101
|
Pirenne V, Robert EGL, Waser J. Catalytic (3 + 2) annulation of donor-acceptor aminocyclopropane monoesters and indoles. Chem Sci 2021; 12:8706-8712. [PMID: 34257869 PMCID: PMC8246098 DOI: 10.1039/d1sc01127h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The efficient catalytic activation of donor-acceptor aminocyclopropanes lacking the commonly used diester acceptor is reported here in a (3 + 2) dearomative annulation with indoles. Bench-stable tosyl-protected aminocyclopropyl esters were converted into cycloadducts in 46-95% yields and up to 95 : 5 diastereomeric ratio using catalytic amounts of triethylsilyl triflimide. Tricyclic indoline frameworks containing four stereogenic centers including all-carbon quaternary centers were obtained.
Collapse
Affiliation(s)
- Vincent Pirenne
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| | - Emma G L Robert
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne Ch-1015 Lausanne Switzerland
| |
Collapse
|
102
|
Borisov DD, Chermashentsev GR, Novikov RA, Tomilov YV. Coupling of Styrylmalonates with Furan and Benzofuran Carbaldehydes: Synthesis and Chemistry of Substituted (4-Oxocyclopent-2-enyl)malonates. J Org Chem 2021; 86:8489-8499. [PMID: 34048239 DOI: 10.1021/acs.joc.1c00536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of the reaction of β-styrylmalonates with furfural derivatives in the presence of GaCl3 that occurs with opening of the furan ring, an efficient diastereoselective method for the synthesis of trisubstituted cyclopentenones containing a 1,4-diketone moiety was developed. The regularities of the reaction were studied, and a number of chemical reactions of the resulting substrates were carried out. A mechanism for the formation of substituted (4-oxo-2-arylcyclopent-2-enyl)malonates was suggested.
Collapse
Affiliation(s)
- Denis D Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Grigorii R Chermashentsev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
103
|
Belaya MA, Knyazev DA, Borisov DD, Novikov RA, Tomilov YV. GaCl 3-Mediated Cascade [2 + 4]-Cycloaddition/[4 + 2]-Annulation of Donor-Acceptor Cyclopropanes with Conjugated Dienes: Strategy for the Construction of Benzobicyclo[3.3.1]nonane Skeleton. J Org Chem 2021; 86:8089-8100. [PMID: 34047557 DOI: 10.1021/acs.joc.1c00564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structurally important benzobicyclo[3.3.1]nonane derivatives were synthesized by a gallium trichloride mediated reaction of readily available donor-acceptor cyclopropanes (DACs) with 1,3-dienes as a one-pot cascade ionic [2 + 4]-cycloaddition/Friedel-Crafts-type cyclization process. At the first stage, DACs act as sources of formal gallium 1,2-zwitterionic complexes to give 6-benzylcyclohex-3-ene-1,1-dicarboxylates that are converted under certain conditions in the presence of GaCl3 to give benzobicyclo[3.3.1]nonanes in 30-74% yields. The process is tolerant of varying substituents at different positions of the main framework. Further, potentially useful modifications of benzobicyclo[3.3.1]nonane derivatives are demonstrated. 2-Cyclopropylbutadiene reacts with DAC at higher temperature more deeply with cleavage of three-membered rings in both cyclopropane substrates, and twofold alkylation of the Ph-substituent at ortho- and meta-positions, that leads to a 1,2,7,8,9,10-hexahydro-6H-7,10a-methanocycloocta[cd]indene skeleton. Cyclopropane-1,1-diesters containing a bulky substituent in the ester group react with isoprene in a different way to give bicyclic lactones containing a 2-oxabicyclo[2.2.2]octan-3-one moiety.
Collapse
Affiliation(s)
- Maria A Belaya
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Daniil A Knyazev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Denis D Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
104
|
Sang JW, Xie MS, Wang MM, Qu GR, Guo HM. Chemo- and regioselective ring-opening of donor-acceptor oxiranes with N-heteroaromatics. Chem Commun (Camb) 2021; 57:4552-4555. [PMID: 33956013 DOI: 10.1039/d1cc00600b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first ring-opening of D-A oxiranes with N-heteroaromatics in a chemoselective C-C bond cleavage manner was achieved. In the presence of 5 mol% of Y(OTf)3 as the catalyst, diverse N-heteroaromatics, including benzotriazoles, purines, substituted benzimidazole, imidazole and pyrazole, reacted well with various D-A oxiranes, providing acyclic nucleoside analogues containing a N-glycosidic bond in up to 97% yield and up to >95 : 5 regioselectivity. Through simple transformation, the Ganciclovir analogue could also be obtained.
Collapse
Affiliation(s)
- Ji-Wei Sang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Man-Man Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
105
|
Augustin AU, Werz DB. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry. Acc Chem Res 2021; 54:1528-1541. [PMID: 33661599 DOI: 10.1021/acs.accounts.1c00023] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) cyclopropanes have gained increased momentum over the past two decades. The use of these highly strained three-membered entities paved the way to innovative and original transformations yielding complex cyclic and acyclic architectures that otherwise might be difficult to address. Since the fundamentals were laid by Wenkert and Reissig in the late 1970s, the field has flourished impressively including asymmetric transformations as well as elegant synthetic applications in the construction of natural occurring products. In this Account, we aim to highlight especially our efforts in the context of an efficient access to sulfur- and selenium-containing compounds, of either cyclic or open-chain nature, by exploiting D-A cyclopropane chemistry. Light will be shed on the three fundamental transformations: ring-opening reactions, cycloadditions, and rearrangements.Our synthetic endeavors started back in 2011 guided by quantum chemical studies to obtain 3,3'-linked bisthiophenes along with an unprecedented rearrangement delivering sulfur- and selenium-containing cagelike scaffolds. Inspired by these surprising results, we further deepened our efforts to the construction of new sulfur-carbon and selenium-carbon bonds within the context of D-A cyclopropane chemistry. In the first instance, we capitalized on the great versatility of organosulfur and organoselenium compounds regarding their amphiphilic character to act either as nucleophilic or as electrophilic species. By such an approach, ring-openings via a nucleophilic attack of sulfenyl and selenyl halides furnished 1,3-bishalochalcogenated products. A similar protocol led us to a desymmetrization reaction of meso-cyclopropyl carbaldehydes employing novel chiral imidazolidinone organocatalysts. In contrast, electrophilic sulfur was supplied by N-(arylthio)succinimide substrates to access thiolated γ-amino acid derivatives and their selenium equivalents.Combining the highly reactive thiocarbonyl compounds and vicinal donor-acceptor substituted cyclopropanes opened new vistas in the field of atom-economic cycloaddition reactions to build up sulfur-containing heterocycles of various sizes. The first systematic study of such transformations was made by our group in 2017 leading to highly decorated thiolanes, whereas an intramolecular approach furnished thia-[n.2.1]bicyclic ring systems. Our investigations were then successfully extended to the synthesis of tetrahydroselenophenes by using capricious selenoketones. Recently, we were able to yield the unsaturated analogues, selenophenes, by a (3 + 2)-cycloaddition of D-A cyclopropanes with ammonium selenocyanates followed by oxidation. The formal insertion of thioketenes was realized by employing 3-thioxocyclobutanones as surrogates for disubstituted thioketenes to obtain 2-substituted tetrahydrothiophenes bearing a semicyclic double bond via a (3 + 2) spiroannulation/(2 + 2) cycloreversion sequence. Even the formation of seven-membered S-heterocycles was realized by (4 + 3)-cycloaddition processes. In 2016, we demonstrated the synthesis of benzo-fused dithiepines from in situ generated ortho-bisthioquinones, whereas the utilization of thia-Michael systems as a hetero-4π-component delivered tetrahydrothiepine derivatives containing just one sulfur atom embedded in the ring system.
Collapse
Affiliation(s)
- André U. Augustin
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
106
|
Liu K, Yang J, Li X. Palladium-Catalyzed Diastereo- and Enantioselective [3 + 2] Cycloaddition of Vinylcyclopropanes with Azadienes: Efficient Access to Chiral Spirocycles. Org Lett 2021; 23:826-831. [DOI: 10.1021/acs.orglett.0c04062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kai Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jianfeng Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, NO. 388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
107
|
Caillé J, Robiette R. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. Org Biomol Chem 2021; 19:5702-5724. [PMID: 34114583 DOI: 10.1039/d1ob00838b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The stereocontrolled formation of medium-sized carbocycles is a major goal in modern organic chemistry due to their widespread occurrence in natural products and pharmaceutically active ingredients. One approach consists in the use of cycloaddition reactions which notably results in high selectivities and atom-economy. To this end, cyclopropanes are ideal substrates since they can provide readily functionalized three- or five-carbon synthons. Herein we report advances made in cycloaddition reactions of cyclopropanes towards the synthesis of medium-sized carbocycles via transition metal catalysis or Lewis acid catalysis.
Collapse
Affiliation(s)
- Julien Caillé
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium. and Institut de Chimie et des Matériaux Paris Est (ICMPE), UMR-CNRS 7182, Université Paris Est Créteil (UPEC), 2 Rue Henri Dunant, 94320 Thiais, France.
| | - Raphaël Robiette
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1 box L4.01.02, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
108
|
Xu L, Yang Q, Zhong S, Li H, Tang Y, Cai Y. Ln(III)/Chiral Brønsted Acid Catalyzed Asymmetric Cascade Ring Opening/Aza-Piancatelli Rearrangement of D–A Cyclopropanes. Org Lett 2020; 22:9016-9021. [DOI: 10.1021/acs.orglett.0c03413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
109
|
Zhang D, Cai H, Chen Y, Yin L, Zhong J, Zhang Y, Zhang QF. Ring Opening of Donor-Acceptor Cyclopropanes with Acyclic 1,3-Diketones for the Synthesis of 1,6-Dicarbonyl Compounds. J Org Chem 2020; 85:14262-14270. [PMID: 33115228 DOI: 10.1021/acs.joc.0c02290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1,6-Dicarbonyl compounds, representing the formal addition products of the α-position of acetophenone derivatives to donor-acceptor cyclopropanes, were synthesized in two steps via first ring opening of donor-acceptor cyclopropanes with acyclic 1,3-diketones followed by DBU catalyzed retro-Claisen-type C-C bond cleavage reactions. In the first step, acyclic 1,3-diketones selectively worked as C-nucleophiles to add to donor-acceptor cyclopropanes. In the second step, the alkyl ketone part of the ring-opening products resulting from unsymmetrical 1,3-diketones was selectively cleaved in the presence of DBU in methanol.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Hu Cai
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Yan Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Lei Yin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Junchao Zhong
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Ying Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, No. 59 Hudong Road, Ma'anshan, Anhui 243002, China
| |
Collapse
|
110
|
Jacob A, Jones PG, Werz DB. (3 + 2)-Cycloaddition of Donor–Acceptor Cyclopropanes with Selenocyanate: Synthesis of Dihydroselenophenes and Selenophenes. Org Lett 2020; 22:8720-8724. [DOI: 10.1021/acs.orglett.0c03329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Anu Jacob
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
111
|
Sarkar T, Das BK, Talukdar K, Shah TA, Punniyamurthy T. Recent Advances in Stereoselective Ring Expansion of Spirocyclopropanes: Access to the Spirocyclic Compounds. ACS OMEGA 2020; 5:26316-26328. [PMID: 33110959 PMCID: PMC7581100 DOI: 10.1021/acsomega.0c03856] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Spirocyclopropane represents a privileged structural scaffold for accessing synthetic libraries of densely functionalized spirocarbo- and heterocyclic compounds. Due to the ubiquity of spirocyclic motifs as a potent pharmacophore in natural products and pharmaceuticals, recent years have witnessed significant advances in developing synthetic strategies that exploits carbon-carbon bond scission in spirocyclopropanes. This paper summarizes the recent developments in stereoselective ring expansion of spirocyclopropanes in diversity-oriented synthesis and highlights the synthetic as well as mechanistic rationale of those methodologies. This review also encompasses the applicability of the protocols in bioactive natural product syntheses.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tariq A. Shah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Government Srinagar Women’s College, Zakura Srinagar 190006, India
| | | |
Collapse
|
112
|
Chang F, Shen B, Wang S, Lin L, Feng X. Lewis acid catalysed asymmetric cascade reaction of cyclopropyl ketones: concise synthesis of pyrrolobenzothiazoles. Chem Commun (Camb) 2020; 56:13429-13432. [DOI: 10.1039/d0cc05667g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A concise method to synthesize pyrrolobenzothiazoles via a cascade reaction of cyclopropyl ketones was developed by using a chiral N,N′-dioxide-scandium(iii) complex catalyst.
Collapse
Affiliation(s)
- Fenzhen Chang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Bin Shen
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Sijing Wang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|