101
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 514] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
102
|
Yang L, Gu B, Chen Z, Yue Y, Wang W, Zhang H, Liu X, Ren S, Yang W, Li Y. Synthetic Biopigment Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30360-30367. [PMID: 31361116 DOI: 10.1021/acsami.9b10956] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomass-based energy storage devices have drawn increasing attention owing to their renewability and sustainability, particularly that the heteroatom-doped carbons derived from natural polymers are regarded as the promising candidates in discovering advanced electrode materials for supercapacitors. This work has developed a facile one-pot fabrication strategy toward synthetic pheomelanin nanoparticles with controllable size and chemical composition (i.e., sulfur content) via the copolymerization of dopamine and cysteine. The resulting synthetic pigment materials possess outstanding thermal stability and are able to directly transform into monodispersed S,N-codoped carbon spheres with unaltered morphology. Compared with conventional polydopamine-based carbon spheres, the present carbonized pheomelanin nanoparticles with electroactive sulfur atoms could possess lower charge-transfer resistance and consequently higher specific capacitance (e.g., 243 F g-1 at 1 A g-1). This research continues to inspire researchers to develop new kinds of energy storage materials based on synthetic biopigment materials.
Collapse
Affiliation(s)
- Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Bingni Gu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Zhan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yong Yue
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Wenxuan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Haitao Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University , Zhengzhou 450002 , China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
103
|
Brash JL, Horbett TA, Latour RA, Tengvall P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater 2019; 94:11-24. [PMID: 31226477 PMCID: PMC6642842 DOI: 10.1016/j.actbio.2019.06.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
The adsorption of proteins is the initiating event in the processes occurring when blood contacts a "foreign" surface in a medical device, leading inevitably to thrombus formation. Knowledge of protein adsorption in this context has accumulated over many years but remains fragmentary and incomplete. Moreover, the significance and relevance of the information for blood compatibility are not entirely agreed upon in the biomaterials research community. In this review, protein adsorption from blood is discussed under the headings "agreed upon" and "not agreed upon or not known" with respect to: protein layer composition, effects on coagulation and complement activation, effects on platelet adhesion and activation, protein conformational change and denaturation, prevention of nonspecific protein adsorption, and controlling/tailoring the protein layer composition. STATEMENT OF SIGNIFICANCE: This paper is part 2 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
|
104
|
Kim E, Kang M, Liu H, Cao C, Liu C, Bentley WE, Qu X, Payne GF. Pro- and Anti-oxidant Properties of Redox-Active Catechol-Chitosan Films. Front Chem 2019; 7:541. [PMID: 31417897 PMCID: PMC6682675 DOI: 10.3389/fchem.2019.00541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022] Open
Abstract
Catechols are abundant in nature and are believed to perform diverse biological functions that include photoprotection (e.g., melanins), molecular signaling (e.g., catecholamine neurotransmitters), and mechanical adhesion (e.g., mussel glue). Currently, the structure-property-function relationships for catechols remain poorly resolved, and this is especially true for redox-based properties (e.g., antioxidant, pro-oxidant, and radical scavenging activities). Importantly, there are few characterization methods available to probe the redox properties of materials. In this review, we focus on recent studies with redox-active catechol-chitosan films. First, we describe film fabrication methods to oxidatively-graft catechols to chitosan through chemical, enzymatic, or electrochemical methods. Second, we discuss a new experimental characterization method to probe the redox properties of catechol-functionalized materials. This mediated electrochemical probing (MEP) method probes the redox-activities of catechol-chitosan films by: (i) employing diffusible mediators to shuttle electrons between the electrode and grafted catechols; (ii) imposing tailored sequences of input voltages to “tune” redox probing; and (iii) analyzing the output current response characteristics to infer properties. Finally, we demonstrate that the redox properties of catechol-chitosan films enable them to perform antioxidant radical scavenging functions, as well as a pro-oxidant (reactive oxygen-generation) antimicrobial functions. In summary, our increasing knowledge of catechol-chitosan films is enabling us to better-understand the functions of catechols in biology as well as enhancing our capabilities to create advanced functional materials.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Mijeong Kang
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chunhua Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| |
Collapse
|
105
|
Affiliation(s)
- Jürgen Liebscher
- Institute of Chemistry; Humboldt-University Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
106
|
Liu H, Qu X, Tan H, Song J, Lei M, Kim E, Payne GF, Liu C. Role of polydopamine's redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater 2019; 88:181-196. [PMID: 30818052 DOI: 10.1016/j.actbio.2019.02.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Polydopamine (PDA) is a bioinspired material and coating that offers diverse functional activities (e.g., photothermal, antioxidant, and antimicrobial) for a broad range of applications. Although PDA is reported to be redox active, the association between PDA's redox state and its functional performance has been difficult to discern because of PDA's complex structure and limitations in methods to characterize redox-based functions. Here, we use an electrochemical reverse engineering approach to confirm that PDA is redox-active and can repeatedly accept and donate electrons. We observed that the electron-donating ability of PDA offers the detrimental pro-oxidant effect of donating electrons to O2 to generate reactive oxygen species (ROS) or, alternatively, the beneficial antioxidant effect of quenching oxidative free radicals. Importantly, PDA's electron-donating ability depends on its redox state and is strongly influenced by external factors including metal ion binding as well as near-infrared (NIR) irradiation. Furthermore, we demonstrated that PDA possesses redox state-dependent antimicrobial properties in vitro and in vivo. We envision that clarification of PDA's redox activity will enable better understanding of PDA's context-dependent properties (e.g., antioxidant and pro-oxidant) and provide new insights for further applications of PDA. STATEMENT OF SIGNIFICANCE: We believe this is the first report to characterize the redox activities of polydopamine (PDA) and to relate these redox activities to functional properties important for various proposed applications of PDA. We observed that polydopamine nanoparticles 1) are redox-active; 2) can repeatedly donate and accept electrons; 3) can accept electrons from reducing agents (e.g., ascorbate), donate electrons to O2 to generate ROS, and donate electrons to free radicals to quench them; 4) have redox state-dependent electron-donating abilities that are strongly influenced by metal ion binding as well as NIR irradiation; and 5) have redox state-dependent antimicrobial activities.
Collapse
|
107
|
Zha RH, Delparastan P, Fink TD, Bauer J, Scheibel T, Messersmith PB. Universal nanothin silk coatings via controlled spidroin self-assembly. Biomater Sci 2019; 7:683-695. [PMID: 30628598 PMCID: PMC6459601 DOI: 10.1039/c8bm01186a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Robust, biocompatible, and facile coatings are promising for improving the in vivo performance of medical implants and devices. Here, we demonstrate the formation of nanothin silk coatings by leveraging the biomimetic self-assembly of eADF4(C16), an amphiphilic recombinant protein based on the Araneus diadematus dragline spidroin ADF4. These coatings result from concurrent adsorption and supramolecular assembly of eADF4(C16) induced by KH2PO4, thereby providing a mild one-pot coating strategy in which the coating rate can be controlled by protein and KH2PO4 concentration. The thickness of the coatings ranges from 2-30 nm depending on the time immersed in the aqueous coating solution. Coatings can be formed on hydrophobic and hydrophilic substrates regardless of surface chemistry and without requiring specialized surface activation. Moreover, coatings appear to be stable through vigorous rinsing and prolonged agitation in water. Grazing incidence wide angle X-ray scattering, single-molecule force spectroscopy, and Congo red staining techniques confirm the formation of β-sheet nanocrystals within the eADF4(C16) coating, which contributes to the cohesive and adhesive stability of the material. Coatings are exceptionally smooth in the dry state and are hydrophilic regardless of substrate hydrophobicity. Under aqueous conditions, nanothin silk coatings exhibit the properties of a hydrogel material.
Collapse
Affiliation(s)
- R Helen Zha
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
Mass spectroscopic studies using deuterium-labeling reveal a novel structure for polydopamine, deriving from dopaminochrome and uncyclized dopamine.
Collapse
Affiliation(s)
- Qinghua Lyu
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
| | - Nathanael Hsueh
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
| | | |
Collapse
|