101
|
Gamberi T, Magherini F, Fiaschi T, Landini I, Massai L, Valocchia E, Bianchi L, Bini L, Gabbiani C, Nobili S, Mini E, Messori L, Modesti A. Proteomic analysis of the cytotoxic effects induced by the organogold(III) complex Aubipyc in cisplatin-resistant A2780 ovarian cancer cells: further evidence for the glycolytic pathway implication. MOLECULAR BIOSYSTEMS 2016; 11:1653-67. [PMID: 25906354 DOI: 10.1039/c5mb00008d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular alterations produced in cisplatin-resistant A2780 ovarian cancer cells (A2780/R) upon treatment with the cytotoxic organogold(III) complex Aubipyc were investigated in depth through a classical proteomic approach. We observed that A2780/R cell exposure to a cytotoxic concentration of Aubipyc for 24 hours results in a conspicuous number of alterations at the protein level that were carefully examined. Notably, we observed that several affected proteins belong to the glucose metabolism system further supporting the idea that the cytotoxic effects of Aubipyc in A2780/R cells are mostly mediated by an impairment of glucose metabolism in excellent agreement with previous observations on the parent cisplatin-sensitive cell line.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Meier SM, Gerner C, Keppler BK, Cinellu MA, Casini A. Mass Spectrometry Uncovers Molecular Reactivities of Coordination and Organometallic Gold(III) Drug Candidates in Competitive Experiments That Correlate with Their Biological Effects. Inorg Chem 2016; 55:4248-59. [PMID: 26866307 DOI: 10.1021/acs.inorgchem.5b03000] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of three cytotoxic organometallic gold(III) complexes with cyclometalated C,N,N and C,N ligands (either six- or five-membered metallacycles), as well as that of two representative gold(III) complexes with N-donor ligands, with biological nucleophiles has been studied by ESI-MS on ion trap and time-of-flight instruments. Specifically, the gold compounds were reacted with mixtures of nucleophiles containing l-histidine (imine), l-methionine (thioether), l-cysteine (thiol), l-glutamic acid (carboxylic acid), methylseleno-l-cysteine (selenoether), and in situ generated seleno-l-cysteine (selenol) to judge the preference of the gold compounds for binding to selenium-containing amino acid residues. Moreover, the gold compounds' reactivity was studied with proteins and nucleic acid building blocks. These experiments revealed profound differences between the coordination and organometallic families and even within the family of organometallics, which allowed insights to be gained into the compounds mechanisms of action. In particular, interactions with seleno-l-cysteine appear to reflect well the compounds' inhibition properties of the seleno-enzyme thioredoxin reductase and to a certain extent their antiproliferative effects in vitro. Therefore, mass spectrometry is successfully applied for linking the molecular reactivity and target preferences of metal-based drug candidates to their biological effects. Finally, this experimental setup is applicable to any other metallodrug that undergoes ligand substitution reactions and/or redox changes as part of its mechanism of action.
Collapse
Affiliation(s)
- Samuel M Meier
- Department of Analytical Chemistry, University of Vienna , Waehringer Str. 38, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna , Waehringer Str. 38, 1090 Vienna, Austria
| | | | - Maria Agostina Cinellu
- University of Sassari , Dipartimento di Chimica e Farmacia, Via Vienna 2, Sassari I-07100, Italy
| | - Angela Casini
- School of Chemistry, Cardiff University , Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
103
|
Citta A, Scalcon V, Göbel P, Bertrand B, Wenzel M, Folda A, Rigobello MP, Meggers E, Casini A. Toward anticancer gold-based compounds targeting PARP-1: a new case study. RSC Adv 2016. [DOI: 10.1039/c6ra11606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new gold(iii) complex bearing a 2-((2,2′-bipyridin)-5-yl)-1H-benzimidazol-4-carboxamide ligand has been synthesized and characterized for its biological properties in vitro.
Collapse
Affiliation(s)
- A. Citta
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - V. Scalcon
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - P. Göbel
- Fachbereich Chemie
- Philipps-Universität Marburg
- 35043 Marburg
- Germany
| | - B. Bertrand
- Dept. of Pharmacokinetics
- Toxicology and Targeting
- Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| | - M. Wenzel
- School of Chemistry
- Cardiff University
- Cardiff CF10 3A
- UK
| | - A. Folda
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - M. P. Rigobello
- Department of Biomedical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - E. Meggers
- Fachbereich Chemie
- Philipps-Universität Marburg
- 35043 Marburg
- Germany
| | - A. Casini
- Dept. of Pharmacokinetics
- Toxicology and Targeting
- Research Institute of Pharmacy
- University of Groningen
- 9713 AV Groningen
| |
Collapse
|
104
|
Bonuccelli V, Funaioli T, Leoni P, Marchetti F, Marchetti L, Pasquali M. Synthesis and characterization of non-bridging mono- and bis-σ-η1-alkynyl derivatives of the phosphido-bridged hexaplatinum core [Pt6(μ-PBut2)4(CO)4]2+. Dalton Trans 2016; 45:6878-92. [DOI: 10.1039/c6dt00410e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several mono- or bis-alkynyl derivatives of the [Pt6(μ-PBut2)4(CO)4]2+ core, pivotal intermediates in the synthesis of new cluster-containing oligomers, were prepared and fully characterized.
Collapse
Affiliation(s)
- Veronica Bonuccelli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Piero Leoni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Lorella Marchetti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Marco Pasquali
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
105
|
Leung CH, Liu LJ, Lu L, He B, Kwong DWJ, Wong CY, Ma DL. A metal-based tumour necrosis factor-alpha converting enzyme inhibitor. Chem Commun (Camb) 2015; 51:3973-6. [PMID: 25610924 DOI: 10.1039/c4cc09251a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report herein a novel iridium(III) complex 1 as an antitumour necrosis factor agent and the first metal-based inhibitor of TACE enzymatic activity. Complex 1 inhibited TNF-α secretion and p38 phosphorylation in human monocytic THP-1 cells.
Collapse
Affiliation(s)
- Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | | | | | | | | | | | | |
Collapse
|
106
|
Hikisz P, Szczupak Ł, Koceva-Chyła A, Guśpiel A, Oehninger L, Ott I, Therrien B, Solecka J, Kowalski K. Anticancer and Antibacterial Activity Studies of Gold(I)-Alkynyl Chromones. Molecules 2015; 20:19699-718. [PMID: 26528965 PMCID: PMC6331995 DOI: 10.3390/molecules201119647] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain.
Collapse
Affiliation(s)
- Paweł Hikisz
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, Łódź PL-90236, Poland; (P.H.); (A.K.-C.)
| | - Łukasz Szczupak
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, Łódź PL-91403, Poland;
| | - Aneta Koceva-Chyła
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, Łódź PL-90236, Poland; (P.H.); (A.K.-C.)
| | - Adam Guśpiel
- Laboratory of Biologically Active Compounds, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw PL-00791, Poland; (A.G.); (J.S.)
| | - Luciano Oehninger
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig D-38106, Germany; l.oehninger@tu-braunschweig (L.O.); (I.O.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, Braunschweig D-38106, Germany; l.oehninger@tu-braunschweig (L.O.); (I.O.)
| | - Bruno Therrien
- Institute of Chemistry, Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, Neuchatel CH-2000, Switzerland;
| | - Jolanta Solecka
- Laboratory of Biologically Active Compounds, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw PL-00791, Poland; (A.G.); (J.S.)
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, Łódź PL-91403, Poland;
- Correspondence: ; Tel.: +48-42-635-5759 (ext. 123); Fax: +48-42-665-5258
| |
Collapse
|
107
|
García-Moreno E, Tomás A, Atrián-Blasco E, Gascón S, Romanos E, Rodriguez-Yoldi MJ, Cerrada E, Laguna M. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents. Dalton Trans 2015; 45:2462-75. [PMID: 26469679 DOI: 10.1039/c5dt01802a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyne gold(I) derivatives with the water soluble phosphanes PTA (1,3,5-triaza-7-phosphaadamantane) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) were described and their anticancer potential against the colon cancer cell line Caco-2 (PD7 and TC7 clones) was studied. Strong antiproliferative effects are found, for all the new complexes, to be even more pronounced than for the reference drug cisplatin, and similar to auranofin. The interaction of these derivatives with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. The types of quenching and binding constants were determined by a fluorescence quenching method. Moderate values of the binding constants are calculated for the tested derivatives indicating that these complexes can be stored and carried easily by this protein in the body. The study of the thermodynamic parameters in the case of [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] points out to the presence of van der Waals interactions or hydrogen bonding between the metallic complex and the protein. In addition, the complex [Au(C[triple bond, length as m-dash]CCH2Spyridine)(PTA)] has shown inhibition in colon cancer proliferation of HTC-116-luc2 cell lines via the apoptotic pathway and S-phase arrest of the cell cycle. Intraperitoneal injection of this derivative in athymic nude mice inoculated with HTC-116-luc2 cells prolonged their survival and displayed moderate inhibition of the tumour growth with no subsequent organ (kidney and liver) damage after treatment.
Collapse
Affiliation(s)
- Elena García-Moreno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Zhong HJ, Lu L, Leung KH, Wong CCL, Peng C, Yan SC, Ma DL, Cai Z, David Wang HM, Leung CH. An iridium(iii)-based irreversible protein-protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci 2015; 6:5400-5408. [PMID: 28757943 PMCID: PMC5510529 DOI: 10.1039/c5sc02321a] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) has recently emerged as an attractive epigenetic target for anticancer therapy. In this study, an iridium(iii) complex is reported as the first metal-based, irreversible inhibitor of BRD4. Complex 1a is able to antagonize the BRD4-acetylated histone protein-protein interaction (PPI) in vitro, and to bind BRD4 and down-regulate c-myc oncogenic expression in cellulo. Chromatin immunoprecipitation (ChIP) analysis revealed that 1a could modulate the interaction between BRD4 and chromatin in melanoma cells, particular at the MYC promoter. Finally, the complex showed potent activity against melanoma xenografts in an in vivo mouse model. To our knowledge, this is the first report of a Group 9 metal complex inhibiting the PPI of a member of the bromodomain and extraterminal domain (BET) family. We envision that complex 1a may serve as a useful scaffold for the development of more potent epigenetic agents against cancers such as melanoma.
Collapse
Affiliation(s)
- Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Lihua Lu
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Ka-Ho Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Catherine C L Wong
- National Center for Protein Science Shanghai , State Key Laboratory of Cell Biology , Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Chao Peng
- National Center for Protein Science Shanghai , State Key Laboratory of Cell Biology , Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Siu-Cheong Yan
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong , China
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetic Science , Kaohsiung Medical University , Kaohsiung 807 , Taiwan , Republic of China .
- Graduate Institute of Natural Products , Kaohsiung Medical University , Kaohsiung 807 , Taiwan , Republic of China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
109
|
Fernández-Gallardo J, Elie BT, Sadhukha T, Prabha S, Sanaú M, Rotenberg SA, Ramos JW, Contel M. Heterometallic titanium-gold complexes inhibit renal cancer cells in vitro and in vivo. Chem Sci 2015; 6:5269-5283. [PMID: 27213034 PMCID: PMC4869729 DOI: 10.1039/c5sc01753j] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022] Open
Abstract
Following recent work on heterometallic titanocene-gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S-C6H4-COO-) bound to gold(I)-phosphane fragments through a thiolate group ([(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with selected protein kinases from a panel of 35 protein kinases having oncological interest. Preliminary mechanistic studies in Caki-1 renal cells indicate that the cytotoxic and anti-migration effects of the most active compound 5 ([(η-C5H5)2TiMe(μ-mba)Au(PPh3)] involve inhibition of thioredoxin reductase and loss of expression of protein kinases that drive cell migration (AKT, p90-RSK, and MAPKAPK3). The co-localization of both titanium and gold metals (1:1 ratio) in Caki-1 renal cells was demonstrated for 5 indicating the robustness of the heterometallic compound in vitro. Two compounds were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg/kg/every other day) with heterometallic compound 5 as compared with the previously described [(η-C5H5)2Ti{OC(O)-4-C6H4-P(Ph2)AuCI}2] 3 which was non-inhibitory. These findings indicate that structural modifications on the ligand scaffold affect the in vivo efficacy of this class of compounds.
Collapse
Affiliation(s)
- Jacob Fernández-Gallardo
- Department of Chemistry , Brooklyn College and The Graduate Center , The City University of New York , Brooklyn , NY 11210 , USA .
| | - Benelita T. Elie
- Department of Chemistry , Brooklyn College and The Graduate Center , The City University of New York , Brooklyn , NY 11210 , USA .
- Biology PhD Program , The Graduate Center , The City University of New York , 365 Fifth Avenue , New York , NY 10016 , USA
| | - Tanmoy Sadhukha
- Department of Pharmaceutics , College of Pharmacy , University of Minnesota , MN 55455 , USA
| | - Swayam Prabha
- Department of Pharmaceutics , College of Pharmacy , University of Minnesota , MN 55455 , USA
- Center for Translational Drug Delivery , University of Minnesota , MN 55455 , USA
| | - Mercedes Sanaú
- Departamento de Química Inorgánica , Universidad de Valencia , Burjassot , Valencia , 46100 , Spain
| | - Susan A. Rotenberg
- Biology PhD Program , The Graduate Center , The City University of New York , 365 Fifth Avenue , New York , NY 10016 , USA
- Department of Chemistry and Biochemistry , Queens College , The City University of New York , Flushing , NY 11367 , USA
| | - Joe W. Ramos
- Cancer Biology Program , University of Hawaii Cancer Center , University of Hawaii at Manoa , Honolulu , HI 96813 , USA
| | - María Contel
- Department of Chemistry , Brooklyn College and The Graduate Center , The City University of New York , Brooklyn , NY 11210 , USA .
- Biology PhD Program , The Graduate Center , The City University of New York , 365 Fifth Avenue , New York , NY 10016 , USA
- Cancer Biology Program , University of Hawaii Cancer Center , University of Hawaii at Manoa , Honolulu , HI 96813 , USA
| |
Collapse
|
110
|
Păunescu E, Nowak-Sliwinska P, Clavel CM, Scopelliti R, Griffioen AW, Dyson PJ. Anticancer Organometallic Osmium(II)-p-cymene Complexes. ChemMedChem 2015; 10:1539-1547. [PMID: 26190176 DOI: 10.1002/cmdc.201500221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/04/2025]
Abstract
Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.
Collapse
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Patrycja Nowak-Sliwinska
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Catherine M Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland).
| |
Collapse
|
111
|
Mirzadeh N, Privér SH, Abraham A, Shukla R, Bansal V, Bhargava SK. Linking Flavonoids to Gold - A New Family of Gold Compounds for Potential Therapeutic Applications. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
112
|
Gandin V, Fernandes AP. Metal- and Semimetal-Containing Inhibitors of Thioredoxin Reductase as Anticancer Agents. Molecules 2015; 20:12732-56. [PMID: 26184149 PMCID: PMC6331895 DOI: 10.3390/molecules200712732] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022] Open
Abstract
The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide disulfide oxidoreductases playing a central role in cellular redox homeostasis and signaling pathways. Recently, these selenoproteins have emerged as promising therapeutic targets for anticancer drug development, often being overexpressed in tumor cells and contributing to drug resistance. Herein, we summarize the current knowledge on metal- and semimetal-containing molecules capable of hampering mammalian TrxRs, with an emphasis on compounds reported in the last decade.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
113
|
Langdon-Jones EE, Lloyd D, Hayes AJ, Wainwright SD, Mottram HJ, Coles SJ, Horton PN, Pope SJA. Alkynyl-naphthalimide Fluorophores: Gold Coordination Chemistry and Cellular Imaging Applications. Inorg Chem 2015; 54:6606-15. [DOI: 10.1021/acs.inorgchem.5b00954] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily E. Langdon-Jones
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - David Lloyd
- School of Biosciences, Main Building, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Anthony J. Hayes
- School of Biosciences, Main Building, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Shane D. Wainwright
- School of Biosciences, Main Building, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Huw J. Mottram
- School of Pharmacy,
Redwood Building, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Simon J. Coles
- UK National Crystallographic Service, Chemistry,
Faculty of Natural and Environmental Sciences, University of Southampton, Highfield,
Southampton SO17 1BJ, United Kingdom
| | - Peter N. Horton
- UK National Crystallographic Service, Chemistry,
Faculty of Natural and Environmental Sciences, University of Southampton, Highfield,
Southampton SO17 1BJ, United Kingdom
| | - Simon J. A. Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
114
|
Holenya P, Can S, Rubbiani R, Alborzinia H, Jünger A, Cheng X, Ott I, Wölfl S. Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene-gold(I) complex. Metallomics 2015; 6:1591-601. [PMID: 24777153 DOI: 10.1039/c4mt00075g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their broad spectrum of biological activity and antiproliferative effect on different human cancer cell lines, gold compounds have been in the focus of drug research for many years. Gold(I)-N-heterocyclic carbene complexes are of particular interest, because of their stability, ease of derivatization and clear cytotoxicity in cancer cells. To obtain a more detailed view of the molecular mechanisms underlying their cellular activity, we used a novel gold(I)-N-heterocyclic carbene complex, [triphenylphosphane-(1,3-diethyl-5-methoxy-benzylimidazol-2-ylidene)]gold(I) iodide and investigated changes in cellular signaling pathways using quantitative signal transduction protein microarray analysis. We also analyzed changes in cell metabolism in a time-dependent manner by on-line metabolic measurements and used isolated mitochondria to elucidate the direct effects on this cell organelle. We found strong cytotoxic effects in cancer cells, accompanied by an immediate and irreversible loss of mitochondrial respiration as well as by a crucial imbalance of the intracellular redox state, resulting in apoptotic cell death. ELISA microarray analysis of signal transduction pathways revealed a time-dependent up-regulation of pro-apoptotic signaling proteins, e.g. p38 and JNK, whereas pro-survival signals that are directly linked to the thioredoxin system were down-regulated, which pinpoints to thioredoxin reductase as a central target of the compound. Further results suggest that DNA is an indirect target of the compound. Based on our findings, we outline a signaling model for the molecular mechanism underlying the antiproliferative activity of the gold(I)-N-heterocyclic carbene complex investigated, which provides a good general model for the known pattern of cell death induced by this class of substances.
Collapse
Affiliation(s)
- Pavlo Holenya
- Department of Biology, Institut für Pharmazie und molekulare Biotechnologie, Ruperto-Carola University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Sakamoto Y, Moriuchi T, Hirao T. Organogold(I)-uracil conjugates: Synthesis and structural characterization. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
116
|
Luo Z, Yu L, Yang F, Zhao Z, Yu B, Lai H, Wong KH, Ngai SM, Zheng W, Chen T. Ruthenium polypyridyl complexes as inducer of ROS-mediated apoptosis in cancer cells by targeting thioredoxin reductase. Metallomics 2015; 6:1480-90. [PMID: 24823440 DOI: 10.1039/c4mt00044g] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TrxR is an NADPH-dependent selenoenzyme upregulated in a number of cancers. It plays a pivotal role in cancer progression and represents an increasingly attractive target for anticancer drugs. The limitations of cisplatin in cancer treatment have motivated the extensive investigation to other metal complexes, especially ruthenium (Ru) complexes. In this study, we present the in vitro biological evaluation of four Ru(II) polypridyl complexes with diimine ligands, namely, [Ru(bpy)3](2+) (1), [Ru(phen)3](2+) (2), [Ru(ip)3](2+) (3), [Ru(pip)3](2+) (4) (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, ip = imidazole[4,5-f][1,10]phenanthroline, pip = 2-phenylimidazo[4,5-f][1,10]phenanthroline), and demonstrate that they exhibit antiproliferative activities against A375 human melanoma cells through inhibition of TrxR. As the planarity of the structure increases, their TrxR-inhibitory effects and in vitro anticancer activities were enhanced. Among them, complex 4 exhibited higher antiproliferative activity than cisplatin, and the TrxR-inhibitory potency of 4 was more effective than auranofin, a positive TrxR inhibitor. Complex 4 suppressed the cancer cell growth through induction of apoptosis as evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Moreover, complex 4 was able to localize in mitochondria and therein induced ROS-dependent apoptosis by inhibition of TrxR activity. Activation of MAPKs, AKT, DNA damage-mediated p53 phosphorylation and inhibition of VEGFR signaling were also triggered in cells exposed to complex 4. On the basis of this evidence, we suggest that Ru polypyridyl complexes could be developed as TrxR-targeted agents that demonstrate application potentials for treatment of cancers.
Collapse
Affiliation(s)
- Zuandi Luo
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhang B, Duan D, Ge C, Yao J, Liu Y, Li X, Fang J. Synthesis of Xanthohumol Analogues and Discovery of Potent Thioredoxin Reductase Inhibitor as Potential Anticancer Agent. J Med Chem 2015; 58:1795-805. [DOI: 10.1021/jm5016507] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Baoxin Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongzhu Duan
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunpo Ge
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yaping Liu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
118
|
Sakamoto Y, Moriuchi T, Hirao T. Dinuclear organogold(i) complexes bearing uracil moieties: chirality of Au(i)–Au(i) axis and self-assembly. CrystEngComm 2015. [DOI: 10.1039/c5ce00221d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dinuclear organogold(i) complexes bearing uracil moieties were designed, wherein the chirality of the Au(i)–Au(i) axis was induced by coordination regulation of the axially chiral bidentate diphosphine ligand, and intermolecular hydrogen-bonded assemblies were formed between the uracil moieties.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita, Japan
| | - Toshiyuki Moriuchi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita, Japan
| | - Toshikazu Hirao
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita, Japan
- JST
| |
Collapse
|
119
|
He L, Ji S, Lai H, Chen T. Selenadiazole derivatives as theranostic agents for simultaneous cancer chemo-/radiotherapy by targeting thioredoxin reductase. J Mater Chem B 2015; 3:8383-8393. [DOI: 10.1039/c5tb01501d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we have identified selenadiazole derivatives as effective and safe theranostic agents for simultaneous cancer chemo-/radiotherapy.
Collapse
Affiliation(s)
- Lizhen He
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Shengbin Ji
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
120
|
Singha S, Kim D, Seo H, Cho SW, Ahn KH. Fluorescence sensing systems for gold and silver species. Chem Soc Rev 2015; 44:4367-99. [DOI: 10.1039/c4cs00328d] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we provide an overview of the reported fluorescent detection systems for gold and silver species, and discuss their sensing properties with promising features.
Collapse
Affiliation(s)
- Subhankar Singha
- Department of Chemistry and Center for Electro-Photo Behaviours in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Dokyoung Kim
- Department of Chemistry and Center for Electro-Photo Behaviours in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Hyewon Seo
- Department of Chemistry and Center for Electro-Photo Behaviours in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Seo Won Cho
- Department of Chemistry and Center for Electro-Photo Behaviours in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry and Center for Electro-Photo Behaviours in Advanced Molecular Systems
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
121
|
Lai H, Zhao Z, Li L, Zheng W, Chen T. Antiangiogenic ruthenium(ii) benzimidazole complexes, structure-based activation of distinct signaling pathways. Metallomics 2015; 7:439-47. [DOI: 10.1039/c4mt00312h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of ruthenium(ii) benzimidazole complexes has been synthesized and identified as antiangiogenic agents with distinct structure-based action mechanisms.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Linlin Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Wenjie Zheng
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| |
Collapse
|
122
|
Zou T, Lum CT, Lok CN, Zhang JJ, Che CM. Chemical biology of anticancer gold(iii) and gold(i) complexes. Chem Soc Rev 2015; 44:8786-801. [DOI: 10.1039/c5cs00132c] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anticancer gold complexes, including their mechanisms of action and the approaches adopted to improve the anticancer efficiency are described.
Collapse
Affiliation(s)
- Taotao Zou
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Centre and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Ching Tung Lum
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Centre and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Chun-Nam Lok
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Centre and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Jing-Jing Zhang
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Centre and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Centre and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| |
Collapse
|
123
|
Bertrand B, Casini A. A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds. Dalton Trans 2014; 43:4209-19. [PMID: 24225667 DOI: 10.1039/c3dt52524d] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
From wedding rings on fingers to stained glass windows, by way of Olympic medals, gold has been highly prized for millennia. Nowadays, organometallic gold compounds occupy an important place in the field of medicinal inorganic chemistry due to their unique chemical properties with respect to gold coordination compounds. In fact, several studies have proved that they can be used to develop highly efficient metal-based drugs with possible applications in the treatment of cancer. This Perspective summarizes the results obtained for different families of bioactive organometallic gold compounds including cyclometallated gold(iii) complexes with C,N-donor ligands, gold(I) and gold(I/III) N-heterocyclic (NHC) carbene complexes, as well as gold(I) alkynyl complexes, with promising anticancer effects. Most importantly, we will focus on recent developments in the field and discuss the potential of this class of organometallic compounds in relation to their versatile chemistry and innovative mechanisms of action.
Collapse
Affiliation(s)
- Benoît Bertrand
- Dept. Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | | |
Collapse
|
124
|
Zhang D, Xu Z, Yuan J, Zhao YX, Qiao ZY, Gao YJ, Yu GA, Li J, Wang H. Synthesis and Molecular Recognition Studies on Small-Molecule Inhibitors for Thioredoxin Reductase. J Med Chem 2014; 57:8132-9. [DOI: 10.1021/jm5012098] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Di Zhang
- CAS
Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Zhonghe Xu
- CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, Institute
of High Energy Physics, 19 B, Yuquan
Road, Beijing, China
| | - Jia Yuan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, China
| | - Ying-Xi Zhao
- CAS
Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Zeng-Ying Qiao
- CAS
Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS
Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, China
| | - Jingyuan Li
- CAS Key Laboratory
for Biological Effects of Nanomaterials and Nanosafety, Institute
of High Energy Physics, 19 B, Yuquan
Road, Beijing, China
| | - Hao Wang
- CAS
Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| |
Collapse
|
125
|
Barreiro E, Casas JS, Couce MD, Sánchez A, Sánchez-Gonzalez A, Sordo J, Vázquez-López EM. Mono and dinuclear phosphinegold(I) sulfanylcarboxylates: Influence of nuclearity and substitution of PPh 3 for PEt 3 on cytotoxicity. J Inorg Biochem 2014; 138:89-98. [DOI: 10.1016/j.jinorgbio.2014.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/01/2022]
|
126
|
Fernández-Moreira V, Marzo I, Gimeno MC. Luminescent Re(i) and Re(i)/Au(i) complexes as cooperative partners in cell imaging and cancer therapy. Chem Sci 2014. [DOI: 10.1039/c4sc01684j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
127
|
Langdon-Jones EE, Pope SJA. Recent developments in gold(i) coordination chemistry: luminescence properties and bioimaging opportunities. Chem Commun (Camb) 2014; 50:10343-54. [DOI: 10.1039/c4cc03259d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
128
|
Liu Y, Duan D, Yao J, Zhang B, Peng S, Ma H, Song Y, Fang J. Dithiaarsanes Induce Oxidative Stress-Mediated Apoptosis in HL-60 Cells by Selectively Targeting Thioredoxin Reductase. J Med Chem 2014; 57:5203-11. [DOI: 10.1021/jm500221p] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaping Liu
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Dongzhu Duan
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Juan Yao
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shoujiao Peng
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - HuiLong Ma
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yanlin Song
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key
Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
129
|
Hokai Y, Jurkowicz B, Fernández-Gallardo J, Zakirkhodjaev N, Sanaú M, Muth TR, Contel M. Auranofin and related heterometallic gold(I)-thiolates as potent inhibitors of methicillin-resistant Staphylococcus aureus bacterial strains. J Inorg Biochem 2014; 138:81-88. [PMID: 24935090 DOI: 10.1016/j.jinorgbio.2014.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
A series of new heterometallic gold(I) thiolates containing ferrocenyl-phoshines were synthesized. Their antimicrobial properties were studied and compared to that of FDA-approved drug, auranofin (Ridaura), prescribed for the treatment of rheumatoid arthritis. MIC in the order of one digit micromolar were found for most of the compounds against Gram-positive bacteria Staphylococcus aureus and CA MRSA strains US300 and US400. Remarkably, auranofin inhibited S. aureus, US300 and US400 in the order of 150-300 nM. This is the first time that the potent inhibitory effect of auranofin on MRSA strains has been described. The effects of a selected heterometallic compound and auranofin were also studied in a non-tumorigenic human embryonic kidney cell line (HEK-293).
Collapse
Affiliation(s)
- Yozane Hokai
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA; Department of Biology, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA
| | - Boruch Jurkowicz
- Department of Biology, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA
| | - Jacob Fernández-Gallardo
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA
| | - Nuruddinkodja Zakirkhodjaev
- Department of Biology, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA
| | - Mercedes Sanaú
- Departamento de Química Inorgánica, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Theodore R Muth
- Department of Biology, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA
| | - María Contel
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
130
|
Zou T, Lum CT, Lok CN, To WP, Low KH, Che CM. A Binuclear Gold(I) Complex with Mixed Bridging Diphosphine and Bis(N-Heterocyclic Carbene) Ligands Shows Favorable Thiol Reactivity and Inhibits Tumor Growth and Angiogenesis In Vivo. Angew Chem Int Ed Engl 2014; 53:5810-4. [DOI: 10.1002/anie.201400142] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Indexed: 12/25/2022]
|
131
|
Zou T, Lum CT, Lok CN, To WP, Low KH, Che CM. A Binuclear Gold(I) Complex with Mixed Bridging Diphosphine and Bis(N-Heterocyclic Carbene) Ligands Shows Favorable Thiol Reactivity and Inhibits Tumor Growth and Angiogenesis In Vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
132
|
Rubbiani R, Salassa L, de Almeida A, Casini A, Ott I. Cytotoxic Gold(I) N-heterocyclic Carbene Complexes with Phosphane Ligands as Potent Enzyme Inhibitors. ChemMedChem 2014; 9:1205-10. [DOI: 10.1002/cmdc.201400056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Indexed: 11/09/2022]
|
133
|
Jortzik E, Farhadi M, Ahmadi R, Tóth K, Lohr J, Helmke BM, Kehr S, Unterberg A, Ott I, Gust R, Deborde V, Davioud-Charvet E, Réau R, Becker K, Herold-Mende C. Antiglioma activity of GoPI-sugar, a novel gold(I)-phosphole inhibitor: chemical synthesis, mechanistic studies, and effectiveness in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1415-26. [PMID: 24440405 DOI: 10.1016/j.bbapap.2014.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Glioblastoma, an aggressive brain tumor, has a poor prognosis and a high risk of recurrence. An improved chemotherapeutic approach is required to complement radiation therapy. Gold(I) complexes bearing phosphole ligands are promising agents in the treatment of cancer and disturb the redox balance and proliferation of cancer cells by inhibiting disulfide reductases. Here, we report on the antitumor properties of the gold(I) complex 1-phenyl-bis(2-pyridyl)phosphole gold chloride thio-β-d-glucose tetraacetate (GoPI-sugar), which exhibits antiproliferative effects on human (NCH82, NCH89) and rat (C6) glioma cell lines. Compared to carmustine (BCNU), an established nitrosourea compound for the treatment of glioblastomas that inhibits the proliferation of these glioma cell lines with an IC50 of 430μM, GoPI-sugar is more effective by two orders of magnitude. Moreover, GoPI-sugar inhibits malignant glioma growth in vivo in a C6 glioma rat model and significantly reduces tumor volume while being well tolerated. Both the gold(I) chloro- and thiosugar-substituted phospholes interact with DNA albeit more weakly for the latter. Furthermore, GoPI-sugar irreversibly and potently inhibits thioredoxin reductase (IC50 4.3nM) and human glutathione reductase (IC50 88.5nM). However, treatment with GoPI-sugar did not significantly alter redox parameters in the brain tissue of treated animals. This might be due to compensatory upregulation of redox-related enzymes but might also indicate that the antiproliferative effects of GoPI-sugar in vivo are rather based on DNA interaction and inhibition of topoisomerase I than on the disturbance of redox equilibrium. Since GoPI-sugar is highly effective against glioblastomas and well tolerated, it represents a most promising lead for drug development. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- E Jortzik
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - M Farhadi
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Germany
| | - R Ahmadi
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Germany
| | - K Tóth
- Division Biophysics of Macromolecules, German Cancer Research Center Heidelberg, Germany
| | - J Lohr
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Germany
| | - B M Helmke
- Institute of Pathology, Elbe Klinikum Stade, Germany; Department of General Pathology, University of Heidelberg, Germany
| | - S Kehr
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - A Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Germany
| | - I Ott
- Institute of Pharmacy, Freie Universität Berlin, Germany; Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Germany
| | - R Gust
- Institute of Pharmacy, Freie Universität Berlin, Germany; Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Austria
| | - V Deborde
- UMR 6509 Institut de Chimie, CNRS Université de Rennes, France
| | - E Davioud-Charvet
- UMR7509 CNRS and University of Strasbourg, European School of Chemistry, Polymers and Materials (ECPM), France; Center of Biochemistry, University of Heidelberg, Germany
| | - R Réau
- UMR 6509 Institut de Chimie, CNRS Université de Rennes, France
| | - K Becker
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - C Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Germany
| |
Collapse
|
134
|
Arcau J, Andermark V, Aguiló E, Gandioso A, Moro A, Cetina M, Lima JC, Rissanen K, Ott I, Rodríguez L. Luminescent alkynyl-gold(i) coumarin derivatives and their biological activity. Dalton Trans 2014; 43:4426-36. [DOI: 10.1039/c3dt52594e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
135
|
Barra CV, Rocha FV, Gautier A, Morel L, Quilles MB, Carlos IZ, Treu-Filho O, Frem RC, Mauro AE, Netto AV. Synthesis, cytotoxic activity and DNA interaction of Pd(II) complexes bearing N′-methyl-3,5-dimethyl-1-thiocarbamoylpyrazole. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
136
|
Strong inhibition of thioredoxin reductase by highly cytotoxic gold(I) complexes. DNA binding studies. J Inorg Biochem 2013; 130:32-7. [PMID: 24157605 DOI: 10.1016/j.jinorgbio.2013.09.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
Biological properties of a series of aminophosphine-thiolate gold(I) complexes [Au(SR)(PPh2NHpy)] [Ph2PNHpy=2-(diphenylphosphinoamino)pyridine; HSR=2-mercaptopyridine (2-HSpy) (3), 2-mercaptonicotinic acid (2-H2-mna) (4), 2-thiouracil (2-HTU) (5) or 2-thiocytosine (2-HTC) (6)] and [Au(SR){PPh2NH(Htrz)}] [Ph2PNH(Htrz)=3-(diphenylphosphinoamino)-1,2,4-triazole]; HSR=2-mercaptopyridine (2-HSpy) (7), 2-thiocytosine (2-HTC) (8) or 6-thioguanine (6-HTG) (9) have been studied. Their antitumor properties have been tested in vitro against two tumor human cell lines, HeLa (derived from cervical cancer) and MCF-7 (derived from breast cancer), using a metabolic activity test (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT). Some of them showed excellent cytotoxic activity. With the aim to obtain more information about the mechanisms of action of these derivatives, the interactions of complexes 3, 5, 7 and 9 with thioredoxin reductase in HeLa cells were studied. They showed a potent inhibition of thioredoxin reductase activity. In order to complete this study, interactions of the complexes with calf thymus (CT-) DNA and with different bacterial DNAs, namely the plasmid pEMBL9 and the promoter region of the furA (ferric uptake regulator A) gene from Anabaena sp. PCC 7120 were investigated. Although interactions of complexes with CT-DNA have been verified, none of them cause significant changes in its structure.
Collapse
|
137
|
Romero-Canelón I, Sadler PJ. Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation. Inorg Chem 2013; 52:12276-91. [PMID: 23879584 DOI: 10.1021/ic400835n] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong,
People’s Republic of China
| |
Collapse
|
138
|
García-Moreno E, Gascón S, Rodriguez-Yoldi MJ, Cerrada E, Laguna M. S-Propargylthiopyridine Phosphane Derivatives As Anticancer Agents: Characterization and Antitumor Activity. Organometallics 2013. [DOI: 10.1021/om400340a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Elena García-Moreno
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - Sonia Gascón
- Departamento de Farmacología
y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn,
Spain
| | - M Jesus Rodriguez-Yoldi
- Departamento de Farmacología
y Fisiología, Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn,
Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - Mariano Laguna
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| |
Collapse
|
139
|
Lüning A, Schur J, Hamel L, Ott I, Klein A. Strong Cytotoxicity of Organometallic Platinum Complexes with Alkynyl Ligands. Organometallics 2013. [DOI: 10.1021/om400293u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anna Lüning
- Department
für Chemie, Institut für Anorganische
Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Julia Schur
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße
55, D-38106 Braunschweig, Germany
| | - Laura Hamel
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße
55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße
55, D-38106 Braunschweig, Germany
| | - Axel Klein
- Department
für Chemie, Institut für Anorganische
Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| |
Collapse
|
140
|
The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh] (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J Inorg Biochem 2013; 127:24-38. [PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022]
Abstract
The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
Collapse
|
141
|
Meyer A, Gutiérrez A, Ott I, Rodríguez L. Phosphine-bridged dinuclear gold(I) alkynyl complexes: Thioredoxin reductase inhibition and cytotoxicity. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Zou T, Lum CT, Chui SSY, Che CM. Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands: Thiol “Switch-on” Fluorescent Probes and Anti-Cancer Agents. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209787] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
143
|
Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands: Thiol “Switch-on” Fluorescent Probes and Anti-Cancer Agents. Angew Chem Int Ed Engl 2013; 52:2930-3. [DOI: 10.1002/anie.201209787] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Indexed: 01/08/2023]
|
144
|
Liu W, Gust R. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem Soc Rev 2013; 42:755-73. [PMID: 23147001 DOI: 10.1039/c2cs35314h] [Citation(s) in RCA: 594] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wukun Liu
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str 2+4, 14195 Berlin, Germany
| | | |
Collapse
|
145
|
|