101
|
Mine S, Yamaguchi T, Ting KW, Maeno Z, Siddiki SMAH, Oshima K, Satokawa S, Shimizu KI, Toyao T. Reverse water-gas shift reaction over Pt/MoO x/TiO 2: reverse Mars–van Krevelen mechanism via redox of supported MoO x. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00289a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pt/MoOx/TiO2 shows excellent catalytic performance for the reverse water-gas shift reaction at 250 °C via reverse Mars–van Krevelen mechanism.
Collapse
Affiliation(s)
- Shinya Mine
- Institute for Catalysis
- Hokkaido University
- Japan
| | | | | | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Japan
| | | | - Kazumasa Oshima
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino
- Japan
| | - Shigeo Satokawa
- Department of Materials and Life Science
- Faculty of Science and Technology
- Seikei University
- Musashino
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
| |
Collapse
|
102
|
Qi F, Yang Z, Zhang J, Wang Y, Qiu Q, Li H. Interfacial Reaction-Induced Defect Engineering: Enhanced Visible and Near-Infrared Absorption of Wide Band Gap Metal Oxides with Abundant Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55417-55425. [PMID: 33236881 DOI: 10.1021/acsami.0c16543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modified metal oxides with narrow band gaps have attracted great interest in photothermal applications because of their wide optical absorption range. To tune wide band gap metal oxides into visible and near-infrared responsive materials, we deploy a unique interfacial reaction-induced defect engineering approach, which enables us to effectively modify the electronic structure of metal oxides by introducing oxygen vacancy defects. This approach reduced the band gap of zirconia from 5.47 to 1.38 eV, accompanied by a color change to black. More importantly, it is not limited by the size of the metal oxides, and bulk black zirconia was successfully obtained for the first time. It has been demonstrated that the prepared black zirconia can be applied as an effective photothermal therapy agent in vitro. Additionally, the interfacial reaction-induced defect engineering approach has been successfully extended to enhance the optical absorption of other metal oxides.
Collapse
Affiliation(s)
- Fugong Qi
- Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
| | - Zhenwen Yang
- Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
| | - Jinfeng Zhang
- Teaching and Analytical Instrumentation Centre, School of Materials Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
| | - Ying Wang
- Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
| | - Qiwen Qiu
- Department of Mining and Materials Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Huijun Li
- Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, China
| |
Collapse
|
103
|
Deng Z, Ji J, Xing M, Zhang J. The role of oxygen defects in metal oxides for CO 2 reduction. NANOSCALE ADVANCES 2020; 2:4986-4995. [PMID: 36132043 PMCID: PMC9417885 DOI: 10.1039/d0na00535e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/22/2020] [Indexed: 06/14/2023]
Abstract
The abuse of fossil fuels release large amount of CO2, causing intense global warming. Using photoreduction and electroreduction to convert CO2 into highly valuable fuels such as CO and CH4 can effectively solve this problem. However, due to the limited activity and selectivity, pristine catalyst materials cannot meet the requirements of practical applications, which means that some modifications to these catalysts are necessary. In this review, a series of research reports on oxygen defect engineering have been introduced. First, the methods of preparing oxygen defects by heat treatment, doping, and photoinduction combined with influencing factors in the preparation are introduced. Subsequently, common characterization methods of oxygen defects including EPR, Raman, XPS, EXAFS, and HRTEM are summarized. Finally, the mechanisms of introducing oxygen defects to improve CO2 reduction are discussed, and include enhancing light absorption, improving CO2 adsorption and activation, as well as promoting stability of the reaction intermediates. The summary of research on oxygen defects provides guidance for researchers who focus on CO2 reduction and accelerate the realization of its industrial applications in the future.
Collapse
Affiliation(s)
- Zesheng Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jiahui Ji
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
104
|
Li Y, Wen M, Wang Y, Tian G, Wang C, Zhao J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light‐Driven Catalytic CO
2
Reduction on Bi
2
O
3−
x. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingxuan Li
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Miaomiao Wen
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Guang Tian
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chuanyi Wang
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
105
|
Li Y, Wen M, Wang Y, Tian G, Wang C, Zhao J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light‐Driven Catalytic CO
2
Reduction on Bi
2
O
3−
x. Angew Chem Int Ed Engl 2020; 60:910-916. [DOI: 10.1002/anie.202010156] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Yingxuan Li
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Miaomiao Wen
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Guang Tian
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chuanyi Wang
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
106
|
Zhu R, Hu D, Chen Z, Xu X, Zou Y, Wang L, Gu Y. Plasmon-Enhanced Infrared Emission Approaching the Theoretical Limit of Radiative Cooling Ability. NANO LETTERS 2020; 20:6974-6980. [PMID: 32845157 DOI: 10.1021/acs.nanolett.0c01457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiative cooling, a passive cooling technique, has shown great potentials in recent years to lower the power consumption of air conditioning. With the ever-increasing cooling power being reported, the theoretical cooling limit of such a technique is still unclear. In this work, we proposed a theoretical limit imposing an upper bound for the attainable cooling power. To approach this limit, we exploited the localized surface plasmon resonance (LSPR) of self-doped In2O3 nanoparticles, which enhance the emissivity in both primary and secondary atmospheric windows. The measured cooling power of poly(methyl methacrylate) (PMMA) films containing 4.5% In2O3 nanoparticles is very close to the limit with the closest value only about 0.4 W/m2 below the limit. Hopefully, this work may help the researchers better evaluating the performance of their device in the future and pave the way for achieving even higher radiative cooling powers during the daytime operations with the help of LSPR.
Collapse
Affiliation(s)
- Rongkang Zhu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dawei Hu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi Chen
- College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaobao Xu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yousheng Zou
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lin Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| | - Yu Gu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
107
|
Zhou S, Lu Q, Chen M, Li B, Wei H, Zi B, Zeng J, Zhang Y, Zhang J, Zhu Z, Liu Q. Platinum-Supported Cerium-Doped Indium Oxide for Highly Sensitive Triethylamine Gas Sensing with Good Antihumidity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42962-42970. [PMID: 32875790 DOI: 10.1021/acsami.0c12363] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Triethylamine is extremely harmful to human health, and chronic inhalation can lead to respiratory and hematological diseases and eye lesions. Hence, it is essential to develop a triethylamine gas-sensing technology with high response, selectivity, and stability for use in healthcare and environmental monitoring. In this work, a simple and low-cost sensor based on the Pt- and Ce-modified In2O3 hollow structure to selectively detect triethylamine is developed. The experimental results reveal that the sensor based on 1% Pt/Ce12In exhibits excellent triethylamine-sensing performance, including its insusceptibility to water, reduced operating temperature, enhanced response, and superior long-term stability. This work suggests that the enhancement of sensing performance toward triethylamine can be attributed to the high relative contents of OV and OC, large specific surface area, catalytic effect, the electronic sensitization of Pt, and the reversible redox cycle properties of Ce. This sensor represents a unique and highly sensitive means to detect triethylamine, which shows great promise for potential applications in food safety inspection and environmental monitoring.
Collapse
Affiliation(s)
- Shiqiang Zhou
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Qingjie Lu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Mingpeng Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, P. R. China
| | - Bo Li
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Haitang Wei
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Baoye Zi
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Jiyang Zeng
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Zhongqi Zhu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
108
|
Dong Y, Duchesne P, Mohan A, Ghuman KK, Kant P, Hurtado L, Ulmer U, Loh JYY, Tountas AA, Wang L, Jelle A, Xia M, Dittmeyer R, Ozin GA. Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem Soc Rev 2020. [DOI: 10.1039/d0cs00597e] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials engineering, theoretical modelling, reactor engineering and process development of gas-phase photocatalytic CO2 reduction exemplified by indium oxide systems.
Collapse
|
109
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|