101
|
Liu Y, Liu L, Li S, Wang G, Ju H, Ding L. Filter Beacon: A Gating-Free Architecture for Protein-Specific Glycoform Imaging on Cell Surface. Anal Chem 2019; 91:6027-6034. [DOI: 10.1021/acs.analchem.9b00551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Lu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
102
|
Fluorometric determination of HIV DNA using molybdenum disulfide nanosheets and exonuclease III-assisted amplification. Mikrochim Acta 2019; 186:286. [DOI: 10.1007/s00604-019-3368-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
|
103
|
Xu W, Zhao A, Zuo F, Hussain HMJ. A graphene oxide-based hairpin probe coupling duplex-specific nuclease signal amplification for detection and imaging of mRNA in living cells. Talanta 2019; 195:732-738. [PMID: 30625609 DOI: 10.1016/j.talanta.2018.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022]
Abstract
In situ imaging of mRNA in living cells can help to monitor the real time mRNA expression and also useful for diagnosis and prognosis of the diseases. In this study, a new strategy was designed for simple, sensitive, and selective platform to detect the mRNA levels by combining a hairpin probe-graphene oxide (HP1/GO) and duplex-specific nuclease signal amplification (DSNSA). Initially, the DNA probe was adsorbed on the surface of GO to protect it from enzymatic digestion. Then, the target mRNA (T1) was hybridized with a partial hairpin probe which formed a duplex. Finally, under the action of DSN nuclease, the ssDNA in the DNA/RNA hybrid was selectively cleaved and produced small fragments. Then, T1 triggered the next reaction cycle, constituting a new circular exponential amplification. Here, we conclude that this assay is highly sensitive for the detection of target mRNA with the lower detection limit of 1 fM under optimal conditions. Furthermore, this strategy was successfully used for imaging of mRNA in living cells.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Aiwu Zhao
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Fangtao Zuo
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China
| | | |
Collapse
|
104
|
Zhang B, Maimaiti Y, Liu C, Li J, Wang H, Lin H, Deng Z, Lu X, Zhang X. Direct detection of Staphylococcus aureus in positive blood cultures through molecular beacon-based fluorescence in situ hybridization. J Microbiol Methods 2019; 159:34-41. [PMID: 30776392 DOI: 10.1016/j.mimet.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Clinical diagnosis of bloodstream infection diseases depends on the blood culture results. Bacterial identification by traditional methods is time-consuming. This study aimed to utilize molecular beacon-based fluorescence in situ hybridization (MB-FISH) for rapid and direct detection of Staphylococcus aureus in positive blood cultures. METHODS Three molecular beacon probes (MB1, MB2 and MB3) were designed and synthesized to target the 16S rRNA gene fragment of S. aureus. The MB-FISH system was optimized, and the specificity of this method in detecting S. aureus was evaluated. This approach was used to test 41 g-positive clinical specimens with positive blood cultures. In addition, the consistency of this method with traditional methods was evaluated. RESULTS Signal-to-noise ratio (S/N) of the molecular beacon MB1 was significantly higher than that of MB2 and MB3 (P < .001). The S/N ratios of MB1 probe at different concentrations were all >20. Thermal denaturation curve of the probe suggested that its hairpin structure can be opened and closed. Conditions such as deionized formamide concentration, ionic strength and temperature were optimized by monitoring the fluorescence intensity of MB1 in the presence or absence of its target sequence B1. The optimized hybridization system produced fluorescence only in S. aureus. The specificity and sensitivity of MB1 probe for detecting S. aureus in 41 specimens were 100% and 93.75%, respectively. Although sample size was small, MB-FISH appeared to be consistent with traditional culture methods (Kappa value = 0.948). CONCLUSION MB-FISH demonstrates strong specificity and high sensitivity, and can be used for direct detection of S. aureus in positive blood cultures.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China; Medical School of Shihezi University, Shihezi, Xinjiang, China
| | - Yibeibaihan Maimaiti
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Chunyan Liu
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Jing Li
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Haiye Wang
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Haojie Lin
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Zhaohui Deng
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Xinhong Lu
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China
| | - Xin Zhang
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps/Second Affiliated Hospital, Medical School of Shihezi University, Urumqi, Xinjiang, China.
| |
Collapse
|
105
|
Wang Y, Dong Z, Hu H, Yang Q, Hou X, Wu P. DNA-modulated photosensitization: current status and future aspects in biosensing and environmental monitoring. Anal Bioanal Chem 2019; 411:4415-4423. [PMID: 30734855 DOI: 10.1007/s00216-019-01605-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Recently, photosensitized oxidation has been explored in many fields of research and applications, such as photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT). Although the photosensitized generation of ROS features emerging applications, controllable management of the photosensitization process is still sometimes problematic. DNA has long been considered the carrier for genetic information. With the in-depth study of the chemical properties of DNA, the molecular function of DNA is gradually witnessed by the scientific community. Undoubtedly, the selective recognition nature of DNA endows them excellent candidate modulators for photosensitized oxidation. According to current research, reports on DNA regulation of photosensitized oxidation can be roughly divided into two categories in principle: P-Q quenching pair-switched photosensitization and host-guest interaction-switched photosensitization. In this review, the development status of these two analytical methods will be summarized, and the future development direction of DNA-modulated photosensitization in biosensing and environmental monitoring will also be prospected.
Collapse
Affiliation(s)
- Yanying Wang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhen Dong
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Hu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Qing Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xiandeng Hou
- College of Chemistry, Sichuan University, Chengdu, 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China. .,Analytical & Testing Center, Sichuan University, Chengdu, 610064, China. .,State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
106
|
Yang S, Yang C, Huang D, Song L, Chen J, Yang Q. Recent Progress in Fluorescence Signal Design for DNA-Based Logic Circuits. Chemistry 2019; 25:5389-5405. [PMID: 30328639 DOI: 10.1002/chem.201804420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Indexed: 01/06/2023]
Abstract
DNA-based logic circuits, encoding algorithms in DNA and processing information, are pushing the frontiers of molecular computers forward, owing to DNA's advantages of stability, accessibility, manipulability, and especially inherent biological significance and potential medical application. In recent years, numerous logic functions, from arithmetic to nonarithmetic, have been realized based on DNA. However, DNA can barely provide a detectable signal by itself, so that the DNA-based circuits depend on extrinsic signal actuators. The signal strategy of carrying out a response is becoming one of the design focuses in DNA-based logic circuit construction. Although work on sequence and structure design for DNA-based circuits has been well reviewed, the strategy on signal production lacks comprehensive summary. In this review, we focused on the latest designs of fluorescent output for DNA-based logic circuits. Several basic strategies are summarized and a few designs for developing multi-output systems are provided. Finally, some current difficulties and possible opportunities were also discussed.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunrong Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Dan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lingbo Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jianchi Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qianfan Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
107
|
Cao SH, Weng YH, Xie KX, Wang ZC, Pan XH, Chen M, Zhai YY, Xu LT, Li YQ. Surface Plasmon Coupled Fluorescence-Enhanced Interfacial “Molecular Beacon” To Probe Biorecognition Switching: An Efficient, Versatile, and Facile Signaling Biochip. ACS APPLIED BIO MATERIALS 2019; 2:625-629. [DOI: 10.1021/acsabm.8b00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo-Hui Cao
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, P. R. China
| | - Yu-Hua Weng
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai-Xin Xie
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zheng-Chuang Wang
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiao-Hui Pan
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Min Chen
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Yun Zhai
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lin-Tao Xu
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
108
|
Lyalina TA, Goncharova EA, Prokofeva NY, Voroshilina ES, Kolpashchikov DM. A DNA minimachine for selective and sensitive detection of DNA. Analyst 2019; 144:416-420. [DOI: 10.1039/c8an02274g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic molecular machines have been explored to manipulate matter at the molecular level.
Collapse
Affiliation(s)
- Tatiana A. Lyalina
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Ekaterina A. Goncharova
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Nadezhda Y. Prokofeva
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
| | - Ekaterina S. Voroshilina
- Ural State Medical University
- Department of Microbiology
- Virology and immunology
- Ekaterinburg
- Russian Federation
| | - Dmitry M. Kolpashchikov
- ITMO University
- Laboratory of Solution Chemistry of Advanced Materials and Technologies
- St. Petersburg
- Russian Federation
- Chemistry Department
| |
Collapse
|
109
|
Jorge AF, Eritja R. Overview of DNA Self-Assembling: Progresses in Biomedical Applications. Pharmaceutics 2018; 10:E268. [PMID: 30544945 PMCID: PMC6320858 DOI: 10.3390/pharmaceutics10040268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Molecular self-assembling is ubiquitous in nature providing structural and functional machinery for the cells. In recent decades, material science has been inspired by the nature's assembly principles to create artificially higher-order structures customized with therapeutic and targeting molecules, organic and inorganic fluorescent probes that have opened new perspectives for biomedical applications. Among these novel man-made materials, DNA nanostructures hold great promise for the modular assembly of biocompatible molecules at the nanoscale of multiple shapes and sizes, designed via molecular programming languages. Herein, we summarize the recent advances made in the designing of DNA nanostructures with special emphasis on their application in biomedical research as imaging and diagnostic platforms, drug, gene, and protein vehicles, as well as theranostic agents that are meant to operate in-cell and in-vivo.
Collapse
Affiliation(s)
- Andreia F Jorge
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
110
|
Lopez A, Liu J. DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry, Biointerfaces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15000-15013. [PMID: 29936848 DOI: 10.1021/acs.langmuir.8b01368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Interfacing DNA with liposomes has produced a diverse range of programmable soft materials, devices, and drug delivery vehicles. By simply controlling liposomal composition, bilayer fluidity, lipid domain formation, and surface charge can be systematically varied. Recent development in DNA research has produced not only sophisticated nanostructures but also new functions including ligand binding and catalysis. For noncationic liposomes, a DNA is typically covalently linked to a hydrophobic or lipid moiety that can be inserted into lipid membranes. In this article, we discuss fundamental biointerfaces formed between DNA and noncationic liposomes. The methods to prepare such conjugates and the interactions at the membrane interfaces are also discussed. The effect of DNA lateral diffusion on fluid bilayer membranes and the effect of membrane on DNA assembly are emphasized. DNA hybridization can be programmed to promote fusion of lipid membranes. Representative applications of this conjugate for drug delivery, biosensor development, and directed assembly of materials are briefly described toward the end. Some future research directions are also proposed to further understand this biointerface.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
111
|
Chamiolo J, Fang GM, Hövelmann F, Friedrich D, Knoll A, Loewer A, Seitz O. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging. Chembiochem 2018; 20:595-604. [PMID: 30326174 PMCID: PMC6470956 DOI: 10.1002/cbic.201800526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/19/2022]
Abstract
Fluorogenic oligonucleotide probes allow mRNA imaging in living cells. A key challenge is the cellular delivery of probes. Most delivery agents, such as cell‐penetrating peptides (CPPs) and pore‐forming proteins, require interactions with the membrane. Charges play an important role. To explore the influence of charge on fluorogenic properties and delivery efficiency, we compared peptide nucleic acid (PNA)‐ with DNA‐based forced intercalation (FIT) probes. Perhaps counterintuitively, fluorescence signaling by charged DNA FIT probes proved tolerant to CPP conjugation, whereas CPP–FIT PNA conjugates were affected. Live‐cell imaging was performed with a genetically engineered HEK293 cell line to allow the inducible expression of a specific mRNA target. Blob‐like features and high background were recurring nuisances of the tested CPP and lipid conjugates. By contrast, delivery by streptolysin‐O provided high enhancements of the fluorescence of the FIT probe upon target induction. Notably, DNA‐based FIT probes were brighter and more responsive than PNA‐based FIT probes. Optimized conditions enabled live‐cell multicolor imaging of three different mRNA target sequences.
Collapse
Affiliation(s)
- Jasmine Chamiolo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P.R. China
| | - Felix Hövelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Dhana Friedrich
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Andrea Knoll
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| | - Alexander Loewer
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Strasse 10, 13125, Berlin, Germany.,Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 13, 64287, Darmstadt, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12849, Berlin, Germany
| |
Collapse
|
112
|
Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta 2018; 190:248-254. [DOI: 10.1016/j.talanta.2018.07.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
|
113
|
Mueller C, Grossmann TN. Coiled-Coil Peptide Beacon: A Tunable Conformational Switch for Protein Detection. Angew Chem Int Ed Engl 2018; 57:17079-17083. [PMID: 30411434 PMCID: PMC6391972 DOI: 10.1002/anie.201811515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Indexed: 11/12/2022]
Abstract
The understanding of protein folding and assembly is of central importance for the design of proteins and enzymes with novel or improved functions. Minimalistic model systems, such as coiled-coils, provide an excellent platform to improve this understanding and to construct novel molecular devices. Along those lines, we designed a conformational switch that is composed of two coiled-coil forming peptides and a central binding epitope. In the absence of a binding partner, this switch adopts a hairpin-like conformation that opens upon receptor binding. Variation of the coiled-coil length modulates the strength of the intramolecular constraint. The two conformational states of this switch have been linked with characteristic fluorescent properties, which enables the detection of the receptor in real-time.
Collapse
Affiliation(s)
- Carolin Mueller
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tom N Grossmann
- VU University Amsterdam, Department of Chemistry & Pharmaceutical Sciences, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
114
|
Mueller C, Grossmann TN. Coiled‐Coil Peptide Beacon: A Tunable Conformational Switch for Protein Detection. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carolin Mueller
- VU University Amsterdam Department of Chemistry & Pharmaceutical Sciences De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tom N. Grossmann
- VU University Amsterdam Department of Chemistry & Pharmaceutical Sciences De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
115
|
Lu S, Wang S, Zhao J, Sun J, Yang X. Classical Triplex Molecular Beacons for MicroRNA-21 and Vascular Endothelial Growth Factor Detection. ACS Sens 2018; 3:2438-2445. [PMID: 30350592 DOI: 10.1021/acssensors.8b00996] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Triplex molecular beacons (tMBs) possess great potential in biological sensing because of the pH responsiveness and controllability of binding strength. Here, we systematically investigate and rationally design a classical tMB for convenient detection of microRNA-21, a well-known biomarker of cardio-cerebrovascular diseases. In the tMB, we employ the complementary sequence of miR-21 as the loop and the sequences of protonated cytosine-guanine-cytosine (C-G•C+) and thymine-adenine-thymine (T-A•T) as the triplex stem, in which both the Watson-Crick and Hoogsteen base-pairing control the binding strength in cooperation. It is demonstrated for the first time that the presence of miR-21 would only break the Hoogsteen base-pairing in the stem and hybridize with the tMB to form the rigid heterozygous hybrid duplex structure. These would hinder the fluorescence resonance energy transfer (FRET) between the fluorophore (FAM) and quencher (BHQ1) labeled at the ends of the oligonucleotide, and the fluorescence recovery degree of FAM can be used as the standard to quantitate the miR-21. More significantly, the excellent adjustability and sensitivity of our tMBs have been confirmed by constructing the corresponding duplex molecular beacon (dMB) for comparison. The fluorophore FAM in the tMB could be replaced by the fluorescent DNA/silver nanoclusters, which exhibits the universal applicability of energy donor and receptor selection for tMB. Furthermore, our proposed tMB could also be developed as an aptasensor for the detection of vascular endothelial growth factor (VEGF) by only introducing the complementary sequence of its aptamer into the tMB. This work is of great significance for the systematic study of tMBs for the detection of biomarkers such as nucleic acids and proteins.
Collapse
Affiliation(s)
- Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
116
|
Xu J, Hu Y, Guo J, Yang Y, Qiu J, Li X, Xin Z. A Loop-Mediated Isothermal Amplification Integrated G-Quadruplex Molecular Beacon (LAMP-GMB) Method for the Detection of Staphylococcus aureus in Food. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1373-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
117
|
Kamoto S, Hyuga M, Kato T. Fluorescence detection of single-nucleotide differences using aptamer-forming binary DNA probes. Analyst 2018; 141:6087-6092. [PMID: 27540601 DOI: 10.1039/c6an00912c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a simple method for fluorescence detection of single-nucleotide alterations in a long target DNA, which is based on the formation of a three-way-junction-structured cholic-acid-binding DNA aptamer by the hybridization of the target with binary DNA probes. The new method was successfully exploited for SNP genotyping of human CYP2C19 gene.
Collapse
Affiliation(s)
- Saori Kamoto
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Masumi Hyuga
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| | - Teru Kato
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
118
|
Ruiz-Tórtola Á, Prats-Quílez F, González-Lucas D, Bañuls MJ, Maquieira Á, Wheeler G, Dalmay T, Griol A, Hurtado J, Bohlmann H, Götzen R, García-Rupérez J. Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. JOURNAL OF BIOPHOTONICS 2018; 11:e201800030. [PMID: 29664230 DOI: 10.1002/jbio.201800030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/12/2018] [Indexed: 05/20/2023]
Abstract
An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probes-upon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensors-is reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5' termination. Those MBs incorporate a biotin moiety close to their 3' termination in order to selectively bind a streptavidin molecule to them. The different photonic sensing responses obtained toward the target oligonucleotide detection, when the streptavidin molecule was bound to the MB probes or not, demonstrate the conformational change suffered by the MB upon hybridization, which promotes the displacement of the streptavidin molecule away from the surface of the photonic sensing structure.
Collapse
Affiliation(s)
- Ángela Ruiz-Tórtola
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| | | | - Daniel González-Lucas
- Departamento de Química, IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - María-José Bañuls
- Departamento de Química, IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - Ángel Maquieira
- Departamento de Química, IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - Guy Wheeler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| | - Juan Hurtado
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| | - Helge Bohlmann
- microTEC Gesellschaft für Mikrotechnologie mbH, Duisburg, Germany
| | - Reiner Götzen
- microTEC Gesellschaft für Mikrotechnologie mbH, Duisburg, Germany
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
119
|
Oh SW, Pereira A, Zhang T, Li T, Lane A, Fu J. DNA‐Mediated Proximity‐Based Assembly Circuit for Actuation of Biochemical Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sung Won Oh
- Center for Computational and Integrative Biology Rutgers University—Camden 315 Penn Street, Science Building Camden NJ 08102 USA
| | - Adriana Pereira
- Department of Chemistry Rutgers University—Camden 315 Penn Street Camden NJ 08102 USA
| | - Ting Zhang
- Center for Computational and Integrative Biology Rutgers University—Camden 315 Penn Street, Science Building Camden NJ 08102 USA
- Department of Chemistry Rutgers University—Camden 315 Penn Street Camden NJ 08102 USA
| | - Tianran Li
- Center for Computational and Integrative Biology Rutgers University—Camden 315 Penn Street, Science Building Camden NJ 08102 USA
| | - Ariel Lane
- Department of Chemistry Rutgers University—Camden 315 Penn Street Camden NJ 08102 USA
| | - Jinglin Fu
- Center for Computational and Integrative Biology Rutgers University—Camden 315 Penn Street, Science Building Camden NJ 08102 USA
- Department of Chemistry Rutgers University—Camden 315 Penn Street Camden NJ 08102 USA
| |
Collapse
|
120
|
Oh SW, Pereira A, Zhang T, Li T, Lane A, Fu J. DNA-Mediated Proximity-Based Assembly Circuit for Actuation of Biochemical Reactions. Angew Chem Int Ed Engl 2018; 57:13086-13090. [PMID: 30129087 DOI: 10.1002/anie.201806749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/25/2018] [Indexed: 01/09/2023]
Abstract
Smart nanodevices that integrate molecular recognition and signal production hold great promise for the point-of-care (POC) diagnostic applications. Herein, the development of a DNA-mediated proximity assembly of biochemical reactions, which was capable of sensing various bio-targets and reporting easy-to-read signals is reported. The circuit was composed of a DNA hairpin-locked catalytic cofactor with inhibited activity. Specific molecular inputs can trigger a conformational switch of the DNA locks through the mechanisms of toehold displacement and aptamer switching, exposing an active cofactor. The subsequent assembly of an enzyme/cofactor pair actuated a reaction to produce colorimetric or fluorescence signals for detecting target molecules. The developed system could be potentially applied to smart biosensing in molecular diagnostics and POC tests.
Collapse
Affiliation(s)
- Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Science Building, Camden, NJ, 08102, USA
| | - Adriana Pereira
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Ting Zhang
- Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Science Building, Camden, NJ, 08102, USA
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Tianran Li
- Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Science Building, Camden, NJ, 08102, USA
| | - Ariel Lane
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Jinglin Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Science Building, Camden, NJ, 08102, USA
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| |
Collapse
|
121
|
Jiménez-Meneses P, Bañuls MJ, Puchades R, Maquieira Á. Fluor-thiol Photocoupling Reaction for Developing High Performance Nucleic Acid (NA) Microarrays. Anal Chem 2018; 90:11224-11231. [DOI: 10.1021/acs.analchem.8b00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pilar Jiménez-Meneses
- Departamento de Química, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María-José Bañuls
- Departamento de Química, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Rosa Puchades
- Departamento de Química, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ángel Maquieira
- Departamento de Química, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
122
|
Huang F, Lin M, Duan R, Lou X, Xia F, Willner I. Photoactivated Specific mRNA Detection in Single Living Cells by Coupling "Signal-on" Fluorescence and "Signal-off" Electrochemical Signals. NANO LETTERS 2018; 18:5116-5123. [PMID: 29998736 DOI: 10.1021/acs.nanolett.8b02004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The spatiotemporal detection of a target mRNA in a single living cell is a major challenge in nanoscience and nanomedicine. We introduce a versatile method to detect mRNA at a single living cell level that uses photocleavable hairpin probes as functional units for the optical (fluorescent) and electrochemical (voltammetric) detection of MnSOD mRNA in single MCF-7 cancer cells. The fluorescent probe is composed of an ortho-nitrophenylphosphate ester functionalized hairpin that includes the FAM fluorophore in a caged configuration quenched by Dabcyl. The fluorescent probe is further modified with the AS1411 aptamer to facilitate the targeting and internalization of the probe into the MCF-7 cells. Under UV irradiation, the hairpin is cleaved, leading to the intracellular mRNA toehold-stimulated displacement of the FAM-functionalized strand resulting in a switched-on fluorescence signal upon the detection of the mRNA in a single cell. In addition, a nanoelectrode functionalized with a methylene blue (MB) redox-active photocleavable hairpin is inserted into the cytoplasm of a single MCF-7 cell. Photocleavage of the hairpin leads to the mRNA-mediated toehold displacement of the redox-active strand associated with the probe, leading to the depletion of the voltammetric response of the probe. The parallel optical and electrochemical detection of the mRNA at a single cell level is demonstrated.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
123
|
Hu P, Li M, Wei X, Yang B, Li Y, Li CY, Du J. Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors. Anal Chem 2018; 90:9751-9760. [PMID: 30040891 DOI: 10.1021/acs.analchem.8b01202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toehold-mediated DNA strand displacement has proven powerful in the construction of various DNA circuits, DNA machines, and biosensors. So far, many new toehold activation mechanisms have been developed to achieve programmed DNA strand displacement behaviors. However, almost all those toeholds are inflexible via either a covalently attached manner or a complementary hybridization strategy, which limit the versatility of DNA devices. To solve this problem, we developed a new toehold, named "cooperative toehold", to activate DNA strand displacement. On the basis of a base stacking mechanism, the cooperative toehold is comprised of two moieties with completely independent DNA sequences between each other. The cooperative toehold enabled one to continuously tune the rate of DNA strand displacement, as well as more sophisticated strand displacement reactions. The cooperative toehold has also been employed as a universal signal translator for biosensors to qualitatively determine RNA and ATP. Moreover, as a novel specific PCR monitoring system, cooperative toehold-mediated DNA strand displacement can detect the pUC18 plasmid in genomic DNA samples with an aM detection limit.
Collapse
Affiliation(s)
- Pan Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Mengmeng Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Xijiao Wei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Jun Du
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| |
Collapse
|
124
|
Yan X, Le XC, Zhang H. Antibody-Bridged Beacon for Homogeneous Detection of Small Molecules. Anal Chem 2018; 90:9667-9672. [DOI: 10.1021/acs.analchem.8b02510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
125
|
Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron 2018; 111:102-116. [DOI: 10.1016/j.bios.2018.04.007] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
|
126
|
Xu H, Jiang Y, Liu D, Liu K, Zhang Y, Yu S, Shen Z, Wu ZS. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene. Anal Chim Acta 2018; 1011:86-93. [DOI: 10.1016/j.aca.2018.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 01/08/2023]
|
127
|
Cordeiro M, Otrelo-Cardoso AR, Svergun DI, Konarev PV, Lima JC, Santos-Silva T, Baptista PV. Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor. ACS Chem Biol 2018; 13:1235-1242. [PMID: 29562136 DOI: 10.1021/acschembio.8b00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.
Collapse
Affiliation(s)
- Mílton Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Ana Rita Otrelo-Cardoso
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Hamburg, Germany, 22067
| | - Petr V. Konarev
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Hamburg, Germany, 22067
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninsky prospect 59, 119333 Moscow, Russia
- National Research Centre “Kurchatov Institute”, pl. Kurchatova 1, 123182 Moscow, Russia
| | - João Carlos Lima
- LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
128
|
Castillo RR, Hernández-Escobar D, Gómez-Graña S, Vallet-Regí M. Reversible Nanogate System for Mesoporous Silica Nanoparticles Based on Diels-Alder Adducts. Chemistry 2018; 24:6992-7001. [PMID: 29493820 DOI: 10.1002/chem.201706100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/29/2022]
Abstract
The implementation of nanoparticles as nanomedicines requires sophisticated surface modifications to reduce the immune response and enhance recognition abilities. Mesoporous silica nanoparticles present extraordinary host-guest abilities and facile surface functionalization. These two factors make them ideal candidates for the development of novel drug-delivery systems, at the expense of increasing structural complexity. With this idea in mind, a system composed of triggerable and tunable silica nanoparticles was developed for application as drug-delivery nanocarriers. Diels-Alder cycloaddition adducts were chosen as thermal-responsive units that permitted the binding of gold nanocaps able to block the pores and allow the incorporation of targeting fragments. The capping efficiency was tested under different thermal conditions to give outstanding efficiencies within the physiological range and mild temperatures, as well as enhanced release under pulsing heating cycles, which showed the best release profiles.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER), Spain
| | - David Hernández-Escobar
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Dept. of Chemical Engineering and Materials Science, Michigan State University, East Lansing, 48824, MI, USA
| | - Sergio Gómez-Graña
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER), Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spain
| |
Collapse
|
129
|
Ke Y, Castro C, Choi JH. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annu Rev Biomed Eng 2018; 20:375-401. [PMID: 29618223 DOI: 10.1146/annurev-bioeng-062117-120904] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.
Collapse
Affiliation(s)
- Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Carlos Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43214, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
130
|
Ruiz-Tórtola Á, Prats-Quílez F, González-Lucas D, Bañuls MJ, Maquieira Á, Wheeler G, Dalmay T, Griol A, Hurtado J, García-Rupérez J. High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. BIOMEDICAL OPTICS EXPRESS 2018; 9:1717-1727. [PMID: 29675313 PMCID: PMC5905917 DOI: 10.1364/boe.9.001717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 05/20/2023]
Abstract
A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods.
Collapse
Affiliation(s)
- Ángela Ruiz-Tórtola
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Francisco Prats-Quílez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Daniel González-Lucas
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María-José Bañuls
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- IDM, Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Guy Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Juan Hurtado
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
131
|
Gaspar I, Hövelmann F, Chamiolo J, Ephrussi A, Seitz O. Quantitative mRNA Imaging with Dual Channel qFIT Probes to Monitor Distribution and Degree of Hybridization. ACS Chem Biol 2018; 13:742-749. [PMID: 29378392 DOI: 10.1021/acschembio.7b01007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fluorogenic oligonucleotide probes facilitate the detection and localization of RNA targets within cells. However, quantitative measurements of mRNA abundance are difficult when fluorescence signaling is based on intensity changes because a high concentration of unbound probes cannot be distinguished from a low concentration of target-bound probes. Here, we introduce qFIT (quantitative forced intercalation) probes that allow the detection both of probe-target complexes and of unbound probes on separate, independent channels. A surrogate nucleobase based on thiazole orange (TO) probes the hybridization status. The second channel involves a nonresponsive near-IR dye, which serves as a reporter of concentration. We show that the undesirable perturbation of the hybridization reporter TO is avoided when the near-IR dye Cy7 is connected by means of short triazole linkages in an ≥18 nucleotides distance. We used the qFIT probes to localize and quantify oskar mRNA in fixed egg chambers of wild-type and mutant Drosophila melanogaster by wash-free fluorescence in situ hybridization. The measurements revealed a relative 400-fold enrichment of oskar within a 3000 μm3 large volume at the posterior pole of stage 8-9 oocytes, which peaked at a remarkably high 1.8 μM local concentration inside 0.075 μm3 volume units. We discuss detection limits and show that the number of oskar mRNA molecules per oocyte is independent of the oocyte size, which suggests that the final levels are attained already during the onset of oskar localization at stage 8.
Collapse
Affiliation(s)
- Imre Gaspar
- European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Felix Hövelmann
- Institut für Chemie der Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Jasmine Chamiolo
- Institut für Chemie der Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Anne Ephrussi
- European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Oliver Seitz
- Institut für Chemie der Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
132
|
Castillo RR, Baeza A, Vallet-Regí M. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomater Sci 2018; 5:353-377. [PMID: 28105473 DOI: 10.1039/c6bm00872k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The discovery and control of the biological roles mediated by nucleic acids have turned them into a powerful tool for the development of advanced biotechnological materials. Such is the importance of these gene-keeping biomacromolecules that even nanomaterials have succumbed to the claimed benefits of DNA and RNA. Currently, there could be found in the literature a practically intractable number of examples reporting the use of combination of nanoparticles with nucleic acids, so boundaries are demanded. Following this premise, this review will only cover the most recent and powerful strategies developed to exploit the possibilities of nucleic acids as biotechnological materials when in combination with mesoporous silica nanoparticles. The extensive research done on nucleic acids has significantly incremented the technological possibilities for those biomacromolecules, which could be employed in many different applications, where substrate or sequence recognition or modulation of biological pathways due to its coding role in living cells are the most promising. In the present review, the chosen counterpart, mesoporous silica nanoparticles, also with unique properties, became a reference material for drug delivery and biomedical applications due to their high biocompatibility and porous structure suitable for hosting and delivering small molecules. Although most of the reviews dealt with significant advances in the use of nucleic acid and mesoporous silica nanoparticles in biotechnological applications, a rational classification of these new generation hybrid materials is still uncovered. In this review, there will be covered promising strategies for the development of living cell and biological sensors, DNA-based molecular gates with targeting, transfection or silencing properties, which could provide a significant advance in current nanomedicine.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Alejandro Baeza
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
133
|
Huang Y, Zheng W, Li X. Detection of protein targets with a single binding epitope using DNA-templated photo-crosslinking and strand displacement. Anal Biochem 2018; 545:84-90. [DOI: 10.1016/j.ab.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
|
134
|
Shah R, Zhou A, Wagner CR. Switch-on fluorescent/FRET probes to study human histidine triad nucleotide binding protein 1 (hHint1), a novel target for opioid tolerance and neuropathic pain. Org Biomol Chem 2018; 15:10230-10237. [PMID: 29177353 DOI: 10.1039/c7ob02472j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Histidine Triad Nucleotide Binding Protein 1 (Hint1) has emerged to be an important post-synaptic protein associated with a variety of central nervous system disorders such as pain, addiction, and schizophrenia. Recently, inhibition of histidine nucleotide binding protein 1 (Hint1) with a small nucleoside inhibitor has shown promise as a new therapeutic strategy for the treatment of neuropathic pain. Herein, we describe the first rationally designed small molecule switch-on probes with dual fluorescence and FRET properties to study Hint1. Two non-natural fluorescent nucleosides with a fluorescent lifetime of 20 and 25 ns were each coupled through a linker to the indole ring, i.e. probes 7 and 8. Both probes were found to be water soluble and quenched intramolecularly via photoinduced electron transfer (PET) resulting in minimal background fluorescence. Upon incubating with Hint1, compound 7 and 8 exhibited a 40- and 16-fold increase in the fluorescence intensity compared to the control. Compounds 7 and 8 bind Hint1 with a dissociation constant of 0.121 ± 0.02 and 2.2 ± 0.36 μM, respectively. We demonstrate that probe 8 exhibits a switch-on FRET property with an active site tryptophan residue (W123). We show the utility of probes in performing quantitative ligand displacement studies, as well as in selective detection of Hint1 in the cell lysates. These probes should be useful for studying the dynamics of the active site, as well as for the development of fluorescence lifetime based high throughput screening assay to identify novel inhibitors for Hint1 in future.
Collapse
Affiliation(s)
- Rachit Shah
- Department of Medicinal Chemistry University of Minnesota, USA.
| | | | | |
Collapse
|
135
|
Liu M, Yin Q, McConnell EM, Chang Y, Brennan JD, Li Y. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry 2018; 24:4473-4479. [PMID: 29240289 DOI: 10.1002/chem.201705338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 01/10/2023]
Abstract
Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions.
Collapse
Affiliation(s)
- Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, P. R. China
| | - Qingxin Yin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, P. R. China
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, P. R. China
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
136
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
137
|
Abstract
Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.
Collapse
|
138
|
Graphene-Based Nanomaterials and Their Applications in Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:61-71. [PMID: 30471026 DOI: 10.1007/978-981-13-0445-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently graphene has been drawing tremendous attention mainly due to its potential contributions to applications in biology, information technology and energy. Among these applications graphene-based biosensors have been particularly progressed caused in part by development of diverse derivatives of graphene such as graphene oxides (GOs) and graphene quantum dots (GQDs). In this chapter preparation and functionalization of the graphene and GOQs are described together with their optoelectronic properties. Recent progresses in graphene and GQD-based biosensors are also highlighted with emphasis on immunoassay which utilizes unique interaction between antigen and antibody, and oligonucleotide assay which utilizes hybridization process. Since electrical and optical features are the most prominent characteristics of graphene-based nanomaterials, biosensor systems will be focused on electrochemical and fluorescence-based detection scheme.
Collapse
|
139
|
Lee HJ, Go GH, Ro JJ, Kim BH. Detection of cofilin mRNA by hybridization-sensitive double-stranded fluorescent probes. RSC Adv 2018; 8:7514-7517. [PMID: 35539109 PMCID: PMC9078427 DOI: 10.1039/c7ra13349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/10/2018] [Indexed: 12/13/2022] Open
Abstract
We have developed hybridization-sensitive fluorescent oligonucleotide probes that, in the presence of quencher strands, undergo efficient fluorescence quenching through the formation of partial DNA/DNA duplexes.
Collapse
Affiliation(s)
- Ha Jung Lee
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Gui Han Go
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jong Jin Ro
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Byeang Hyean Kim
- Department of Chemistry
- Division of Advanced Materials Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| |
Collapse
|
140
|
Li J, Zhou J, Liu T, Chen S, Li J, Yang H. Circular DNA: a stable probe for highly efficient mRNA imaging and gene therapy in living cells. Chem Commun (Camb) 2018; 54:896-899. [DOI: 10.1039/c7cc08906f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We integrated circular DNA with graphene oxide to fabricate improved platforms for highly efficient imaging and therapy in living cells.
Collapse
Affiliation(s)
- Jingying Li
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Jie Zhou
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Tong Liu
- College of Biological Science and Engineering, Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
141
|
Long Z, Zhan S, Gao P, Wang Y, Lou X, Xia F. Recent Advances in Solid Nanopore/Channel Analysis. Anal Chem 2017; 90:577-588. [DOI: 10.1021/acs.analchem.7b04737] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi Long
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Shenshan Zhan
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Pengcheng Gao
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Yongqian Wang
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xiaoding Lou
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Fan Xia
- Faculty
of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
142
|
Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X. Fe 3O 4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. NANOSCALE 2017; 9:18699-18710. [PMID: 29165491 DOI: 10.1039/c7nr05541b] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets emerging as a new member of the 2D family have received significant research interest in recent years. Herein, we have successfully synthesized 2D copper-based MOF nanosheets with bimetallic anchorage using a facile two-step process at room temperature and ambient pressure, denoted as Cu(HBTC)-1/Fe3O4-AuNPs nanosheets. The as-synthesized 2D bimetallic MOF nanosheets displayed enhanced peroxidase-like activity with relatively high catalytic velocity and affinity for substrates compared with previously reported peroxidase mimics. Furthermore, their intrinsic peroxidase-like catalytic activity could be flexibly regulated by single-stranded DNA (ssDNA), exhibiting the enhancement of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation or inhibition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) oxidation due to the adsorption of ssDNA via π-π stacking. Accordingly, on the basis of their peroxidase-like activity, our prepared 2D bimetallic immobilized MOF nanosheets achieved ultra-sensitive detection of H2O2 with a linear range of 2.86 to 71.43 nM, and comparable detection performance for glucose with a linear range of 12.86 to 257.14 μM. By means of their controllable peroxidase-like activity, a versatile colorimetric sensing platform was developed which realized the detection of sulfadimethoxine (SDM) with a linear range of 3.57 to 357.14 μg L-1 and the limit of detection (LOD) of 1.70 μg L-1. With the multiplexed performance for detecting various targets, our as-synthesized bimetallic MOF nanosheets hold great promise for applications in environmental monitoring, as well as bioassays by virtue of their good biocompatibility.
Collapse
Affiliation(s)
- Bing Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, P. R. China.
| | | | | | | | | | | |
Collapse
|
143
|
Hu J, Liu MH, Li Y, Tang B, Zhang CY. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chem Sci 2017; 9:712-720. [PMID: 29629140 PMCID: PMC5869805 DOI: 10.1039/c7sc04296e] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
We demonstrate the simultaneous detection of human 8-oxoguanine DNA glycosylase 1 and human alkyladenine DNA glycosylase at the single-molecule level.
DNA glycosylases are involved in the base excision repair pathway, and all mammals express multiple DNA glycosylases to maintain genome stability. However, the simultaneous detection of multiple DNA glycosylase still remains a great challenge. Here, we develop a single-molecule detection method for the simultaneous detection of human 8-oxoguanine DNA glycosylase 1 (hOGG1) and human alkyladenine DNA glycosylase (hAAG) on the basis of DNA glycosylase-mediated cleavage of molecular beacons. We designed a Cy3-labeled molecular beacon modified with 8-oxoguanine (8-oxoG) for a hOGG1 assay and a Cy5-labeled molecular beacon modified with deoxyinosine for a hAAG assay. hOGG1 may catalyze the removal of 8-oxoG from 8-oxoG/C base pairs to generate an apurinic/apyrimidinic (AP) site, and hAAG may catalyze the removal of deoxyinosine from deoxyinosine/T base pairs to generate an AP site. With the assistance of apurinic/apyrimidinic endonuclease (APE1), the cleavage of AP sites results in the cleavage of molecular beacons, with Cy3 indicating the presence of hOGG1 and Cy5 indicating the presence of hAAG. Both of the Cy3 and Cy5 signals can be simply quantified by total internal reflection fluorescence-based single-molecule detection. This method can simultaneously detect multiple DNA glycosylases with a detection limit of 2.23 × 10–6 U μL–1 for hOGG1 and 8.69 × 10–7 U μL–1 for hAAG without the involvement of any target amplification. Moreover, this method can be used for the screening of enzyme inhibitors and the simultaneous detection of hOGG1 and hAAG from lung cancer cells, having great potential for further application in early clinical diagnosis.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| | - Ming-Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| | - Ying Li
- School of Medicine , Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Fax: +86 531 86180017 ; Tel: +86 531 86186033 ; Tel: +86 531 86180010
| |
Collapse
|
144
|
Zhang J, Zhao Q, Wu Y, Zhang B, Peng W, Piao J, Zhou Y, Gao W, Gong X, Chang J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens Bioelectron 2017; 97:26-33. [DOI: 10.1016/j.bios.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
145
|
Gao L, Li Q, Deng Z, Brady B, Xia N, Zhou Y, Shi H. Highly sensitive protein detection via covalently linked aptamer to MoS 2 and exonuclease-assisted amplification strategy. Int J Nanomedicine 2017; 12:7847-7853. [PMID: 29123397 PMCID: PMC5661850 DOI: 10.2147/ijn.s145585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molybdenum disulfide (MoS2) has shown highly attractive superiority as a platform for sensing. However, DNA physisorption on the surface of MoS2 was susceptible to nonspecific probe displacement and false-positive signals. To solve these problems, we have developed a novel MoS2-aptamer nanosheet biosensor for detecting thrombin using a covalently linked aptamer to the MoS2 nanosheet. Ten percent Tween 80 was used to prevent thrombin from nonspecific binding and to rapidly form thiol-DNA/gold nanoparticle (AuNP) conjugates. Furthermore, an MoS2 and exonuclease coassisted signal amplification strategy was developed to improve the detection limit for thrombin. We used the hybridization of the aptamer molecules and the matched strand with a 5' terminal thiol to immobilize the aptamer molecules on the surface of AuNPs in AuNPs@MoS2 nanocomposites. Exonuclease digested the single-strand aptamer and released the thrombin, which was then detected in the next recycle. With the coassisted amplification strategy, a 6 fM detection limit was achieved, showing that this method has higher sensitivity than most reported methods for thrombin detection. The results presented in this work show that this method of covalently attaching the aptamer and using the coassisted amplification is a promising technique for the detection of protein in medical diagnostics.
Collapse
Affiliation(s)
- Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang
| | - Qin Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang
| | - Zebin Deng
- Institute of Life Sciences, Jiangsu University, Zhenjiang
| | - Brendan Brady
- Department of Physics, University of Victoria, Victoria, BC, Canada
| | - Ni Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang
| | - Haixia Shi
- Department of Physical Education, Dalian Jiaotong University, Dalian, People’s Republic of China
| |
Collapse
|
146
|
Qing Z, Zhu L, Li X, Yang S, Zou Z, Guo J, Cao Z, Yang R. A Target-Lighted dsDNA-Indicator for High-Performance Monitoring of Mercury Pollution and Its Antagonists Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11884-11890. [PMID: 28945077 DOI: 10.1021/acs.est.7b02858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As well-known, the excessive discharge of heavy-metal mercury not only destroys the ecological environment, bust also leads to severe damage of human health after ingestion via drinking and bioaccumulation of food chains, and mercury ion (Hg2+) is designated as one of most prevalent toxic metal ions in drinking water. Thus, the high-performance monitoring of mercury pollution is necessary. Functional nucleic acids have been widely used as recognition probes in biochemical sensing. In this work, a carbazole derivative, ethyl-4-[3,6-bis(1-methyl-4-vinylpyridium iodine)-9H-carbazol -9-yl)] butanoate (EBCB), has been synthesized and found as a target-lighted DNA fluorescent indicator. As a proof-of-concept, Hg2+ detection was carried out based on EBCB and Hg2+-mediated conformation transformation of a designed DNA probe. By comparison with conventional nucleic acid indicators, EBCB held excellent advantages, such as minimal background interference and maximal sensitivity. Outstanding detection capabilities were displayed, especially including simple operation (add-and-read manner), ultrarapidity (30 s), and low detection limit (0.82 nM). Furthermore, based on these advantages, the potential for high-performance screening of mercury antagonists was also demonstrated by the fluorescence change of EBCB. Therefore, we believe that this work is meaningful in pollution monitoring, environment restoration and emergency treatment, and may pave a way to apply EBCB as an ideal signal transducer for development of high-performance sensing strategies.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Lixuan Zhu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Xiaoxuan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Jingru Guo
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
147
|
Fei RH, Tan C, Huang Y, Chen HC, Guo AZ, Wang HL, Hu YG. Self-Assembled Ti 4+@Biospore Microspheres for Sensitive DNA Analysis. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34696-34705. [PMID: 28933146 DOI: 10.1021/acsami.7b10478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ti4+ can be chemically adsorbed and assembled on the surface of the modified spore to form highly monodispersed Ti4+@spore microspheres. Moreover, we for the first time found that these biomicrospheres exhibit differential affinities toward ssDNA and dsDNA. As a principle-of-proof, we exploited the self-assembled Ti4+@spore microspheres for a hybridization analysis. Interestingly, in the hybridization analysis, residual ssDNA probes are selectively adsorbed on Ti4+@spore microspheres at pH 5.0 and then removed via centrifugation. By taking advantage of this property, the signal-to-noise ratio for DNA analysis was considerably increased by reducing the noise caused by the residual ssDNA probes. The proposed method features easy operation, high specificity, and sensitivity and thus exhibits potential for further applications on DNA biosensing.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | | |
Collapse
|
148
|
Ma H, Li W, Zhou W, Liu J. Site-Selective Labeling of Chromium(III) as a Quencher on DNA for Molecular Beacons. Chempluschem 2017; 82:1224-1230. [DOI: 10.1002/cplu.201700361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Huan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
- Department of Chemistry; Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo ON N2L 3G1 Canada
| | - Wenhu Zhou
- Department of Chemistry; Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo ON N2L 3G1 Canada
- Xiangya School of Pharmaceutical Sciences; Central South University; Changsha Hunan 410013 P. R. China
| | - Juewen Liu
- Department of Chemistry; Water Institute and Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo ON N2L 3G1 Canada
| |
Collapse
|
149
|
Jin C, Fu T, Wang R, Liu H, Zou J, Zhao Z, Ye M, Zhang X, Tan W. Fluorinated molecular beacons as functional DNA nanomolecules for cellular imaging. Chem Sci 2017; 8:7082-7086. [PMID: 29147537 PMCID: PMC5637457 DOI: 10.1039/c7sc02819a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/21/2017] [Indexed: 01/16/2023] Open
Abstract
Molecular beacons (MBs) are simple, but practical, fluorescent nanoprobes widely used to detect small molecules, nucleic acids and proteins. However, some challenges still remain when MBs are employed in complex biological environments, such as instability and non-target interference. To meet such challenges, we have designed and synthesized fluorinated molecular beacons (FMBs) as functional DNA nanomolecules for cellular imaging, in which the stem sequence is simply composed of artificial nucleotides with 3,5-bis(trifluoromethyl)benzene (F) as the surrogate base of natural A, T, C and G bases. The introduction of F base into MBs significantly increases their hydrophobicity, and the stem is formed by the assembly of self-complementary base F nucleotides through hydrophobic interactions. Fluorescence studies revealed that FMBs confer improved stability over conventional MBs. To demonstrate the application of FMBs for cellular imaging, we constructed an FMB to detect mRNA in MCF-7 cells, and the FMB was proven to be a practical nanoprobe for cellular imaging of mRNA.
Collapse
Affiliation(s)
- Cheng Jin
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Ruowen Wang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
- Department of Chemistry , Department of Physiology and Functional Genomics , Center for Research at the Bio/Nano Interface , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA
- Department of Biotechnology and Biomedicine , Yangtze Delta Region Institute of Tsinghua University , Zhejiang 314006 , China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Jianmei Zou
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
- Department of Chemistry , Department of Physiology and Functional Genomics , Center for Research at the Bio/Nano Interface , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA
| |
Collapse
|
150
|
Luby BM, Zheng G. Specific and Direct Amplified Detection of MicroRNA with MicroRNA:Argonaute-2 Cleavage (miRACle) Beacons. Angew Chem Int Ed Engl 2017; 56:13704-13708. [DOI: 10.1002/anie.201707366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|