101
|
Boominathan M, Kiruthika J, Arunachalam M. Construction of anion‐responsive crosslinked polypseudorotaxane based on molecular recognition of pillar[5]arene. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muniyappan Boominathan
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Jeyavelraman Kiruthika
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Murugan Arunachalam
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| |
Collapse
|
102
|
Wang M, Zhou J. Discovery of non-classical complex models between a cationic water-soluble pillar[6]arene and naphthalenesulfonate derivatives and their self-assembling behaviors. SOFT MATTER 2019; 15:4127-4131. [PMID: 31044207 DOI: 10.1039/c9sm00659a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular recognition based on cationic water-soluble pillar[n]arenes shows considerable advantages in their application in biological and environmental systems, such as excellent anion-binding ability and antimicrobial properties. Unique complex models are discovered in this work where a cationic water-soluble pillar[6]arene binds with disodium 1,5-naphthalenedisulfonate and disodium 2,6-naphthalenedisulfonate at the ratio of 1 : 2, which is proven by results from nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, fluorescence spectroscopy experiments and transmission electron microscopy.
Collapse
Affiliation(s)
- Mengbin Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | |
Collapse
|
103
|
Duan Q, Zhang H, Mai W, Wang F, Lu K. Acid/base- and base/acid-switchable complexation between anionic-/cationic-pillar[6]arenes and a viologen ditosylate salt. Org Biomol Chem 2019; 17:4430-4434. [PMID: 30888007 DOI: 10.1039/c9ob00398c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two new host-guest complexes between water-soluble anionic pillar[6]arene (WP6) or cationic pillar[6]arene (CP6) and a viologen ditosylate salt G·2TsO were constructed, among which one formed from WP6 and G2+ ions can be controlled by the sequential addition of an acid and a base (HCl and NaOH, respectively), whereas the other fabricated from CP6 and TsO- ions can be switched through the sequential addition of basic and acidic reagents (NaOH and HCl, respectively).
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | |
Collapse
|
104
|
Tominaga M, Kunitomi N, Ohara K, Kawahata M, Itoh T, Katagiri K, Yamaguchi K. Hollow and Solid Spheres Assembled from Functionalized Macrocycles Containing Adamantane. J Org Chem 2019; 84:5109-5117. [PMID: 30951304 DOI: 10.1021/acs.joc.9b00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An adamantane-based macrocycle possessing eight hydroxyl groups (1) was synthesized, in which the macrocyclic framework comprises two disubstituted adamantane molecules bearing phenyl derivatives connected to two biphenylene spacers by oxygen atoms. Furthermore, functionalized macrocycles containing methyl (2) and methoxycarbonylmethyl (3) groups were prepared. From the X-ray crystallographic analysis, the backbone of the macrocycles in all crystals had a nearly hexagonal shape with a cavity and these macrocycles could be arranged into different tubular structures dependent on the substituents. In acetone, macrocycle (1) formed stable hollow spherical aggregates with multilayer membranes. In contrast, macrocycle (3) exhibited no production of self-assembled materials in chloroform. The addition of hexane into the solution caused the generation of solid spheres and their fused network aggregates, which were finally transformed into crystals owing to the solvent effects.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Nobuto Kunitomi
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Tsutomu Itoh
- Center for Analytical Instrumentation , Chiba University , 1-33 Yayoi-cho , Inage-ku, Chiba 263-8522 , Japan
| | - Kosuke Katagiri
- Department of Chemistry, Faculty of Science and Engineering , Konan University , 8-9-1 Okamoto, Higashinada-ku , Kobe , Hyogo 658-8501 , Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| |
Collapse
|
105
|
Zhang Z, Sun K, Li S, Yu G. A pillar[5]arene-based molecular grapple of hexafluorophosphate. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Constitutional isomers of brominated-functionalized copillar[5]arenes: synthesis, characterization, and crystal structures. RSC Adv 2019; 9:13814-13819. [PMID: 35519554 PMCID: PMC9063920 DOI: 10.1039/c9ra02313e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
We herein report the preparation of constitutional isomers of brominated-functionalized pillar[5]arenes via co-condensation of 1,4-bis(2-bromoethoxy)benzene and 1,4-dimethoxybenzene. The structures of the obtained isomers were then established using single crystal X-ray diffraction. We also found that the isomeric yield distribution of the different constitutional isomers was independent of the monomer's mole feed ratio, as revealed by HPLC analysis of the crude mixture. Finally, further characterization of the separated constitutional isomers indicated that they possess different melting points, NMR spectra, crystal structures, binding constants and stacking patterns in the solid state. Constitutional isomers of brominated-functionalized pillar[5]arenes were synthesized using a co-cyclization strategy.![]()
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Fatemeh H Alipour
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Abdirahman A Mohamod
- Chemistry Department, Kuwait University P. O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
107
|
Han C, Zhao D, Lü Z, Zhan F, Zhang L, Dong S, Jin L. Synthesis of a Difunctionalized Pillar[5]arene with Hydroxyl and Amino Groups at A1/A2 Positions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengyou Han
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Dezhi Zhao
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Zhifeng Lü
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Fengtao Zhan
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Liangliang Zhang
- Institute of Flexible Electronics; College of Science; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; College of Science; Hunan University; 410082 Changsha Hunan P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| |
Collapse
|
108
|
Dai D, Li Z, Yang J, Wang C, Wu JR, Wang Y, Zhang D, Yang YW. Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(II) Detection and Removal. J Am Chem Soc 2019; 141:4756-4763. [DOI: 10.1021/jacs.9b01546] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | | | - Dongmei Zhang
- School of Environment, Northeast Normal University, Changchun 130117, People’s Republic of China
| | - Ying-Wei Yang
- California NanoSystems Institute and Departments of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
109
|
Park J, Choi Y, Lee SS, Jung JH. Critical Role of Achiral Guest Molecules in Planar Chirality Inversion of Alanine-Appended Pillar[5]arenes. Org Lett 2019; 21:1232-1236. [PMID: 30730150 DOI: 10.1021/acs.orglett.9b00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Planar chirality inversion of pillar[5]arenes bearing d- or l-alanine substituents on both rims was investigated upon addition of guest molecules having pyridinium or imidazole moieties and long alkyl chains. The d- and l-alanine-substituted pillar[5]arenes exhibited pS and pR planar chirality, respectively. However, this planar chirality was inverted upon inclusion of certain achiral molecules, comprising pyridinium or imidazole moieties and long alkyl chains with terminal hydroxyl or methyl groups.
Collapse
Affiliation(s)
- Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 52828 , Korea
| | - Yeonweon Choi
- Accident Prevention and Assessment Division 2 , National Institute of Chemical Safety , Daejeon 34111 , Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 52828 , Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 52828 , Korea
| |
Collapse
|
110
|
Ogoshi T, Sueto R, Yagyu M, Kojima R, Kakuta T, Yamagishi TA, Doitomi K, Tummanapelli AK, Hirao H, Sakata Y, Akine S, Mizuno M. Molecular weight fractionation by confinement of polymer in one-dimensional pillar[5]arene channels. Nat Commun 2019; 10:479. [PMID: 30696824 PMCID: PMC6351637 DOI: 10.1038/s41467-019-08372-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022] Open
Abstract
Confinement of polymers in nano-spaces can induce unique molecular dynamics and properties. Here we show molecular weight fractionation by the confinement of single polymer chains of poly(ethylene oxide) (PEO) in the one-dimensional (1D) channels of crystalline pillar[5]arene. Pillar[5]arene crystals are activated by heating under reduced pressure. The activated crystals are immersed in melted PEO, causing the crystals to selectively take up PEO with high mass fraction. The high mass fractionation is caused by the greater number of attractive CH/π interactions between PEO C-H groups and the π-electron-rich 1D channel of the pillar[5]arene with increasing PEO chain length. The molecular motion of the confined PEO (PEO chain thickness of ~3.7 Å) in the 1D channel of pillar[5]arenes (diameter of ~4.7 Å) is highly restricted compared with that of neat PEO. Confinement of polymers in nano-spaces can induce unique molecular dynamics and properties. Here the authors show high mass fractionation by the confinement of single polymer chains of poly(ethylene oxide) in the one-dimensional channels of crystalline pillar[5]arene.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ryuta Sueto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryosuke Kojima
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuki Doitomi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Anil Kumar Tummanapelli
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hajime Hirao
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
111
|
Sun S, Lu D, Huang Q, Liu Q, Yao Y, Shi Y. Reversible surface activity and self-assembly behavior and transformation of amphiphilic ionic liquids in water induced by a pillar[5]arene-based host-guest interaction. J Colloid Interface Sci 2019; 533:42-46. [DOI: 10.1016/j.jcis.2018.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
|
112
|
Ju H, Zhou X, Shi B, Kong X, Xing H, Huang F. A pillar[5]arene-based hydrogel adsorbent in aqueous environments for organic micropollutants. Polym Chem 2019. [DOI: 10.1039/c9py01373c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A pillar[5]arene-based hydrogel adsorbent was prepared for the removal of multiple types of organic micropollutants based on host–guest interactions.
Collapse
Affiliation(s)
- Huaqiang Ju
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xiaoqi Zhou
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xueqian Kong
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Hao Xing
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
113
|
Xia X, Ge WW, Chen H, Tao Z, Zhang Y, Wei G, Chen K. Porous supramolecular assemblies and functional properties of perhydroxylated cucurbit[6]uril and polyoxometallates. NEW J CHEM 2019. [DOI: 10.1039/c9nj01116a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(HO)12Q[6] and POMs were used as basic building blocks, and interactions yielded two novel types of supramolecular assemblies at different HCl concentrations.
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Wei Wei Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
- Nanjing 210044
| | - Haiyong Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Yunqian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Gang Wei
- CSIRO Manufacturing Flagship
- Lindfield
- Australia
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- School of Environmental Science and Engineering
- Nanjing University of Information Science & Technology
- Nanjing 210044
| |
Collapse
|
114
|
Lin Q, Guan XW, Song SS, Fan H, Yao H, Zhang YM, Wei TB. A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar[5]arene for fluorescence detection and separation of aromatic acid isomers. Polym Chem 2019. [DOI: 10.1039/c8py01299g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pillar[5]arene-based supramolecular polymer π-gel, BPN-G, can selectively identify and separate benzoic acid isomers through rationally introduced multi-intermolecular interactions.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Shan-Shan Song
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Haiyan Fan
- Chemistry Department
- School of Science and Technology
- Nazarbayev University Astana 010000
- Kazakhstan
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
115
|
Li B, He T, Shen X, Tang D, Yin S. Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem 2019. [DOI: 10.1039/c8py01396a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the recent developments in AIE fluorescent supramolecular polymeric materials based on different types of intermolecular noncovalent interactions, and their wide ranging applications as chemical sensors, organic electronic materials, bio-imaging agents and so on.
Collapse
Affiliation(s)
- Bo Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Tian He
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Xi Shen
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Danting Tang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Shouchun Yin
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| |
Collapse
|
116
|
Li B, He T, Fan Y, Yuan X, Qiu H, Yin S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem Commun (Camb) 2019; 55:8036-8059. [PMID: 31206102 DOI: 10.1039/c9cc02472g] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular polymers have received considerable attention during the last few decades due to their scientific value in polymer chemistry and profound implications for future developments of advanced materials. Discrete supramolecular coordination complexes (SCCs) with well-defined size, shape, and geometry have been widely employed to construct hierarchical systems by coordination-driven self-assembly with the spontaneous formation of metal-ligand bonds, which results in the formation of well-defined two-dimensional (2D) metallacycles or three-dimensional (3D) metallacages with high functionalities. The incorporation of discrete SCCs into supramolecular polymers by the orthogonal combination of metal-ligand coordination and other noncovalent interactions or covalent bonding could further facilitate the construction of novel supramolecular polymers with hierarchical architectures and multiple functions including controllable uptake and release of guest molecules, providing a flexible platform for the development of smart materials. In this review, the recent progress in metallacycle/metallacage-cored supramolecular polymers that were constructed by the combination of metal-ligand interactions and other orthogonal interactions (including hydrophobic or hydrophilic interactions, hydrogen bonding, van der Waals forces, π-π stacking, electrostatic interactions, host-guest interactions and covalent bonding) has been discussed. In addition, the potential applications of metallacycle/metallacage-cored supramolecular polymers in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.
Collapse
Affiliation(s)
- Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China.
| | | | | | | | | | | |
Collapse
|
117
|
Jiang YQ, Wu K, Zhang Q, Li KQ, Li YY, Xin PY, Zhang WW, Guo HM. A dual-responsive hyperbranched supramolecular polymer constructed by cooperative host-guest recognition and hydrogen-bond interactions. Chem Commun (Camb) 2018; 54:13821-13824. [PMID: 30462109 DOI: 10.1039/c8cc08226j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A homotritopic pillar[5]arene (H3) containing adenine units was synthesized and employed to interact with a uracil derivative (6-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)hexanenitrile, G) to form a hyperbranched supramolecular polymer. The hyperbranched supramolecular polymer showed a dual stimulus response both to heat and acid/base. The cooperative host-guest binding and hydrogen-bond interactions play a key role in the supramolecular polymerization.
Collapse
Affiliation(s)
- Yu-Qin Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Zhang YM, Li YF, Fang H, He JX, Yong BR, Yao H, Wei TB, Lin Q. Multi-stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudorotaxanes for efficient detection and separation of multi-analytes in aqueous solution. SOFT MATTER 2018; 14:8529-8536. [PMID: 30338770 DOI: 10.1039/c8sm01838c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, a novel pseudorotaxanes-type crosslinker of a supramolecular polymer network (WP5-PN) has been constructed from a host water-soluble pillar[5]arene (WP5) and a guest naphthalene dimethylamine derivative (PN) via a stepwise process involving multiple non-covalent interactions. The obtained supramolecular polymers were able to transform into a supramolecular polymer gel (WP5-PN-G) and show AIE properties in DMSO-H2O binary solution. Interestingly, due to the dynamic and reversible nature of non-covalent interactions, the resultant supramolecular polymer gels exhibited external stimuli-responsiveness to different parameters, such as temperature, acid-base, competitive guest and mechanical stress. Moreover, WP5-PN-G showed fluorescent response for Fe3+ and Cu2+, while its xerogel showed excellent recyclable separation properties for these metal ions with adsorption rates up to 98.07% and 95.38%, respectively. Moreover, by rational introduction of these metal ions into the WP5-PN-G, corresponding metal ion coordinated metallogels, such as WP5-PN-FeG and WP5-PN-CuG were obtained. These metallogels could selectively and sensitively sense F- and CN-, respectively. The detection limits of these metallogels for F- and CN- were about 1 × 10-8 M. The WP5-PN-G has potential applications in multi-analytes detection and separation as well as fluorescent display materials.
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Shu X, Xu K, Hou D, Li C. Molecular Recognition of Water-soluble Pillar[n
]arenes Towards Biomolecules and Drugs. Isr J Chem 2018. [DOI: 10.1002/ijch.201800115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Shu
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Kaidi Xu
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Dabin Hou
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
| | - Chunju Li
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| |
Collapse
|
121
|
Li E, Jie K, Zhou Y, Zhao R, Huang F. Post-Synthetic Modification of Nonporous Adaptive Crystals of Pillar[4]arene[1]quinone by Capturing Vaporized Amines. J Am Chem Soc 2018; 140:15070-15079. [PMID: 30362734 DOI: 10.1021/jacs.8b10192] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Postsynthetic modification in crystalline solids without disruption of crystallinity is very important for exerting control that is unattainable over chemical transformation in solution. This has been achieved in porous crystalline frameworks via solid-solution reactions to endow them with multiple functions. However, this is rather rare in nonporous molecular crystals, especially via solid-vapor reactions. Herein, we report unique solid-vapor postsynthetic modification of nonporous adaptive crystals (NACs) of a pillar[4]arene[1]quinone (EtP4Q1) containing four inert 1,4-diethoxybenzene units and one active benzoquinone unit. Amine vapors that can be physically adsorbed by EtP4Q1 NACs react with the EtP4Q1 backbone via Michael addition with in situ formation of new crystal structures. First, amines are physically adsorbed into cavities of EtP4Q1 molecules and slowly react due to their juxtapsition with the benzoquinone units. Amines that are too bulky to enter EtP4Q1 NACs do not react. Moreover, the process displays both reactant-size and -shape selectivities because of the rigid cavity of EtP4Q1 and the different binding strengths of various amines with EtP4Q1.
Collapse
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| |
Collapse
|
122
|
Duan Q, Zhao Q, Lu C, Lu K. pH-Responsive Host-Guest Complexations between Carboxylatopillar[5]arene or Carboxylatopillar[6]arene and N,N′-Bis(4-pyridylmethyl)-1,4-diaminobutane Dihydrochloride. CHEM LETT 2018. [DOI: 10.1246/cl.180608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qunpeng Duan
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Qiankun Zhao
- School of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Chennan Lu
- School of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Kui Lu
- School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China
- School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou 450044, P. R. China
| |
Collapse
|
123
|
Dutta B, Dey A, Maity S, Sinha C, Ray PP, Mir MH. Supramolecular Assembly of a Zn(II)-Based 1D Coordination Polymer through Hydrogen Bonding and π···π Interactions: Crystal Structure and Device Applications. ACS OMEGA 2018; 3:12060-12067. [PMID: 31459286 PMCID: PMC6645665 DOI: 10.1021/acsomega.8b01924] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 05/29/2023]
Abstract
A new mixed-ligand divalent one-dimensional coordination polymer (1D CP) [Zn(adc)(4-nvp)2(H2O)2] n , (1) [H2adc = acetylenedicarboxylic acid and 4-nvp = 4-(1-naphthylvinyl)pyridine] has been synthesized and well characterized by elemental analysis, infrared spectrum, single-crystal X-ray crystallography, powder X-ray diffraction pattern, and thermogravimetric analysis. The compound 1 constructs a 3D supramolecular network by the combination of hydrogen bonding, C-H···π, and π···π interactions. Interestingly, the material shows Schottky behavior which is exclusively analyzed with the help of thermionic emission and space charge-limited current theory. In addition, the Schottky barrier diode parameters for compound 1 demonstrate better device performance after light soaking. Hence, the compound has applicability in the fabrication of optoelectronic devices.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Arka Dey
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Suvendu Maity
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Chittaranjan Sinha
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Partha Pratim Ray
- Department of Physics and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | | |
Collapse
|
124
|
|
125
|
Abstract
Porous materials with high surface areas have drawn more and more attention in recent years because of their wide applications in physical adsorption and energy-efficient adsorptive separation processes. Most of the reported porous materials are macromolecular porous materials, such as zeolites, metal-organic frameworks (MOFs), or porous coordination polymers (PCPs), and porous organic polymers (POPs) or covalent organic frameworks (COFs), in which the building blocks are linked together by covalent or coordinative bonds. These materials are barely soluble and thus are not solution-processable. Furthermore, the relatively low chemical, moisture, and thermal stability of most MOFs and COFs cannot be neglected. On the other hand, molecular porous materials such as porous organic cages (POCs), which have been developed very recently, also show promising applications in adsorption and separation processes. They can be soluble in organic solvents, making them solution-processable materials. However, they are usually sensitive to acid/base and humid environments since most of them are based on dynamic covalent bonding. These macromolecular and molecular porous materials usually have two similar features: high Brunauer-Emmett-Teller (BET) surface areas and rigid pore structures, which are stable during adsorption and separation processes. In this Account, we describe a novel class of solid materials for adsorption and separation, nonporous adaptive crystals (NACs), which function at the supramolecular level. They are nonporous in the initial crystalline state, but the intrinsic or extrinsic porosity of the crystals along with a crystal structure transformation is induced by preferable guest molecules. Unlike solvent-induced crystal polymorphism phenomena of common organic crystals that occur at the solid-liquid phase, NACs capture vaporized guests at the solid-gas phase. Upon removal of guest molecules, the crystal structure transforms back to the original nonporous structure. Here we focus on the discussion of pillararene-based NACs for adsorption and separation and the crystal structure transformations from the initial nonporous crystalline state to new guest-loaded structures during the adsorption and separation processes. Single-crystal X-ray diffraction, powder X-ray diffraction, gas chromatography, and solution NMR spectroscopy are the main techniques to verify the adsorption and separation processes and the structural transformations. Compared with traditional porous materials, NACs of pillararenes have several advantages. First, their preparation is simple and cheap, and they can be synthesized on a large scale to meet practical demands. Second, pillararenes have better chemical, moisture, and thermal stability than crystalline MOFs, COFs, and POCs, which are usually constructed on the basis of reversible chemical bonds. Third, pillararenes are soluble in many common organic solvents, which means that they can be easily processed in solution. Fourth, their regeneration is simple and they can be reused many times with no decrease in performance. It is expected that this class of materials will not only exert a significant influence on scientific research but also show practical applications in chemical industry.
Collapse
Affiliation(s)
- Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
126
|
Shao L, Zhang Z, Hua B. An AB2
-Type Supramolecular Hyperbranched Polymer Based on Pillar[5]arene Host-Guest Recognition: Construction and Its pH-Responsiveness. Macromol Rapid Commun 2018; 39:e1800502. [DOI: 10.1002/marc.201800502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/30/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Li Shao
- Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zhihua Zhang
- Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Bin Hua
- Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|
127
|
Supramolecular complexes for nanomedicine. Bioorg Med Chem Lett 2018; 28:3290-3301. [PMID: 30227945 DOI: 10.1016/j.bmcl.2018.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Host-guest interactions studied in supramolecular chemistry have been inspired by interactions between enzymes and substrates. Furthermore, most of the interactions involved in the cells are based on non-covalent bonds between two or more molecules. The common aspects between supramolecular chemistry and medicine have led to the development of a "new" area called "supramolecular medicine", in which non-covalent interactions and self-assembly processes are applied within several medical fields. The object of this Digest is to offer an account of how some macrocyclic hosts (e.g. cucurbiturils, cyclodextrins, pillararenes and calixarenes) are employed in supramolecular medicine creating new supramolecular hydrogels used as biomaterials for human tissue in regenerative medicine, and a diagnostic instrument, in-vitro and in-vivo, for the detection of diseases, as well as for the investigation of cell morphology.
Collapse
|
128
|
Liu W, Lu X, Xue W, Samanta SK, Zavalij PY, Meng Z, Isaacs L. Hybrid Molecular Container Based on Glycoluril and Triptycene: Synthesis, Binding Properties, and Triggered Release. Chemistry 2018; 24:14101-14110. [PMID: 30044903 DOI: 10.1002/chem.201802981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Indexed: 12/11/2022]
Abstract
We designed and synthesized a "hybrid" molecular container 1, which is structurally related to both cucurbit[n]uril (CB[n]) and pillar[n]arene type receptors. Receptor 1 was fully characterized by 1 H NMR, 13 C NMR, IR, MS and X-ray single crystal diffraction. The self-association behavior, host-guest recognition properties of 1, and the [salt] dependence of Ka were investigated in detail by 1 H NMR and isothermal titration calorimetry (ITC). Optical transmittance and TEM measurements provide strong evidence that receptor 1 undergoes co-assemble with amphiphilic guest C10 in water to form supramolecular bilayer vesicles (diameter 25.6±2.7 nm, wall thickness ≈3.5 nm) that can encapsulate the hydrophilic anticancer drug doxorubicin (DOX) and the hydrophobic dye Nile red (NR). The release of encapsulated DOX or NR from the vesicles can be triggered by hexamethonium (8 c) or spermine (10) which leads to the disruption of the supramolecular vesicles.
Collapse
Affiliation(s)
- Wenjin Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China.,Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Xiaoyong Lu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, P.R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
129
|
Ogoshi T, Akutsu T, Yamagishi TA. An amphiphilic pseudo[1]catenane: neutral guest-induced clouding point change. Beilstein J Org Chem 2018; 14:1937-1943. [PMID: 30112098 PMCID: PMC6071686 DOI: 10.3762/bjoc.14.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 01/18/2023] Open
Abstract
The hydrophobic/hydrophilic ratio in a molecule largely affects its assembled properties in aqueous media. In this study, we synthesized a new bicyclic compound which could dynamically change its hydrophobic/hydrophilic ratio by chemical stimulus. The bicyclic compound consisted of amphiphilic pillar[5]arene and hydrophobic alkyl chain rings, and formed a self-inclusion structure in aqueous media, which was assigned as a pseudo[1]catenane structure. The hydrophobic chain ring was hidden inside the pillar[5]arene cavity in the pseudo[1]catenane structure, thus the bicyclic compound was soluble in water at 20 °C with a clouding point at 24 °C. The pseudo[1]catenane was converted to the de-threaded structure upon addition of the neutral guest 1,4-dicyanobutane, which displaced the alkyl chain ring from the inside to the outside of the cavity. The hydrophobic alkyl chain ring was now exposed to the aqueous media, causing aggregation of the hydrophobic alkyl chain rings, which induced insolubilization of the bicyclic compound in aqueous media at 20 °C and a decrease in its clouding point.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomohiro Akutsu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
130
|
Xiao T, Xu L, Zhong W, Zhou L, Sun XQ, Hu XY, Wang L. Advanced Functional Materials Constructed from Pillar[n]arenes. Isr J Chem 2018. [DOI: 10.1002/ijch.201800026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Lixiang Xu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Weiwei Zhong
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Ling Zhou
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Xiao-Qiang Sun
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Leyong Wang
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou 213164 China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| |
Collapse
|
131
|
Zhou Y, Li E, Zhao R, Jie K. CO2-Enhanced Bola-Type Supramolecular Amphiphile Constructed from Pillar[5]arene-Based Host–Guest Recognition. Org Lett 2018; 20:4888-4892. [DOI: 10.1021/acs.orglett.8b02033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yujuan Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Run Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
132
|
Montecinos R, Diaz-Wilson F, Bravo-Sepulveda A, Salas CO, Recabarren-Gajardo G, Nome F. Investigation about the complexation of trimethylammonium-derived pillar[5]arene with indole and azaindole derivatives. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rodrigo Montecinos
- Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | | | | | - Cristian O. Salas
- Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | | | - Faruk Nome
- Department of Chemistry; Federal University of Santa Catarina; Florianopolis Santa Catarina Brazil
| |
Collapse
|
133
|
Zhu JM, Chen LX, Chen K, Zeng X, Tao Z. Synthesis of a functionalised calix[4]arene and its interactions with hemicucurbit[6,7]urils and cucurbit[8]uril. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
134
|
Tian X, Chen LX, Yao YQ, Chen K, Chen MD, Zeng X, Tao Z. 4-Sulfocalix[4]arene/Cucurbit[7]uril-Based Supramolecular Assemblies through the Outer Surface Interactions of Cucurbit[ n]uril. ACS OMEGA 2018; 3:6665-6672. [PMID: 31458841 PMCID: PMC6644559 DOI: 10.1021/acsomega.8b00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 06/10/2023]
Abstract
Upon mixing of aqueous solutions of the freely soluble building blocks cucurbit[7]uril (Q[7]) and 4-sulfocalix[4]arene (SC[4]A), white microcrystals instantly separate in near-quantitative yield. The driving force for this assembly is suggested to be the outer-surface interaction of the Q[n]. Dynamic light scattering, scanning electron microscopy, and NMR (diffusion-ordered NMR spectroscopy) analyses have confirmed the supramolecular aggregation of Q[7] and SC[4]A. Titration 1H NMR spectroscopy and isothermal titration calorimetry have shown that the interaction ratio of Q[7] and SC[4]A is close to 3:1. Moreover, the Q[7]/SC[4]A-based supramolecular assembly can accommodate molecules of some volatile compounds or luminescent dyes. Thus, this work offers a simple and highly efficient means of preparing adsorbent or solid fluorescent materials.
Collapse
Affiliation(s)
- Xiao Tian
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Li Xia Chen
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Yu Qing Yao
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Kai Chen
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People’s Republic of China
| | - Min-Dong Chen
- Collaborative
Innovation Center of Atmospheric Environment and Equipment Technology,
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, People’s Republic of China
| | - Xi Zeng
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| | - Zhu Tao
- Key
Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou
Province, Guizhou University, Guiyang 550025, People’s Republic of China
| |
Collapse
|
135
|
Qu YX, Zhou KZ, Chen K, Zhang YQ, Xiao X, Zhou Q, Tao Z, Ma PH, Wei G. Coordination and Supramolecular Assemblies of Fully Substituted Cyclopentanocucurbit[6]uril with Lanthanide Cations in the Presence of Tetrachlorozincate Anions, and Their Potential Applications. Inorg Chem 2018; 57:7412-7419. [PMID: 29863854 DOI: 10.1021/acs.inorgchem.8b01039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination and supramolecular assemblies of a fully substituted cyclopentanocucurbit[6]uril (CyP6Q[6]) with a series of lanthanide cations (Ln3+) have been investigated in the presence of tetrachlorozincate anion ([ZnCl4]2-). X-ray single-crystal diffraction analysis has revealed that the interaction of CyP6Q[6] and a series of Ln3+cations unexpectedly results in the formation of at least seven different CyP6Q[6]-based coordination complex adduct and supramolecular assemblies groups, including with (1) La3+, Ce3+cations; (2) Pr3+, Nd3+cations; (3) Eu3+, Gd3+, Tb3+, Dy3+ with P1̅ or P1 space group, in which CyP6Q[6] molecules coordinate alternatively with Ln3+cations and form linear coordination polymers; (4) CyP6Q[6] molecules interact alternatively with [Ho(H2O)8]3+ aqueous complexes and form linear supramolecular chains; CyP6Q[6] molecules can assemble two different Ln3+ free porous supramolecular assemblies from CyP6Q[6]-Ln(NO3)3-ZnCl2-HCl systems, Ln = Tm, Yb, and Lu; however, no solid crystals were obtained from system containing Er3+cation. Thus, these differences could lead CyP6Q[6] to be useful in not only the isolation of lighter lanthanides from their heavier lanthanides but also special selectivity for different volatile organic compounds.
Collapse
Affiliation(s)
- Yun-Xia Qu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang 550025 , China
| | - Kai-Zhi Zhou
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang 550025 , China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering , Nanjing University of Information Science & Technology , Nanjing 210044 , China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang 550025 , China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang 550025 , China
| | - QingDi Zhou
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing , Lindfield , New South Wales 2070 , Australia
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang 550025 , China
| | - Pei-Hua Ma
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang 550025 , China
| | - Gang Wei
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing , Lindfield , New South Wales 2070 , Australia
| |
Collapse
|
136
|
Löw H, Mena-Osteritz E, von Delius M. Self-assembled orthoester cryptands: orthoester scope, post-functionalization, kinetic locking and tunable degradation kinetics. Chem Sci 2018; 9:4785-4793. [PMID: 29910929 PMCID: PMC5982201 DOI: 10.1039/c8sc01750f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Dynamic adaptability and biodegradability are key features of functional, 21st century host-guest systems. We have recently discovered a class of tripodal supramolecular hosts, in which two orthoesters act as constitutionally dynamic bridgeheads. Having previously demonstrated the adaptive nature of these hosts, we now report the synthesis and characterization - including eight solid state structures - of a diverse set of orthoester cages, which provides evidence for the broad scope of this new host class. With the same set of compounds, we demonstrated that the rates of orthoester exchange and hydrolysis can be tuned over a remarkably wide range, from rapid hydrolysis at pH 8 to nearly inert at pH 1, and that the Taft parameter of the orthoester substituent allows an adequate prediction of the reaction kinetics. Moreover, the synthesis of an alkyne-capped cryptand enabled the post-functionalization of orthoester cryptands by Sonogashira and CuAAC "click" reactions. The methylation of the resulting triazole furnished a cryptate that was kinetically inert towards orthoester exchange and hydrolysis at pH > 1, which is equivalent to the "turnoff" of constitutionally dynamic imines by means of reduction. These findings indicate that orthoester cages may be more broadly useful than anticipated, e.g. as drug delivery agents with precisely tunable biodegradability or, thanks to the kinetic locking strategy, as ion sensors.
Collapse
Affiliation(s)
- Henrik Löw
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| |
Collapse
|
137
|
Jie K, Liu M, Zhou Y, Little MA, Pulido A, Chong SY, Stephenson A, Hughes AR, Sakakibara F, Ogoshi T, Blanc F, Day GM, Huang F, Cooper AI. Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals. J Am Chem Soc 2018; 140:6921-6930. [PMID: 29754488 PMCID: PMC5997404 DOI: 10.1021/jacs.8b02621] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The
energy-efficient separation of alkylaromatic compounds is a
major industrial sustainability challenge. The use of selectively
porous extended frameworks, such as zeolites or metal–organic
frameworks, is one solution to this problem. Here, we studied a flexible
molecular material, perethylated pillar[n]arene crystals
(n = 5, 6), which can be used to separate C8 alkylaromatic
compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene
and ortho-xylene, with 90% specificity in the solid
state. Selectivity is an intrinsic property of the pillar[6]arene
host, with the flexible pillar[6]arene cavities adapting during adsorption
thus enabling preferential adsorption of para-xylene
in the solid state. The flexibility of pillar[6]arene as a solid sorbent
is rationalized using molecular conformer searches and crystal structure
prediction (CSP) combined with comprehensive characterization by X-ray
diffraction and 13C solid-state NMR spectroscopy. The CSP
study, which takes into account the structural variability of pillar[6]arene,
breaks new ground in its own right and showcases the feasibility of
applying CSP methods to understand and ultimately to predict the behavior
of soft, adaptive molecular crystals.
Collapse
Affiliation(s)
- Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Ming Liu
- Materials Innovation Factory and Department of Chemistry , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , United Kingdom
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Marc A Little
- Materials Innovation Factory and Department of Chemistry , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , United Kingdom
| | - Angeles Pulido
- Computational Systems Chemistry, School of Chemistry , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Samantha Y Chong
- Materials Innovation Factory and Department of Chemistry , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , United Kingdom
| | - Andrew Stephenson
- Materials Innovation Factory and Department of Chemistry , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , United Kingdom
| | - Ashlea R Hughes
- Department of Chemistry and Stephenson Institute for Renewable Energy , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Fumiyasu Sakakibara
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi , Kanazawa , Ishikawa 920-1192 , Japan
| | - Tomoki Ogoshi
- Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi , Kanazawa , Ishikawa 920-1192 , Japan.,WPI Nano Life Science Institute , Kanazawa University , Kakuma-machi , Kanazawa , Ishikawa 920-1192 , Japan.,JST , PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Frédéric Blanc
- Department of Chemistry and Stephenson Institute for Renewable Energy , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Graeme M Day
- Computational Systems Chemistry, School of Chemistry , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , United Kingdom
| |
Collapse
|
138
|
Zhang YM, Li YF, Zhong KP, Qu WJ, Chen XP, Yao H, Wei TB, Lin Q. A novel pillar[5]arene-based supramolecular organic framework gel to achieve an ultrasensitive response by introducing the competition of cationπ and ππ interactions. SOFT MATTER 2018; 14:3624-3631. [PMID: 29687823 DOI: 10.1039/c8sm00426a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasensitive response properties are an intriguing concern for stimuli-responsive materials. Herein, we report a novel method to achieve an ultrasensitive response by introducing the competition of cationπ and ππ interactions into a pillar[5]arene-based supramolecular organic framework (SOF-AMP). SOF-AMP was constructed with a novel bis-naphthalimide functionalized pillar[5]arene, which was able to form a stable supramolecular gel (SOF-AMP-G) in cyclohexanol. Interestingly, SOF-AMP-G shows an ultrasensitive response to Fe3+ through the competition of cationπ and ππ interactions. Meanwhile, the Fe3+ coordinated SOF (MSOF-Fe) shows an ultrasensitive response to H2PO4-. SOF-AMP-G displayed yellow fluorescence whereas, after the addition of 0.5 equiv. of Fe3+ to SOF-AMP-G, the yellow fluorescence was quenched. The detection limit of SOF-AMP-G for Fe3+ is 7.54 × 10-9 M. More interestingly, the Fe3+ coordinated SOF gel (MSOF-Fe-G) could sense H2PO4- with a fluorescence "turn-on". The detection limit of MSOF-Fe-G for H2PO4- is 4.21 × 10-9 M. Simultaneously, the Fe3+ and H2PO4- responsive thin films based on these SOF gels were prepared. Moreover, these SOF gels could be used as ultrasensitive ion sensors, fluorescent display materials and sensitive logic gates.
Collapse
Affiliation(s)
- You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Kursunlu AN, Baslak C. A Bodipy-bearing pillar[5]arene for mimicking photosynthesis: Multi-fluorophoric light harvesting system. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
140
|
Li H, Chen W, Xu F, Fan X, Liang T, Qi X, Tian W. A Color-Tunable Fluorescent Supramolecular Hyperbranched Polymer Constructed by Pillar[5]arene-Based Host-Guest Recognition and Metal Ion Coordination Interaction. Macromol Rapid Commun 2018; 39:e1800053. [DOI: 10.1002/marc.201800053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Hui Li
- School of Materials Science and Engineering; Jiangxi University of Science and Technology; Ganzhou 341000 P. R. China
| | - Wenzhuo Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Fenfen Xu
- Graduate School; Jiangxi University of Science and Technology; Ganzhou 341000 P. R. China
| | - Xiaodong Fan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Tongxiang Liang
- School of Materials Science and Engineering; Jiangxi University of Science and Technology; Ganzhou 341000 P. R. China
| | - Xiaopeng Qi
- School of Materials Science and Engineering; Jiangxi University of Science and Technology; Ganzhou 341000 P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| |
Collapse
|
141
|
Chang D, Han D, Yan W, Yuan Z, Wang Q, Zou L. Multi-mode supermolecular polymerization driven by host-guest interactions. RSC Adv 2018; 8:13722-13727. [PMID: 35539298 PMCID: PMC9079814 DOI: 10.1039/c8ra01892h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 11/21/2022] Open
Abstract
A novel supermolecular self-assembly based on ternary host-guest interaction between cucurbit[8]uril (CB[8]), 1,1'-dimethyl-4,4'-bipyridinium dication (MV) and coumarin derivative was applied for the construction of linear supramolecular polymer with high degree of polymerization in aqueous solution. Accompanied by the introduction of azobenzene on linear ABBA type monomer the supermolecular polymerization is different and the morphology changes from linear to dendritic polymer. The successful supramolecular polymerization of linear and dendritic supramolecular polymers by non-covalent host-guest molecular recognition was confirmed by various characterization methods, such as 1H NMR spectroscopy, ROESY, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. Meanwhile, the supramolecular polymerization could promote the conversion of the azobenzene from cis to trans, which ultimately results in no isomerism upon UV irradiation.
Collapse
Affiliation(s)
- Dongdong Chang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Dan Han
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Wenhao Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Zhiyi Yuan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Qiaochun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| | - Lei Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 PR China +86 21 64252288 +86 21 64252758
| |
Collapse
|
142
|
Jangizehi A, Ghaffarian SR, Schmolke W, Seiffert S. Dominance of Chain Entanglement over Transient Sticking on Chain Dynamics in Hydrogen-Bonded Supramolecular Polymer Networks in the Melt. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Jangizehi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15875-4413, Iran
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - S. Reza Ghaffarian
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15875-4413, Iran
| | - Willi Schmolke
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Sebastian Seiffert
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| |
Collapse
|
143
|
|
144
|
Gómez-González B, Francisco V, Montecinos R, García-Río L. Investigation of the binding modes of a positively charged pillar[5]arene: internal and external guest complexation. Org Biomol Chem 2018; 15:911-919. [PMID: 28045174 DOI: 10.1039/c6ob02573k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective binding behavior of a trimethylammonium-derived pillar[5]arene towards different guests in aqueous media and under neutral conditions is reported. Although it is known that this macrocycle has the capability to form complexes with guests, we anticipate that the intrinsic pillar shape of the macrocycle with two positively charged rims should allow a diversity of binding modes. The three guests were selected based on their charge and size. The inclusion binding modes and the affinity of the macrocycle to form host-guest complexes were determined by ITC and NMR techniques. We reveal the ability of a cationic water soluble pillar[5]arene to effectively complex two guest molecules, one in each rim, evidencing the diversity of binding modes. Two different structures for 1 : 1 and three for 1 : 2 complexes are reported showing the pillararene ability for internal/external binding.
Collapse
Affiliation(s)
- Borja Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Vitor Francisco
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Rodrigo Montecinos
- Facultad de Química, Pontifica Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Luis García-Río
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
145
|
Ogoshi T, Sueto R, Hamada Y, Doitomi K, Hirao H, Sakata Y, Akine S, Kakuta T, Yamagishi TA. Alkane-length sorting using activated pillar[5]arene crystals. Chem Commun (Camb) 2018; 53:8577-8580. [PMID: 28718474 DOI: 10.1039/c7cc04454b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report a simple and easy-to-operate method for separating n-alkanes: when we immersed activated pillar[5]arene crystals into a mixture of n-alkanes with various chain lengths, the crystals preferentially took up n-alkanes with longer chain lengths.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. and PRESTO, The Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Ryuta Sueto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Yukie Hamada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Kazuki Doitomi
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Aveanue, Kowloon, Hong Kong, China
| | - Hajime Hirao
- PRESTO, The Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Aveanue, Kowloon, Hong Kong, China and Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
146
|
Kakuta T, Yamagishi T, Ogoshi T. Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click" reaction. Chem Commun (Camb) 2018; 53:5250-5266. [PMID: 28387405 DOI: 10.1039/c7cc01833a] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since we discovered pillar[n]arenes in 2008, many chemists have developed a strong interest in pillar[n]arene chemistry because of the many advantages associated with these materials, including their facile and high yielding synthesis, versatile functionality, planar chirality and unique host-guest properties. In this feature article, we discuss recent advances in the field of supramolecular chemistry based on the use of pillar[n]arenes as substrates for copper(i)-catalysed alkyne-azide cycloaddition (CuAAC) "click" chemistry. The CuAAC reaction provides facile access to 1,4-disubstituted triazoles by a reaction between alkyne and azido substrates in the presence of a Cu(i) catalyst. Pillar[n]arenes bearing alkyne or azido groups can therefore be used as substrates for this reaction. Herein, we discuss not only the synthesis of pillar[n]arenes bearing alkyne or azido groups but also the application of these functionalised systems to the CuAAC reaction to construct supramolecular assemblies. We also discuss the rational molecular design and synthesis of guest compounds using the CuAAC reaction because linear alkanes sandwiched between 1,2,3-triazole moieties are good guests for cyclic pentamer pillar[5]arenes.
Collapse
Affiliation(s)
- T Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | |
Collapse
|
147
|
Fu S, An G, Sun H, Luo Q, Hou C, Xu J, Dong Z, Liu J. Laterally functionalized pillar[5]arene: a new building block for covalent self-assembly. Chem Commun (Camb) 2018; 53:9024-9027. [PMID: 28749497 DOI: 10.1039/c7cc04778a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laterally functionalized pillar[5]arenes were synthesized for the first time by bromination at the methylene bridge of dimethoxypillar[5]arene. The synthesized molecule was then used as a novel building block by being covalently self-assembled into polymer nanocapsules and 2D polymer films.
Collapse
Affiliation(s)
- Shuang Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Rao SJ, Zhang Q, Ye XH, Gao C, Qu DH. Integrative Self-Sorting: One-Pot Synthesis of a Hetero[4]rotaxane from a Daisy-Chain-Containing Hetero[4]pseudorotaxane. Chem Asian J 2018; 13:815-821. [PMID: 29424064 DOI: 10.1002/asia.201800011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Indexed: 12/22/2022]
Abstract
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy-chain-containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self-sorting strategy is demonstrated, involving an ABB-type (A for host, dibenzo-24-crown-8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo-21-crown-7 (B21C7), in which the assembled species in hydrogen-bonding-supported solvent only includes a novel daisy-chain-containing hetero[4]pseudorotaxane. The found self-sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self-sorting strategy is integrative to undertake self-recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self-sorting system can be used for the efficient one-pot synthesis of a daisy-chain-containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1 H NMR spectroscopy and high-resolution electrospray ionization (HR-ESI) mass spectrometry.
Collapse
Affiliation(s)
- Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Xu-Hao Ye
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| |
Collapse
|
149
|
Recent advances of functional gels controlled by pillar[n]arene-based host–guest interactions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
150
|
Liu P, Li Z, Shi B, Liu J, Zhu H, Huang F. Formation of Linear Side-Chain Polypseudorotaxane with Supramolecular Polymer Backbone through Neutral Halogen Bonds and Pillar[5]arene-Based Host-Guest Interactions. Chemistry 2018; 24:4264-4267. [DOI: 10.1002/chem.201800312] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Peiren Liu
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Bingbing Shi
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|