequences in the ori-beta region are required for efficient initiation activity.
Collapse
Affiliation(s)
- A L Altman
- Department of Molecular Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6838, USA
| | | |
Collapse
|
114
|
Lu L, Zhang H, Tower J. Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev 2001; 15:134-46. [PMID: 11157771 PMCID: PMC312611 DOI: 10.1101/gad.822101] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To meet the demand for the rapid synthesis of chorion (eggshell) proteins, Drosophila ovarian follicle cells amplify the chromosomal loci containing the chorion gene clusters up to 60-fold. Amplification occurs by repeated firing of one or more origins located within each gene cluster. Deletion analyses of transgenic constructs derived from the third chromosome cluster have identified a 320-bp amplification control element (ACE3) required for amplification, as well as several stimulatory amplification enhancing regions (AERs). Two-dimensional (2D) gel analyses have identified multiple DNA replication initiation sites (origins) that partially overlap in location with ACE3 and the AERs. To further study sequence requirements for amplification, a vector was used in which transgenic constructs are protected from chromosomal position effects by flanking insulator elements, the suppressor Hairy-wing protein binding site (SHWBS). Using the buffered vector, the 320-bp ACE3 and an 884-bp element designated ori-beta were found to be necessary and sufficient for amplification. Two-dimensional gels revealed that ori-beta was acting as the origin. In contrast, origin activity could not be detected for ACE3. An insulator placed between ACE3 and ori-beta inhibited amplification, indicating that ACE3 activates ori-beta in cis. The results suggest that ACE3 acts as a replicator and support and extend the replicator model for the organization of metazoan chromosomal replicons.
Collapse
Affiliation(s)
- L Lu
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | |
Collapse
|
115
|
Toledo F, Coquelle A, Svetlova E, Debatisse M. Enhanced flexibility and aphidicolin-induced DNA breaks near mammalian replication origins: implications for replicon mapping and chromosome fragility. Nucleic Acids Res 2000; 28:4805-13. [PMID: 11095694 PMCID: PMC115181 DOI: 10.1093/nar/28.23.4805] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
116
|
Nekrutenko A, Li WH. Assessment of compositional heterogeneity within and between eukaryotic genomes. Genome Res 2000; 10:1986-95. [PMID: 11116093 PMCID: PMC313050 DOI: 10.1101/gr.10.12.1986] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using large amounts of long genomic sequences, we studied the compositional patterns of eukaryotic genomes. We developed a simple measure, the compositional heterogeneity (or variability) index, to compare the differences in compositional heterogeneity between long genomic sequences. The index measures the average difference in GC content between two adjacent windows normalized by the standard error expected under the assumption of random distribution of nucleotides in a window. We report the following findings: (1) The extent of the compositional heterogeneity in a genomic sequence strongly correlates with its GC content in all multicellular eukaryotes studied regardless of genome size. (2) The human genome appears to be highly compositionally heterogeneous both within and between individual chromosomes; the heterogeneity goes much beyond the predictions of the isochore model. (3) All genomes of multicellular eukaryotes examined in this study are compositionally heterogeneous, although they also contain compositionally uniform segments, or isochores. (4) The true uniqueness of the human (or mammalian) genome is the presence of very high GC regions, which exhibit unusually high compositional heterogeneity and contain few long homogeneous segments (isochores). In general, GC-poor isochores tend to be longer than GC-rich ones. These findings indicate that the genomes of multicellular organisms are much more heterogeneous in nucleotide composition than depicted by the isochore model and so lead to a looser definition of isochores.
Collapse
Affiliation(s)
- A Nekrutenko
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
117
|
Nekrutenko A, Li WH. Assessment of Compositional Heterogeneity Within and Between Eukaryotic Genomes. Genome Res 2000. [DOI: 10.1101/gr.153400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using large amounts of long genomic sequences, we studied the compositional patterns of eukaryotic genomes. We developed a simple measure, the compositional heterogeneity (or variability) index, to compare the differences in compositional heterogeneity between long genomic sequences. The index measures the average difference in GC content between two adjacent windows normalized by the standard error expected under the assumption of random distribution of nucleotides in a window. We report the following findings: (1) The extent of the compositional heterogeneity in a genomic sequence strongly correlates with its GC content in all multicellular eukaryotes studied regardless of genome size. (2) The human genome appears to be highly compositionally heterogeneous both within and between individual chromosomes; the heterogeneity goes much beyond the predictions of the isochore model. (3) All genomes of multicellular eukaryotes examined in this study are compositionally heterogeneous, although they also contain compositionally uniform segments, or isochores. (4) The true uniqueness of the human (or mammalian) genome is the presence of very high GC regions, which exhibit unusually high compositional heterogeneity and contain few long homogeneous segments (isochores). In general, GC-poor isochores tend to be longer than GC-rich ones. These findings indicate that the genomes of multicellular organisms are much more heterogeneous in nucleotide composition than depicted by the isochore model and so lead to a looser definition of isochores.
Collapse
|
118
|
Guschin D, Geiman TM, Kikyo N, Tremethick DJ, Wolffe AP, Wade PA. Multiple ISWI ATPase complexes from xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J Biol Chem 2000; 275:35248-55. [PMID: 10942776 DOI: 10.1074/jbc.m006041200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleosomal ATPase ISWI is the catalytic subunit of several protein complexes that either organize or perturb chromatin structure in vitro. This work reports the cloning and biochemical characterization of a Xenopus ISWI homolog. Surprisingly, whereas we find four complex forms of ISWI in egg extracts, we find no functional homolog of NURF. One of these complexes, xACF, consists of ISWI, Acf1, and a previously uncharacterized protein of 175 kDa. Like both ACF and CHRAC, this complex organizes randomly deposited histones into a regularly spaced array. The remaining three forms include two novel ISWI complexes distinct from known ISWI complexes plus a histone-dependent ATPase complex. This comprehensive biochemical characterization of ISWI underscores the evolutionary conservation of the ACF/CHRAC family.
Collapse
Affiliation(s)
- D Guschin
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
119
|
Albagli O, Lindon C, Lantoine D, Quief S, Puvion E, Pinset C, Puvion-Dutilleul F. DNA replication progresses on the periphery of nuclear aggregates formed by the BCL6 transcription factor. Mol Cell Biol 2000; 20:8560-70. [PMID: 11046151 PMCID: PMC102161 DOI: 10.1128/mcb.20.22.8560-8570.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The BCL6 proto-oncogene, frequently alterated in non-Hodgkin lymphoma, encodes a POZ/zinc finger protein that localizes into discrete nuclear subdomains. Upon prolonged BCL6 overexpression in cells bearing an inducible BCL6 allele (UTA-L cells), these subdomains apparently coincide with sites of DNA synthesis. Here, we explore the relationship between BCL6 and replication by both electron and confocal laser scanning microscopy. First, by electron microscope analyses, we found that endogenous BCL6 is associated with replication foci. Moreover, we show that a relatively low expression level of BCL6 reached after a brief induction in UTA-L cells is sufficient to observe its targeting to mid, late, and at least certain early replication foci visualized by a pulse-labeling with bromodeoxyuridine (BrdU). In addition, when UTA-L cells are simultaneously induced for BCL6 expression and exposed to BrdU for a few hours just after the release from a block in mitosis, a nuclear diffuse BCL6 staining indicates cells in G(1), while cells in S show a more punctate nuclear BCL6 distribution associated with replication foci. Finally, ultrastructural analyses in UTA-L cells exposed to BrdU for various times reveal that replication progresses just around, but not within, BCL6 subdomains. Thus, nascent DNA is localized near, but not colocalized with, BCL6 subdomains, suggesting that they play an architectural role influencing positioning and/or assembly of replication foci. Together with its previously function as transcription repressor recruiting a histone deacetylase complex, BCL6 may therefore contribute to link nuclear organization, replication, and chromatin-mediated regulation.
Collapse
Affiliation(s)
- O Albagli
- CNRS URA 1947, Institut Pasteur, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
120
|
Jaunin F, Visser AE, Cmarko D, Aten JA, Fakan S. Fine structural in situ analysis of nascent DNA movement following DNA replication. Exp Cell Res 2000; 260:313-23. [PMID: 11035926 DOI: 10.1006/excr.2000.4999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.
Collapse
Affiliation(s)
- F Jaunin
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, Lausanne, CH-1005, Switzerland
| | | | | | | | | |
Collapse
|
121
|
Salvetti A, Rossi L, Deri P, Batistoni R. An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 2000; 218:603-14. [PMID: 10906779 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1016>3.0.co;2-c] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The minichromosome maintenance (MCM2-7) gene family encodes conserved proteins, which are essential for DNA replication licensing in eukaryotes. They are abundant in proliferating cells, and specific MCM transcripts undergo cell cycle-dependent oscillations. Here we report the characterization of a planarian MCM2 homologue, DjMCM2, which represents the first molecular marker for detecting proliferating cells in planarians. DjMCM2-expressing cells are broadly distributed in the mesenchymal space of the body, with the exception of the cephalic region, and are preferentially accumulated in the peripheral area of the dorso-lateral mesenchyme, along the anteroposterior axis. During regeneration, no DjMCM2 transcripts are observed within the blastema, according to the current view that this structure is not a proliferation site in planarians. Spatio-temporal changes in DjMCM2 RNA expression pattern in the stump parallel blastema growth, coordinately with the orientation of the cut. X-ray irradiation results in the disappearance of DjMCM2 expression, thus confirming that these transcripts are detected specifically in proliferating cells, visualized as neoblasts by in situ hybridization in dissociated cells. In addition to neoblasts, rare large DjMCM2-expressing cells are observed in macerates of tissues excised just below the wound, suggesting that cell types other than neoblasts may be sporadically recruited for proliferation in planarians.
Collapse
Affiliation(s)
- A Salvetti
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
122
|
Abstract
The mechanism for initiation of eukaryotic DNA replication is highly conserved: the proteins required to initiate replication, the sequence of events leading to initiation, and the regulation of initiation are remarkably similar throughout the eukaryotic kingdom. Nevertheless, there is a liberal attitude when it comes to selecting initiation sites. Differences appear to exist in the composition of replication origins and in the way proteins recognize these origins. In fact, some multicellular eukaryotes (the metazoans) can change the number and locations of initiation sites during animal development, revealing that selection of initiation sites depends on epigenetic as well as genetic parameters. Here we have attempted to summarize our understanding of this process, to identify the similarities and differences between single cell and multicellular eukaryotes, and to examine the extent to which origin recognition proteins and replication origins have been conserved among eukaryotes. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J A Bogan
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
123
|
Whittaker AJ, Royzman I, Orr-Weaver TL. Drosophila Double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1765] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We identified a Drosophila gene, double parked(dup), that is essential for DNA replication and belongs to a new family of replication proteins conserved fromSchizosaccharomyces pombe to humans. Strong mutations indup cause embryonic lethality, preceded by a failure to undergo S phase during the postblastoderm divisions. dup is required also for DNA replication in the adult ovary, establishing thatdup is needed for DNA replication at multiple stages of development. Strikingly, DUP protein colocalizes with the origin recognition complex to specific sites in the ovarian follicle cells. This suggests that DUP plays a direct role in DNA replication. Thedup transcript is cell cycle regulated and is under the control of E2F and Cyclin E. Interestingly, dup mutant embryos fail both to downregulate S phase genes and to engage a checkpoint preventing mitosis until completion of S phase. This could be either because these events depend on progression of S phase beyond the point blocked in the dup mutants or because DUP is needed directly for these feedback mechanisms.
Collapse
|
124
|
de Stanchina E, Gabellini D, Norio P, Giacca M, Peverali FA, Riva S, Falaschi A, Biamonti G. Selection of homeotic proteins for binding to a human DNA replication origin. J Mol Biol 2000; 299:667-80. [PMID: 10835276 DOI: 10.1006/jmbi.2000.3782] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that a cell cycle-dependent nucleoprotein complex assembles in vivo on a 74 bp sequence within the human DNA replication origin associated to the Lamin B2 gene. Here, we report the identification, using a one-hybrid screen in yeast, of three proteins interacting with the 74 bp sequence. All of them, namely HOXA13, HOXC10 and HOXC13, are orthologues of the Abdominal-B gene of Drosophila melanogaster and are members of the homeogene family of developmental regulators. We describe the complete open reading frame sequence of HOXC10 and HOXC13 along with the structure of the HoxC13 gene. The specificity of binding of these two proteins to the Lamin B2 origin is confirmed by both band-shift and in vitro footprinting assays. In addition, the ability of HOXC10 and HOXC13 to increase the activity of a promoter containing the 74 bp sequence, as assayed by CAT-assay experiments, demonstrates a direct interaction of these homeoproteins with the origin sequence in mammalian cells. We also show that HOXC10 expression is cell-type-dependent and positively correlates with cell proliferation.
Collapse
Affiliation(s)
- E de Stanchina
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Via Abbiategrasso 207, Pavia, 27100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
DNA replication initiation sites and initiation frequencies over 12. 5 kb of the human c-myc locus, including 4.6 kb of new 5' sequence, were determined based on short nascent DNA abundance measured by competitive polymerase chain reaction using 21 primer sets. In previous measurements, no comparative quantitation of nascent strand abundance was performed, and distinction of major from minor initiation sites was not feasible. Two major initiation sites were identified in this study. One predominant site has been located at approximately 0.5 kb upstream of exon 1 of the c-myc gene, and a second new major site is located in exon 2. The site in exon 2 has not been previously identified. In addition, there are other sites that may act as less frequently used initiation sites, some of which may correspond to sites in previous reports. Furthermore, a comparison of the abundance of DNA replication intermediates over this same region of the c-myc locus between HeLa and normal skin fibroblast (NSF) cells indicated that the relative distribution was very similar, but that nascent strand abundance in HeLa cells was approximately twice that in NSF relative to the abundance at the lamin B2 origin. This increased activity at initiation sites in the c-myc locus may mainly be influenced by regulators at higher levels in transformed cells like HeLa.
Collapse
Affiliation(s)
- L Tao
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
126
|
Chen PH, Tseng WB, Chu Y, Hsu MT. Interference of the simian virus 40 origin of replication by the cytomegalovirus immediate early gene enhancer: evidence for competition of active regulatory chromatin conformation in a single domain. Mol Cell Biol 2000; 20:4062-74. [PMID: 10805748 PMCID: PMC85776 DOI: 10.1128/mcb.20.11.4062-4074.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication origins are often found closely associated with transcription regulatory elements in both prokaryotic and eukaryotic cells. To examine the relationship between these two elements, we studied the effect of a strong promoter-enhancer on simian virus 40 (SV40) DNA replication. The human cytomegalovirus (CMV) immediate early gene enhancer-promoter was found to exert a strong inhibitory effect on SV40 origin-based plasmid replication in Cos-1 cells in a position- and dose-dependent manner. Deletion analysis indicated that the effect was exerted by sequences located in the enhancer portion of the CMV sequence, thus excluding the mechanism of origin occlusion by transcription. Insertion of extra copies of the SV40 origin only partially alleviated the inhibition. Analysis of nuclease-sensitive cleavage sites of chromatin containing the transfected plasmids indicate that the chromatin was cleaved at one of the regulatory sites in the plasmids containing more than one regulatory site, suggesting that only one nuclease-hypersensitive site existed per chromatin. A positive correlation was found between the degree of inhibition of DNA replication and the decrease of P1 cleavage frequency at the SV40 origin. The CMV enhancer was also found to exhibit an inhibitory effect on the CMV enhancer-promoter driving chloramphenicol acetyltransferase expression in a dose-dependent manner. Together these results suggest that inhibition of SV40 origin-based DNA replication by the CMV enhancer is due to intramolecular competition for the formation of active chromatin structure.
Collapse
Affiliation(s)
- P H Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
127
|
Natale DA, Li CJ, Sun WH, DePamphilis ML. Selective instability of Orc1 protein accounts for the absence of functional origin recognition complexes during the M-G(1) transition in mammals. EMBO J 2000; 19:2728-38. [PMID: 10835370 PMCID: PMC212765 DOI: 10.1093/emboj/19.11.2728] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the events leading to initiation of DNA replication in mammalian chromosomes, the time when hamster origin recognition complexes (ORCs) became functional was related to the time when Orc1, Orc2 and Mcm3 proteins became stably bound to hamster chromatin. Functional ORCs, defined as those able to initiate DNA replication, were absent during mitosis and early G(1) phase, and reappeared as cells progressed through G(1) phase. Immunoblotting analysis revealed that hamster Orc1 and Orc2 proteins were present in nuclei at equivalent concentrations throughout the cell cycle, but only Orc2 was stably bound to chromatin. Orc1 and Mcm3 were easily eluted from chromatin during mitosis and early G(1) phase, but became stably bound during mid-G(1) phase, concomitant with the appearance of a functional pre-replication complex at a hamster replication origin. Since hamster Orc proteins are closely related to their human and mouse homologs, the unexpected behavior of hamster Orc1 provides a novel mechanism in mammals for delaying assembly of pre-replication complexes until mitosis is complete and a nuclear structure has formed.
Collapse
Affiliation(s)
- D A Natale
- National Institute of Child Health and Human Development, Building 6, Room 3A02, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | |
Collapse
|
128
|
Locus control region activity by 5′HS3 requires a functional interaction with β-globin gene regulatory elements: expression of novel β/γ-globin hybrid transgenes. Blood 2000. [DOI: 10.1182/blood.v95.10.3242] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The human β-globin locus control region (LCR) contains chromatin opening and transcriptional enhancement activities that are important to include in β-globin gene therapy vectors. We previously used single-copy transgenic mice to map chromatin opening activity to the 5′HS3 LCR element. Here, we test novel hybrid globin genes to identify β-globin gene sequences that functionally interact with 5′HS3. First, we show that an 850-base pair (bp) 5′HS3 element activates high-level β-globin gene expression in fetal livers of 17 of 17 transgenic mice, including 3 single-copy animals, but fails to reproducibly activate Aγ-globin transgenes. To identify the β-globin gene sequences required for LCR activity by 5′HS3, we linked the 815-bp β-globin promoter to Aγ-globin coding sequences (BGT34), together with either the β-globin intron 2 (BGT35), the β-globin 3′ enhancer (BGT54), or both intron 2 and the 3′ enhancer (BGT50). Of these transgenes, only BGT50 reproducibly expresses Aγ-globin RNA (including 7 of 7 single-copy animals, averaging 71% per copy). Modifications to BGT50 show that LCR activity is detected after replacing the β-globin promoter with the 700-bp Aγ-globin promoter, but is abrogated when an AT-rich region is deleted from β-globin intron 2. We conclude that LCR activity by 5′HS3 on globin promoters requires the simultaneous presence of β-globin intron 2 sequences and the 260-bp 3′ β-globin enhancer. The BGT50 construct extends the utility of the 5′HS3 element to include erythroid expression of nonadult β-globin coding sequences in transgenic animals and its ability to express antisickling γ-globin coding sequences at single copy are ideal characteristics for a gene therapy cassette.
Collapse
|
129
|
Locus control region activity by 5′HS3 requires a functional interaction with β-globin gene regulatory elements: expression of novel β/γ-globin hybrid transgenes. Blood 2000. [DOI: 10.1182/blood.v95.10.3242.010k27_3242_3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β-globin locus control region (LCR) contains chromatin opening and transcriptional enhancement activities that are important to include in β-globin gene therapy vectors. We previously used single-copy transgenic mice to map chromatin opening activity to the 5′HS3 LCR element. Here, we test novel hybrid globin genes to identify β-globin gene sequences that functionally interact with 5′HS3. First, we show that an 850-base pair (bp) 5′HS3 element activates high-level β-globin gene expression in fetal livers of 17 of 17 transgenic mice, including 3 single-copy animals, but fails to reproducibly activate Aγ-globin transgenes. To identify the β-globin gene sequences required for LCR activity by 5′HS3, we linked the 815-bp β-globin promoter to Aγ-globin coding sequences (BGT34), together with either the β-globin intron 2 (BGT35), the β-globin 3′ enhancer (BGT54), or both intron 2 and the 3′ enhancer (BGT50). Of these transgenes, only BGT50 reproducibly expresses Aγ-globin RNA (including 7 of 7 single-copy animals, averaging 71% per copy). Modifications to BGT50 show that LCR activity is detected after replacing the β-globin promoter with the 700-bp Aγ-globin promoter, but is abrogated when an AT-rich region is deleted from β-globin intron 2. We conclude that LCR activity by 5′HS3 on globin promoters requires the simultaneous presence of β-globin intron 2 sequences and the 260-bp 3′ β-globin enhancer. The BGT50 construct extends the utility of the 5′HS3 element to include erythroid expression of nonadult β-globin coding sequences in transgenic animals and its ability to express antisickling γ-globin coding sequences at single copy are ideal characteristics for a gene therapy cassette.
Collapse
|
130
|
Abstract
DNA replication is a highly conserved process among eukaryotes where it occurs within a unique organelle-the nucleus. The importance of this structure is indicated by the fact that assembly of prereplication complexes on cellular chromatin is delayed until mitosis is completed and a nuclear structure has formed. Although nuclear structure is dispensable for DNA replication in vitro, it does appear to play a role in vivo by regulating the concentration of proteins required to initiate DNA replication, by facilitating the assembly or activity of DNA replication forks, and by determining where in the genome initiation of DNA replication occurs.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Building 6, Room 416, Bethesda, Maryland, 20892-2753, USA
| |
Collapse
|
131
|
Walter J, Newport J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 2000; 5:617-27. [PMID: 10882098 DOI: 10.1016/s1097-2765(00)80241-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report that a plasmid replicating in Xenopus egg extracts becomes negatively supercoiled during replication initiation. Supercoiling requires the initiation factor Cdc45, as well as the single-stranded DNA-binding protein RPA, and therefore likely represents origin unwinding. When unwinding is prevented, Cdc45 binds to chromatin whereas DNA polymerase alpha does not, indicating that Cdc45, RPA, and DNA polymerase alpha bind chromatin sequentially at the G1/S transition. Whereas the extent of origin unwinding is normally limited, it increases dramatically when DNA polymerase alpha is inhibited, indicating that the helicase that unwinds DNA during initiation can become uncoupled from the replication fork. We discuss the implications of these results for the location of replication start sites relative to the prereplication complex.
Collapse
Affiliation(s)
- J Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
132
|
Pasero P, Schwob E. Think global, act local--how to regulate S phase from individual replication origins. Curr Opin Genet Dev 2000; 10:178-86. [PMID: 10753785 DOI: 10.1016/s0959-437x(00)00067-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All eukaryotes use similar proteins to licence replication origins but, paradoxically, origin DNA is much less conserved. Specific binding sites for these proteins have now been identified on fission yeast and Drosophila chromosomes, suggesting that the DNA-binding activity of the origin recognition complex has diverged to recruit conserved initiation factors on polymorphic replication origins. Once formed, competent origins are activated by cyclin- and Dbf4-dependent kinases. The latter have been shown to control S phase in several organisms but, in contrast to cyclin-dependent kinases, seem regulated at the level of individual origins. Global and local regulations generate specific patterns of DNA replication that help establish epigenetic chromosome states.
Collapse
Affiliation(s)
- P Pasero
- Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique (UMR 5535) & Université Montpellier II, Montpellier, F-34293, France.
| | | |
Collapse
|
133
|
Ritzi M, Knippers R. Initiation of genome replication: assembly and disassembly of replication-competent chromatin. Gene 2000; 245:13-20. [PMID: 10713440 DOI: 10.1016/s0378-1119(00)00020-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considerable progress has been made in research on the initiation of eukaryotic genome replication. This has generated a number of recent review articles. Here, we briefly summarize the major conclusions described in these articles and also include the results of more recent primary articles. The consensus view that has emerged is that a pre-replication complex assembles during the G1 phase of the cell cycle, making chromatin competent for replication. The complex consists of Orc proteins, Cdc6p, and the family of Mcm proteins. Chromatin, thus 'licenced' for replication, is guided into the S phase by the activation of cell-cycle-regulated protein kinases. Upon entry into S phase, the pre-replication complex is partially dissolved, first by the dissociation of Cdc6p and then by the gradual release of Mcm proteins. This appears to be accompanied by a recruitment of chain elongation factors and the establishment of replication forks.
Collapse
Affiliation(s)
- M Ritzi
- Department of Biology Universität Konstanz D - 78457, Konstanz, Germany
| | | |
Collapse
|
134
|
Li CJ, Bogan JA, Natale DA, DePamphilis ML. Selective activation of pre-replication complexes in vitro at specific sites in mammalian nuclei. J Cell Sci 2000; 113 ( Pt 5):887-98. [PMID: 10671378 DOI: 10.1242/jcs.113.5.887] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the first step in determining whether or not pre-replication complexes are assembled at specific sites along mammalian chromosomes, nuclei from G(1)-phase hamster cells were incubated briefly in Xenopus egg extract in order to initiate DNA replication. Most of the nascent DNA consisted of RNA-primed DNA chains 0.5 to 2 kb in length, and its origins in the DHFR gene region were mapped using both the early labeled fragment assay and the nascent strand abundance assay. The results revealed three important features of mammalian replication origins. First, Xenopus egg extract can selectively activate the same origins of bi-directional replication (e.g. ori-beta) and (beta') that are used by hamster cells in vivo. Previous reports of a broad peak of nascent DNA centered at ori-(beta/(beta)' appeared to result from the use of aphidicolin to synchronize nuclei and from prolonged exposure of nuclei to egg extracts. Second, these sites were not present until late G(1)-phase of the cell division cycle, and their appearance did not depend on the presence of Xenopus Orc proteins. Therefore, hamster pre-replication complexes appear to be assembled at specific chromosomal sites during G(1)-phase. Third, selective activation of ori-(beta) in late G(1)-nuclei depended on the ratio of Xenopus egg extract to nuclei, revealing that epigenetic parameters such as the ratio of initiation factors to DNA substrate could determine the number of origins activated.
Collapse
Affiliation(s)
- C J Li
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | |
Collapse
|
135
|
Abstract
One of the fundamental characteristics of life is the ability of an entity to reproduce itself, which stems from the ability of the DNA molecule to replicate itself. The initiation step of DNA replication, where control over the timing and frequency of replication is exerted, is poorly understood in eukaryotes in general, and in mammalian cells in particular. The cis-acting DNA element defining the position and providing control over initiation is the replication origin. The activation of replication origins seems to be dependent on the presence of both a particular sequence and of structural determinants. In the past few years, the development of new methods for identification and mapping of origins of DNA replication has allowed some understanding of the fundamental elements that control the replication process. This review summarizes some of the major findings of this century, regarding the mechanism of DNA replication, emphasizing what is known about the replication of mammalian DNA. J. Cell. Biochem. Suppls. 32/33:1-14, 1999.
Collapse
|
136
|
Fullerton SM, Bond J, Schneider JA, Hamilton B, Harding RM, Boyce AJ, Clegg JB. Polymorphism and divergence in the beta-globin replication origin initiation region. Mol Biol Evol 2000; 17:179-88. [PMID: 10666717 DOI: 10.1093/oxfordjournals.molbev.a026230] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA sequence polymorphism and divergence was examined in the vicinity of the human beta-globin gene cluster origin of replication initiation region (IR), a 1.3-kb genomic region located immediately 5' of the adult-expressed beta-globin gene. DNA sequence variation in the replication origin IR and 5 kb of flanking DNA was surveyed in samples drawn from two populations, one African (from the Gambia, West Africa) and the other European (from Oxford, England). In these samples, levels of nucleotide and length polymorphism in the IR were found to be more than two times as high as adjacent non-IR-associated regions (estimates of per-nucleotide heterozygosity were 0.30% and 0.12%, respectively). Most polymorphic positions identified in the origin IR fall within or just adjacent to a 52-bp alternating purine-pyrimidine ((RY)n) sequence repeat. Within- and between-populations divergence is highest in this portion of the IR, and interspecific divergence in the same region, determined by comparison with an orthologous sequence from the chimpanzee, is also pronounced. Higher levels of diversity in this subregion are not, however, primarily attributable to slippage-mediated repeat unit changes, as nucleotide substitution contributes disproportionately to allelic heterogeneity. An estimate of helical stability in the sequenced region suggests that the hypervariable (RY)n constitutes the major DNA unwinding element (DUE) of the replication origin IR, the location at which the DNA duplex first unwinds and new strand synthesis begins. These findings suggest that the beta-globin IR experiences a higher underlying rate of neutral mutation than do adjacent genomic regions and that enzyme fidelity associated with the initiation of DNA replication at this origin may be compromised. The significance of these findings for our understanding of eukaryotic replication origin biology is discussed.
Collapse
Affiliation(s)
- S M Fullerton
- Department of Biology, Pennsylvania State University, University Park 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
137
|
Vaiskunaite R, Miller A, Davenport L, Mosig G. Two new early bacteriophage T4 genes, repEA and repEB, that are important for DNA replication initiated from origin E. J Bacteriol 1999; 181:7115-25. [PMID: 10559179 PMCID: PMC94188 DOI: 10.1128/jb.181.22.7115-7125.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1999] [Accepted: 09/13/1999] [Indexed: 11/20/2022] Open
Abstract
Two new, small, early bacteriophage T4 genes, repEA and repEB, located within the origin E (oriE) region of T4 DNA replication, affect functioning of this origin. An important and unusual property of the oriE region is that it is transcribed at early and late periods after infection, but in opposite directions (from complementary DNA strands). The early transcripts are mRNAs for RepEA and RepEB proteins, and they can serve as primers for leading-strand DNA synthesis. The late transcripts, which are genuine antisense RNAs for the early transcripts, direct synthesis of virion components. Because the T4 genome contains several origins, and because recombination can bypass a primase requirement for retrograde synthesis, neither defects in a single origin nor primase deficiencies are lethal in T4 (Mosig et al., FEMS Microbiol. Rev. 17:83-98, 1995). Therefore, repEA and repEB were expected and found to be important for T4 DNA replication only when activities of other origins were reduced. To investigate the in vivo roles of the two repE genes, we constructed nonsense mutations in each of them and combined them with the motA mutation sip1 that greatly reduces initiation from other origins. As expected, T4 DNA synthesis and progeny production were severely reduced in the double mutants as compared with the single motA mutant, but early transcription of oriE was reduced neither in the motA nor in the repE mutants. Moreover, residual DNA replication and growth of the double mutants were different at different temperatures, suggesting different functions for repEA and repEB. We surmise that the different structures and protein requirements for functioning of the different origins enhance the flexibility of T4 to adapt to varied growth conditions, and we expect that different origins in other organisms with multiorigin chromosomes might differ in structure and function for similar reasons.
Collapse
Affiliation(s)
- R Vaiskunaite
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
138
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
139
|
Abstract
Mammalian artificial chromosomes (MACs) hold the promise of providing autonomous vectors for gene therapy in dividing cells. They would not require insertion into the genome and could include sufficient genomic sequences that surround the therapeutic gene to ensure proper tissue-specific and temporal regulation. Several groups have reported successful formation of MACs in human cells using transfection strategies that included alpha satellite DNA, the primary DNA found at normal human centromeres. These results, although extremely encouraging, have limitations such as unpredictable chromosome formation and success thus far in only one transformed human cell line. Examination of other cells where alpha satellite DNA has integrated into ectopic chromosomal locations, as well as naturally occurring dicentric and neocentromere-containing cell lines, suggests that alpha satellite DNA may not be necessary or sufficient for centromere formation. Overall, these results suggest that epigenetic modifications of centromeric DNA are required for efficient centromere formation. Models for this centromere-specific epigenetic modification include a specialized chromatin structure and differential replication timing of centromeric DNA. Thus, further investigation of these centromere-specific epigenetic modifications may suggest strategies for increasing the efficiency of generating human artificial chromosomes for use as gene therapy vectors.
Collapse
Affiliation(s)
- P E Warburton
- Department of Human Genetics, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York, 10029, USA
| |
Collapse
|
140
|
Antequera F, Bird A. CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 1999; 9:R661-7. [PMID: 10508580 DOI: 10.1016/s0960-9822(99)80418-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The primary target for DNA methylation in mammalian genomes is cytosine in the dinucleotide CpG. High densities of CpG dinucleotides are found in CpG islands, but paradoxically CpG islands are normally in a non-methylated state. Here, we speculate why CpG islands are immune to methylation and why they are so rich in guanine and cytosine relative to the surrounding DNA. We propose that CpG islands are associated with promoters that are transcriptionally active at totipotent stages of development and can also act as origins of DNA replication. CpG islands may be 'footprints' caused by early DNA replication intermediates at dual function promoters of this kind.
Collapse
Affiliation(s)
- F Antequera
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno 37007, Salamanca, Spain.
| | | |
Collapse
|
141
|
Rein T, Kobayashi T, Malott M, Leffak M, DePamphilis ML. DNA methylation at mammalian replication origins. J Biol Chem 1999; 274:25792-800. [PMID: 10464318 DOI: 10.1074/jbc.274.36.25792] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, DNA methylation regulates both origin usage and the time required to reassemble prereplication complexes at replication origins. In mammals, at least three replication origins are associated with a high density cluster of methylated CpG dinucleotides, and others whose methylation status has not yet been characterized have the potential to exhibit a similar DNA methylation pattern. One of these origins is found within the approximately 2-kilobase pair region upstream of the human c-myc gene that contains 86 CpGs. Application of the bisulfite method for detecting 5-methylcytosines at specific DNA sequences revealed that this region was not methylated in either total genomic DNA or newly synthesized DNA. Therefore, DNA methylation is not a universal component of mammalian replication origins. To determine whether or not DNA methylation plays a role in regulating the activity of origins that are methylated, the rate of remethylation and the effect of hypomethylation were determined at origin beta (ori-beta), downstream of the hamster DHFR gene. Remethylation at ori-beta did not begin until approximately 500 base pairs of DNA was synthesized, but it was then completed by the time that 4 kilobase pairs of DNA was synthesized (<3 min after release into S phase). Thus, DNA methylation cannot play a significant role in regulating reassembly of prereplication complexes in mammalian cells, as it does in E. coli. To determine whether or not DNA methylation plays any role in origin activity, hypomethylated hamster cells were examined for ori-beta activity. Cells that were >50% reduced in methylation at ori-beta no longer selectively activated ori-beta. Therefore, at some loci, DNA methylation either directly or indirectly determines where replication begins.
Collapse
Affiliation(s)
- T Rein
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
142
|
Abstract
In eukaryote, nuclear structure is a key component for the functions of eukaryotic cells. More and more evidences show that the nuclear structure plays important role in regulating DNA replication. The nuclear structure provides a physical barrier for the replication licensing, participates in the decision where DNA replication initiates, and organizes replication proteins as replication factory for DNA replication. Through these works, new concepts on the regulation of DNA replication have emerged, which will be discussed in this minireview.
Collapse
Affiliation(s)
- W J Rui
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences, USA.
| |
Collapse
|