101
|
Josephs KA, Whitwell JL, Knopman DS, Boeve BF, Vemuri P, Senjem ML, Parisi JE, Ivnik RJ, Dickson DW, Petersen RC, Jack CR. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 2009; 73:1443-50. [PMID: 19884571 DOI: 10.1212/wnl.0b013e3181bf9945] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Right temporal frontotemporal dementia (FTD) is an anatomic variant of FTD associated with relatively distinct behavioral and cognitive symptoms. We aimed to determine whether right temporal FTD is a homogeneous clinical, imaging, and pathologic/genetic entity. METHODS In this case-control study, 101 subjects with FTD were identified. Atlas-based parcellation generated temporal, frontal, and parietal grey matter volumes which were used to identify subjects with a right temporal dominant atrophy pattern. Clinical, neuropsychological, genetic, and neuropathologic features were reviewed. The subjects with right temporal FTD were grouped by initial clinical diagnosis and voxel-based morphometry was used to assess grey matter loss in the different groups, compared to controls, and each other. RESULTS We identified 20 subjects with right temporal FTD. Twelve had been initially diagnosed with behavioral variant FTD (bvFTD), and the other 8 with semantic dementia (SMD). Personality change and inappropriate behaviors were more frequent in the bvFTD group, while prosopagnosia, word-finding difficulties, comprehension problems, and topographagnosia were more frequent in the SMD group. The bvFTD group showed greater loss in frontal lobes than the SMD group. The SMD group showed greater fusiform loss than the bvFTD group. All 8 bvFTD subjects with pathologic/genetic diagnosis showed abnormalities in tau protein (7 with tau mutations), while all three SMD subjects with pathology showed abnormalities in TDP-43 (p = 0.006). CONCLUSIONS We have identified 2 subtypes of right temporal variant frontotemporal dementia (FTD) allowing further differentiation of FTD subjects with underlying tau pathology from those with TDP-43 pathology.
Collapse
Affiliation(s)
- K A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Temporoparietal atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol Aging 2009; 32:1531-41. [PMID: 19914744 DOI: 10.1016/j.neurobiolaging.2009.10.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 10/05/2009] [Accepted: 10/18/2009] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) can present with non-amnestic clinical syndromes. We investigated whether there is an imaging signature of AD pathology in these atypical subjects. We identified 14 subjects that had pathological AD, a non-amnestic presentation (i.e. atypical AD), and MRI. These subjects were matched to 14 with clinical and pathological AD (i.e. typical AD), 14 with the same non-amnestic presentations with frontotemporal lobar degeneration (FTLD) pathology, and 20 controls. Voxel-based morphometry and region-of-interest (ROI) analysis were used to assess patterns of grey matter loss. Loss was observed in the temporoparietal cortex in both typical and atypical AD, and showed significantly greater loss than FTLD. However, the medial temporal lobes were more severely affected in typical AD and FTLD compared to atypical AD. A ratio of hippocampal and temporoparietal volumes provided excellent discrimination of atypical AD from FTLD subjects. Temporoparietal atrophy may therefore provide a useful marker of the presence of AD pathology even in subjects with atypical clinical presentations, especially in the context of relative sparing of the hippocampus.
Collapse
|
103
|
Whitwell JL, Jack CR, Boeve BF, Senjem ML, Baker M, Ivnik RJ, Knopman DS, Wszolek ZK, Petersen RC, Rademakers R, Josephs KA. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology 2009; 73:1058-65. [PMID: 19786698 DOI: 10.1212/wnl.0b013e3181b9c8b9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To use a case-control study to assess and compare patterns of gray matter loss across groups of subjects with different mutations in the microtubule-associated protein tau (MAPT) gene. METHODS We identified all subjects from Mayo Clinic, Rochester, Minnesota, that screened positive for mutations in MAPT and had a head MRI (n = 22). Voxel-based morphometry was used to assess patterns of gray matter atrophy in groups of subjects with the IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M mutations compared with age- and sex-matched controls. RESULTS All MAPT groups showed gray matter loss in the anterior temporal lobes, with varying degrees of involvement of the frontal and parietal lobes. Within the temporal lobe, the subjects with IVS10+16, IVS10+3, N279K, and S305N mutations (mutations that influence the alternative splicing of tau pre-messenger RNA) all showed gray matter loss focused on the medial temporal lobes. In contrast to these groups, the subjects with P301L or V337M mutations (mutations that affect the structure of the tau protein) both showed gray matter loss focused on the lateral temporal lobes, with a relative sparing of the medial temporal lobe. CONCLUSION There seem to be differences in patterns of temporal lobe atrophy across the MAPT mutations, which may aid in the differentiation of the different mutation carriers. Furthermore, there seems to be a possible association between mutation function and pattern of temporal lobe atrophy.
Collapse
Affiliation(s)
- J L Whitwell
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Despite the current enthusiasm for neuroimaging as a key method in translational neuroscience, there is a lack of debate about the nosological framework within which neuroimaging measures should be related to diagnostic categories. Here, the aim was to stimulate a debate about the role of cognitive neuroscience and neuroimaging in mediating between molecular/genetic, clinical diagnostic, and symptom-based descriptions of neuropsychiatric disorders. The diagnostic role of neuroimaging in translational neuroscience is stressed, namely, to be combined with cognitive measures to define cognitive-anatomical syndromes as an intermediate diagnostic category that mediates between clinical diagnoses and psychoreactive as well as neurobiological etiologic factors. This multilevel approach will be illustrated by reviewing recent insights into the cognitive-anatomical basis of inappropriate social behavior and social knowledge in frontotemporal dementia and by discussing its implications for the study of neuropsychiatric disorders such as major depressive disorder in which neuroanatomical abnormalities are more subtle.
Collapse
Affiliation(s)
- Roland Zahn
- University of Manchester, School of Psychological Sciences, Neuroscience and Aphasia Research Unit, Manchester, UK.
| |
Collapse
|
105
|
Whitwell JL, Przybelski SA, Weigand SD, Ivnik RJ, Vemuri P, Gunter JL, Senjem ML, Shiung MM, Boeve BF, Knopman DS, Parisi JE, Dickson DW, Petersen RC, Jack CR, Josephs KA. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 2009; 132:2932-46. [PMID: 19762452 DOI: 10.1093/brain/awp232] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
Collapse
Affiliation(s)
- Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Zemlyak I, Sapolsky R, Gozes I. NAP protects against cyanide-related microtubule destruction. J Neural Transm (Vienna) 2009; 116:1411-6. [DOI: 10.1007/s00702-009-0252-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/29/2009] [Indexed: 11/28/2022]
|
107
|
Lillo P, Hodges JR. Frontotemporal dementia and motor neurone disease: overlapping clinic-pathological disorders. J Clin Neurosci 2009; 16:1131-5. [PMID: 19556136 DOI: 10.1016/j.jocn.2009.03.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/03/2009] [Accepted: 03/12/2009] [Indexed: 12/11/2022]
Abstract
Advances in genetics and pathology have supported the idea of a continuum between frontotemporal dementia (FTD) and motor neurone disease (MND), which is strengthened by the discovery of the trans-activating responsive (Tar) sequence DNA binding protein (TDP-43) as a key component in the underlying pathology of FTD, FTD-MND and sporadic and familial MND patients. MND is a multisystem disorder associated with cognitive and behavioural changes which in some instances reaches the criteria for FTD, while a proportion of patients with FTD develop frank MND. We review the overlap between FTD and MND, emphasizing areas of controversy and uncertainty.
Collapse
Affiliation(s)
- Patricia Lillo
- Prince of Wales Medical Research Institute, Barker St, Randwick, New South Wales 2031, Australia
| | | |
Collapse
|
108
|
Mesulam M, Rogalski E, Wieneke C, Cobia D, Rademaker A, Thompson C, Weintraub S. Neurology of anomia in the semantic variant of primary progressive aphasia. Brain 2009; 132:2553-65. [PMID: 19506067 DOI: 10.1093/brain/awp138] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The semantic variant of primary progressive aphasia (PPA) is characterized by the combination of word comprehension deficits, fluent aphasia and a particularly severe anomia. In this study, two novel tasks were used to explore the factors contributing to the anomia. The single most common factor was a blurring of distinctions among members of a semantic category, leading to errors of overgeneralization in word-object matching tasks as well as in word definitions and object descriptions. This factor was more pronounced for natural kinds than artifacts. In patients with the more severe anomias, conceptual maps were more extensively disrupted so that inter-category distinctions were as impaired as intra-category distinctions. Many objects that could not be named aloud could be matched to the correct word in patients with mild but not severe anomia, reflecting a gradual intensification of the semantic factor as the naming disorder becomes more severe. Accurate object descriptions were more frequent than accurate word definitions and all patients experienced prominent word comprehension deficits that interfered with everyday activities but no consequential impairment of object usage or face recognition. Magnetic resonance imaging revealed three characteristics: greater atrophy of the left hemisphere; atrophy of anterior components of the perisylvian language network in the superior and middle temporal gyri; and atrophy of anterior components of the face and object recognition network in the inferior and medial temporal lobes. The left sided asymmetry and perisylvian extension of the atrophy explains the more profound impairment of word than object usage and provides the anatomical basis for distinguishing the semantic variant of primary progressive aphasia from the partially overlapping group of patients that fulfil the widely accepted diagnostic criteria for semantic dementia.
Collapse
Affiliation(s)
- Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
109
|
|
110
|
Whitwell JL, Jack CR, Senjem ML, Parisi JE, Boeve BF, Knopman DS, Dickson DW, Petersen RC, Josephs KA. MRI correlates of protein deposition and disease severity in postmortem frontotemporal lobar degeneration. NEURODEGENER DIS 2009; 6:106-17. [PMID: 19299900 DOI: 10.1159/000209507] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/06/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) can be classified based on the presence of the microtubule-associated protein tau and the TAR DNA binding protein-43 (TDP-43). Future treatments will likely target these proteins, therefore it is important to identify biomarkers to help predict protein biochemistry. OBJECTIVE To determine whether there is an MRI signature pattern of tau or TDP-43 using a large cohort of FTLD subjects and to investigate how patterns of atrophy change according to disease severity using a large autopsy-confirmed cohort of FTLD subjects. METHODS Patterns of gray matter loss were assessed using voxel-based morphometry in 37 tau-positive and 44 TDP-43-positive subjects compared to 35 age and gender-matched controls, and compared to each other. Comparisons were also repeated in behavioral variant frontotemporal dementia (bvFTD) subjects (n = 15 tau-positive and n = 30 TDP-43-positive). Patterns of atrophy were also assessed according to performance on the Clinical Dementia Rating (CDR) scale and Mini-Mental State Examination (MMSE). RESULTS The tau-positive and TDP-43-positive groups showed patterns of frontotemporal gray matter loss compared to controls with no differences observed between the groups, for all subjects and for bvFTD subjects. Patterns of gray matter loss increased in a graded manner by CDR and MMSE with loss in the frontal lobes, insula and hippocampus in mild subjects, spreading to the temporal and parietal cortices and striatum in more advanced disease. CONCLUSION There is no signature pattern of atrophy for tau or TDP-43; however, patterns of atrophy in FTLD progress with measures of clinical disease severity.
Collapse
|
111
|
Abstract
Primary progressive aphasia is defined as an insidious, gradual impairment of language function, which is not accompanied by other cognitive disorders for at least 2 years after onset, and which can be due to a number of neurodegenerative disorders, such as the different varieties of frontotemporal dementia or Alzheimer’s disease. The clinical presentations are heterogeneous, as they faithfully reflect the preferential location of pathological involvement within the language networks. A careful definition of the clinical phenotypes of primary progressive aphasia is contributing to the understanding of language organization in the brain. Moreover, the predictive value of the clinical phenotype as to the underlying pathology has important implications for clinical trials of disease-modifying drugs.
Collapse
Affiliation(s)
- Stefano F Cappa
- Vita-Salute San Raffaele University, and, San Raffaele Scientific Institute, and, National Neuroscience Institute, DIBIT, Via Olgettina 58, 20132 Milan, Italy
| | | |
Collapse
|
112
|
Criteria for the neuropathological diagnosis of dementing disorders: routes out of the swamp? Acta Neuropathol 2009; 117:101-10. [PMID: 19052757 DOI: 10.1007/s00401-008-0466-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/24/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
There are several consensus criteria for both the clinical and neuropathological diagnosis of different types of dementias. The clinical diagnostic accuracy using revised research criteria and newly developed biomarkers (MRI, PET, CSF analysis, genetic markers) ranges from 65 to 96% (for Alzheimer disease) with a specificity of diagnostic criteria versus other dementias of 23-88%. Neuropathological assessment of dementing disorders using immunohistochemistry, molecular biologic and genetic methods can achieve a diagnosis/classification, based on the homogeneous definitions, harmonized inter-laboratory methods and standards for the assessment of nervous system lesions, in about 99%, without, however, being able to clarify the causes/etiology of most of these disorders. Further prospective and concerted clinicopathological studies using revised methodological and validated protocols and uniform techniques are required to establish the nature, distribution pattern and grades of lesions and; thus, to overcome the limitations of the current diagnostic framework. By data fusion this my allow their more uniform application and correlation with the clinical data in order to approach a diagnostic "gold standard", and to create generally accepted criteria for differentiating cognitive disorders from healthy brain aging. The detection of disease-specific pathologies will be indispensable to determinate the efficacy of new therapy options.
Collapse
|
113
|
|
114
|
Davion S, Johnson N, Weintraub S, Mesulam MM, Engberg A, Mishra M, Baker M, Adamson J, Hutton M, Rademakers R, Bigio EH. Clinicopathologic correlation in PGRN mutations. Neurology 2007; 69:1113-21. [PMID: 17522386 PMCID: PMC3545400 DOI: 10.1212/01.wnl.0000267701.58488.69] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) has been linked to the microtubule associated protein tau (MAPT) gene region of chromosome 17. However, many chromosome-17 linked FTLDs do not have MAPT mutations or tau protein deposits, but have ubiquitin positive, tau and alpha-synuclein negative inclusions. Mutations in the progranulin (PGRN) gene, located 1.7 Mb from MAPT at 17q21.31, were recently discovered in some of these individuals. The pathologic phenotype in all cases has thus far included ubiquitinated neuronal intranuclear inclusions (NIIs) and neuronal cytoplasmic inclusions (NCIs). METHODS PGRN mutation analysis was performed in 12 individuals. Informed consent was obtained from next of kin under an IRB-approved protocol. We compared clinical and pathologic findings in those cases with and without PGRN mutations. RESULTS PGRN mutations were found in four patients, two with clinical FTD and a positive family history, and two with clinical primary progressive aphasia (PPA), one with and one without a family history. All four cases with, and five of eight cases without, PGRN mutations had ubiquitinated NCIs and NIIs. Brains of individuals with PGRN mutations are associated with more frequent frontal NCIs and dystrophic neurites, less frequent dentate gyrus NCIs, and more frequent striatal NIIs than FTLD-U cases without PGRN mutations. CONCLUSION PGRN mutations at 17q21 may occur in apparently sporadic frontotemporal lobar dementia with ubiquitinated inclusions cases and in cases presenting with either primary progressive aphasia or the behavioral variant of frontotemporal dementia. Some cases without PGRN mutations also have ubiquitinated neuronal intranuclear inclusions. Clinicopathologic differences are observed among individuals with and without PGRN mutations.
Collapse
Affiliation(s)
- S Davion
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|