101
|
Short DPG, Gurung S, Hu X, Inderbitzin P, Subbarao KV. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae. PLoS One 2014; 9:e112145. [PMID: 25383550 PMCID: PMC4226480 DOI: 10.1371/journal.pone.0112145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023] Open
Abstract
Verticillium dahliae is a cosmopolitan, soilborne fungus that causes a significant wilt disease on a wide variety of plant hosts including economically important crops, ornamentals, and timber species. Clonal expansion through asexual reproduction plays a vital role in recurring plant epidemics caused by this pathogen. The recent discovery of recombination between clonal lineages and preliminary investigations of the meiotic gene inventory of V. dahliae suggest that cryptic sex appears to be rare in this species. Here we expanded on previous findings on the sexual nature of V. dahliae. Only 1% of isolates in a global collection of 1120 phytopathogenic V. dahliae isolates contained the MAT1-1 idiomorph, whereas 99% contained MAT1-2. Nine unique multilocus microsatellite types comprised isolates of both mating types, eight of which were collected from the same substrate at the same time. Orthologs of 88 previously characterized sex-related genes from fungal model systems in the Ascoymycota were identified in the genome of V. dahliae, out of 93 genes investigated. Results of RT-PCR experiments using both mating types revealed that 10 arbitrarily chosen sex-related genes, including MAT1-1-1 and MAT1-2-1, were constitutively expressed in V. dahliae cultures grown under laboratory conditions. Ratios of non-synonymous (amino-acid altering) to synonymous (silent) substitutions in V. dahliae MAT1-1-1 and MAT1-2-1 sequences were indistinguishable from the ratios observed in the MAT genes of sexual fungi in the Pezizomycotina. Patterns consistent with strong purifying selection were also observed in 18 other arbitrarily chosen V. dahliae sex-related genes, relative to the patterns in orthologs from fungi with known sexual stages. This study builds upon recent findings from other laboratories and mounts further evidence for an ancestral or cryptic sexual stage in V. dahliae.
Collapse
Affiliation(s)
- Dylan P. G. Short
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| | - Suraj Gurung
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Salinas, CA, United States of America
| |
Collapse
|
102
|
Haag KL, James TY, Pombert JF, Larsson R, Schaer TMM, Refardt D, Ebert D. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc Natl Acad Sci U S A 2014; 111:15480-5. [PMID: 25313038 PMCID: PMC4217409 DOI: 10.1073/pnas.1410442111] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular parasitism results in extreme adaptations, whose evolutionary history is difficult to understand, because the parasites and their known free-living relatives are so divergent from one another. Microsporidia are intracellular parasites of humans and other animals, which evolved highly specialized morphological structures, but also extreme physiologic and genomic simplification. They are suggested to be an early-diverging branch on the fungal tree, but comparisons to other species are difficult because their rates of molecular evolution are exceptionally high. Mitochondria in microsporidia have degenerated into organelles called mitosomes, which have lost a genome and the ability to produce ATP. Here we describe a gut parasite of the crustacean Daphnia that despite having remarkable morphological similarity to the microsporidia, has retained genomic features of its fungal ancestors. This parasite, which we name Mitosporidium daphniae gen. et sp. nov., possesses a mitochondrial genome including genes for oxidative phosphorylation, yet a spore stage with a highly specialized infection apparatus--the polar tube--uniquely known only from microsporidia. Phylogenomics places M. daphniae at the root of the microsporidia. A comparative genomic analysis suggests that the reduction in energy metabolism, a prominent feature of microsporidian evolution, was preceded by a reduction in the machinery controlling cell cycle, DNA recombination, repair, and gene expression. These data show that the morphological features unique to M. daphniae and other microsporidia were already present before the lineage evolved the extreme host metabolic dependence and loss of mitochondrial respiration for which microsporidia are well known.
Collapse
Affiliation(s)
- Karen L Haag
- Zoological Institute, Basel University, 4051 Basel, Switzerland; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, 91501-970 RS, Brazil;
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Jean-François Pombert
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Ronny Larsson
- Department of Biology, University of Lund, SE-223 62 Lund, Sweden; and
| | | | - Dominik Refardt
- Zoological Institute, Basel University, 4051 Basel, Switzerland; Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Dieter Ebert
- Zoological Institute, Basel University, 4051 Basel, Switzerland
| |
Collapse
|
103
|
Milgroom MG, Jiménez-Gasco MDM, Olivares García C, Drott MT, Jiménez-Díaz RM. Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing. PLoS One 2014; 9:e106740. [PMID: 25181515 PMCID: PMC4152335 DOI: 10.1371/journal.pone.0106740] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.
Collapse
Affiliation(s)
- Michael G. Milgroom
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Concepción Olivares García
- College of Agriculture and Forestry, University of Córdoba, and Institute for Sustainable Agriculture, CSIC, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Milton T. Drott
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Rafael M. Jiménez-Díaz
- College of Agriculture and Forestry, University of Córdoba, and Institute for Sustainable Agriculture, CSIC, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| |
Collapse
|
104
|
Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a019604. [PMID: 25081629 DOI: 10.1101/cshperspect.a019604] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
105
|
Abstract
Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.
Collapse
|
106
|
Chi J, Parrow MW, Dunthorn M. Cryptic Sex in Symbiodinium
(Alveolata, Dinoflagellata) is Supported by an Inventory of Meiotic Genes. J Eukaryot Microbiol 2014; 61:322-7. [DOI: 10.1111/jeu.12110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jingyun Chi
- Department of Ecology; University of Kaiserslautern; Erwin Schrödinger Strasse 14 D-67663 Kaiserslautern Germany
| | - Matthew W. Parrow
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Boulevard Charlotte North Carolina 28223 USA
| | - Micah Dunthorn
- Department of Ecology; University of Kaiserslautern; Erwin Schrödinger Strasse 14 D-67663 Kaiserslautern Germany
| |
Collapse
|
107
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
108
|
Saleh D, Milazzo J, Adreit H, Fournier E, Tharreau D. South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae. THE NEW PHYTOLOGIST 2014; 201:1440-1456. [PMID: 24320224 PMCID: PMC4265293 DOI: 10.1111/nph.12627] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/23/2013] [Indexed: 05/11/2023]
Abstract
• Inferring invasion routes and identifying reservoirs of diversity of plant pathogens are essential in proposing new strategies for their control. Magnaporthe oryzae, the fungus responsible for rice blast disease, has invaded all rice growing areas. Virulent genotypes regularly (re)emerge, causing rapid resistance breakdowns. However, the world-wide genetic subdivision of M. oryzae populations on rice and its past history of invasion have never been elucidated. • In order to investigate the centers of diversity, origin and migration of M. oryzae on rice, we analyzed the genetic diversity of 55 populations from 15 countries. • Three genetic clusters were identified world-wide. Asia was the center of diversity and the origin of most migrations to other continents. In Asia, two centers of diversity were revealed in the Himalayan foothills: South China-Laos-North Thailand, and western Nepal. Sexual reproduction persisted only in the South China-Laos-North Thailand region, which was identified as the putative center of origin of all M. oryzae populations on rice. • Our results suggest a scenario of early evolution of M. oryzae on rice that matches the past history of rice domestication. This study confirms that crop domestication may have considerable influence on the pestification process of natural enemies.
Collapse
Affiliation(s)
- Dounia Saleh
- CIRAD, UMR BGPITA A54/K, F 34398, Montpellier, France
- INRA, UMR BGPITA A54/K, F 34398, Montpellier, France
| | | | - Henri Adreit
- CIRAD, UMR BGPITA A54/K, F 34398, Montpellier, France
| | | | | |
Collapse
|
109
|
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2014; 48:373-96. [PMID: 23895660 PMCID: PMC3791482 DOI: 10.3109/10409238.2013.821444] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Collapse
Affiliation(s)
- V Lila Koumandou
- Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
110
|
Comparative genomic and transcriptomic analysis of wangiella dermatitidis, a major cause of phaeohyphomycosis and a model black yeast human pathogen. G3 (BETHESDA, MD.) 2014; 4:561-78. [PMID: 24496724 PMCID: PMC4059230 DOI: 10.1534/g3.113.009241] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Black or dark brown (phaeoid) fungi cause cutaneous, subcutaneous, and systemic infections in humans. Black fungi thrive in stressful conditions such as intense light, high radiation, and very low pH. Wangiella (Exophiala) dermatitidis is arguably the most studied phaeoid fungal pathogen of humans. Here, we report our comparative analysis of the genome of W. dermatitidis and the transcriptional response to low pH stress. This revealed that W. dermatitidis has lost the ability to synthesize alpha-glucan, a cell wall compound many pathogenic fungi use to evade the host immune system. In contrast, W. dermatitidis contains a similar profile of chitin synthase genes as related fungi and strongly induces genes involved in cell wall synthesis in response to pH stress. The large portfolio of transporters may provide W. dermatitidis with an enhanced ability to remove harmful products as well as to survive on diverse nutrient sources. The genome encodes three independent pathways for producing melanin, an ability linked to pathogenesis; these are active during pH stress, potentially to produce a barrier to accumulated oxidative damage that might occur under stress conditions. In addition, a full set of fungal light-sensing genes is present, including as part of a carotenoid biosynthesis gene cluster. Finally, we identify a two-gene cluster involved in nucleotide sugar metabolism conserved with a subset of fungi and characterize a horizontal transfer event of this cluster between fungi and algal viruses. This work reveals how W. dermatitidis has adapted to stress and survives in diverse environments, including during human infections.
Collapse
|
111
|
Corteggiani Carpinelli E, Telatin A, Vitulo N, Forcato C, D'Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. MOLECULAR PLANT 2014; 7:323-35. [PMID: 23966634 DOI: 10.1093/mp/sst120] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nannochloropsis is rapidly emerging as a model organism for the study of biofuel production in microalgae. Here, we report a high-quality genomic assembly of Nannochloropsis gaditana, consisting of large contigs, up to 500 kbp long, and scaffolds that in most cases span the entire length of the chromosomes. We identified 10646 complete genes and characterized possible alternative transcripts. The annotation of the predicted genes and the analysis of cellular processes revealed traits relevant for the genetic improvement of this organism such as genes involved in DNA recombination, RNA silencing, and cell wall synthesis. We also analyzed the modification of the transcriptional profile in nitrogen deficiency-a condition known to stimulate lipid accumulation. While the content of lipids increased, we did not detect major changes in expression of the genes involved in their biosynthesis. At the same time, we observed a very significant down-regulation of mitochondrial gene expression, suggesting that part of the Acetyl-CoA and NAD(P)H, normally oxidized through the mitochondrial respiration, would be made available for fatty acids synthesis, increasing the flux through the lipid biosynthetic pathway. Finally, we released an information resource of the genomic data of N. gaditana, available online at www.nannochloropsis.org.
Collapse
|
112
|
Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS. Genome of the red alga Porphyridium purpureum. Nat Commun 2013; 4:1941. [PMID: 23770768 PMCID: PMC3709513 DOI: 10.1038/ncomms2931] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/26/2013] [Indexed: 11/09/2022] Open
Abstract
The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol 2013; 31:660-72. [PMID: 24336924 DOI: 10.1093/molbev/mst258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.
Collapse
Affiliation(s)
- Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
114
|
Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. PLANT REPRODUCTION 2013; 26:351-67. [PMID: 23995700 PMCID: PMC3825497 DOI: 10.1007/s00497-013-0234-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/17/2013] [Indexed: 05/21/2023]
Abstract
The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematic Botany, Albrecht-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany,
| | | |
Collapse
|
115
|
Feretzaki M, Heitman J. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet 2013; 9:e1003688. [PMID: 23966871 PMCID: PMC3744442 DOI: 10.1371/journal.pgen.1003688] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 06/18/2013] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle. Nutrient-limiting conditions and pheromones induce a dimorphic transition from unicellular yeast to multicellular hyphae and the production of infectious spores. Sexual reproduction involves cells of either opposite (bisexual) or one (unisexual) mating type. Bisexual and unisexual reproduction are governed by shared components of the conserved pheromone-sensing Cpk1 MAPK signal transduction cascade and by Mat2, the major transcriptional regulator of the pathway. However, the downstream targets of the pathway are largely unknown, and homology-based approaches have failed to yield downstream transcriptional regulators or other targets. In this study, we applied insertional mutagenesis via Agrobacterium tumefaciens transkingdom DNA delivery to identify mutants with unisexual reproduction defects. In addition to elements known to be involved in sexual development (Crg1, Ste7, Mat2, and Znf2), three key regulators of sexual development were identified by our screen: Znf3, Spo11, and Ubc5. Spo11 and Ubc5 promote sporulation during both bisexual and unisexual reproduction. Genetic and phenotypic analyses provide further evidence implicating both genes in the regulation of meiosis. Phenotypic analysis of sexual development showed that Znf3 is required for hyphal development during unisexual reproduction and also plays a central role during bisexual reproduction. Znf3 promotes cell fusion and pheromone production through a pathway parallel to and independent of the pheromone signaling cascade. Surprisingly, Znf3 participates in transposon silencing during unisexual reproduction and may serve as a link between RNAi silencing and sexual development. Our studies illustrate the power of unbiased genetic screens to reveal both novel and conserved circuits that operate sexual reproduction.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
116
|
Hanson SJ, Stelzer CP, Welch DBM, Logsdon JM. Comparative transcriptome analysis of obligately asexual and cyclically sexual rotifers reveals genes with putative functions in sexual reproduction, dormancy, and asexual egg production. BMC Genomics 2013; 14:412. [PMID: 23782598 PMCID: PMC3701536 DOI: 10.1186/1471-2164-14-412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/31/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. RESULTS We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. CONCLUSIONS Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sara J Hanson
- Department of Biology and Interdisciplinary Program in Genetics, University of Iowa, 301 Biology Building, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
117
|
How clonal are Trypanosoma and Leishmania? Trends Parasitol 2013; 29:264-9. [DOI: 10.1016/j.pt.2013.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/20/2022]
|
118
|
Hanson SJ, Schurko AM, Hecox-Lea B, Welch DBM, Stelzer CP, Logsdon JM. Inventory and phylogenetic analysis of meiotic genes in monogonont rotifers. J Hered 2013; 104:357-70. [PMID: 23487324 PMCID: PMC3622358 DOI: 10.1093/jhered/est011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 02/11/2013] [Indexed: 12/22/2022] Open
Abstract
A long-standing question in evolutionary biology is how sexual reproduction has persisted in eukaryotic lineages. As cyclical parthenogens, monogonont rotifers are a powerful model for examining this question, yet the molecular nature of sexual reproduction in this lineage is currently understudied. To examine genes involved in meiosis, we generated partial genome assemblies for 2 distantly related monogonont species, Brachionus calyciflorus and B. manjavacas. Here we present an inventory of 89 meiotic genes, of which 80 homologs were identified and annotated from these assemblies. Using phylogenetic analysis, we show that several meiotic genes have undergone relatively recent duplication events that appear to be specific to the monogonont lineage. Further, we compare the expression of "meiosis-specific" genes involved in recombination and all annotated copies of the cell cycle regulatory gene CDC20 between obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of B. calyciflorus. We show that "meiosis-specific" genes are expressed in both CP and OP strains, whereas the expression of one of the CDC20 genes is specific to cyclical parthenogenesis. The data presented here provide insights into mechanisms of cyclical parthenogenesis and establish expectations for studies of obligate asexual relatives of monogononts, the bdelloid rotifer lineage.
Collapse
Affiliation(s)
- Sara J Hanson
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
119
|
Chaudhary S, Polaino S, Shakya VPS, Idnurm A. A new genetic linkage map of the zygomycete fungus Phycomyces blakesleeanus. PLoS One 2013; 8:e58931. [PMID: 23516579 PMCID: PMC3597544 DOI: 10.1371/journal.pone.0058931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/08/2013] [Indexed: 12/15/2022] Open
Abstract
Phycomyces blakesleeanus is a member of the subphylum Mucoromycotina. A genetic map was constructed from 121 progeny of a cross between two wild type isolates of P. blakesleeanus with 134 markers. The markers were mostly PCR-RFLPs. Markers were located on 46 scaffolds of the genome sequence, covering more than 97% of the genome. Analysis of the alleles in the progeny revealed nine or 12 linkage groups, depending on the log of the odds (LOD) score, across 1583.4 cM at LOD 5. The linkage groups were overlaid on previous mapping data from crosses between mutants, aided by new identification of the mutations in primary metabolism mutant strains. The molecular marker map, the phenotype map and the genome sequence are overall congruent, with some exceptions. The new genetic map provides a genome-wide estimate for recombination, with the average of 33.2 kb per cM. This frequency is one piece of evidence for meiosis during zygospore development in Mucoromycotina species. At the same time as meiosis, transmission of non-recombinant chromosomes is also evident in the mating process in Phycomyces. The new map provides scaffold ordering for the genome sequence and a platform upon which to identify the genes in mutants that are affected in traits of interest, such as carotene biosynthesis, phototropism or gravitropism, using positional cloning.
Collapse
Affiliation(s)
- Suman Chaudhary
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, United States of America
| | - Silvia Polaino
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, United States of America
| | - Viplendra P. S. Shakya
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, United States of America
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, United States of America
- * E-mail:
| |
Collapse
|
120
|
Riley R, Corradi N. Searching for clues of sexual reproduction in the genomes of arbuscular mycorrhizal fungi. FUNGAL ECOL 2013. [DOI: 10.1016/j.funeco.2012.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
121
|
Abstract
UNLABELLED Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. IMPORTANCE Malassezia commensal yeasts are associated with a number of skin disorders. The previously published genome of M. globosa provided some of the first insights into Malassezia biology and its involvement in dandruff. Here, we present the genome of M. sympodialis, frequently isolated from patients with atopic eczema and healthy individuals. We combined comparative genomics with sequencing and functional characterization of specific genes in a population of clinical isolates and in closely related model systems. Our analyses provide insights into the evolution of allergens related to atopic eczema and the evolutionary trajectory of the machinery for sexual reproduction and meiosis. We hypothesize that M. sympodialis may undergo sexual reproduction, which has important implications for the understanding of the life cycle and virulence potential of this medically important yeast. Our findings provide a foundation for the development of genetic and genomic tools to elucidate host-microbe interactions that occur on the skin and to identify potential therapeutic targets.
Collapse
|
122
|
|
123
|
McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, Noor MAF. Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol 2012; 10:e1001422. [PMID: 23152720 PMCID: PMC3496668 DOI: 10.1371/journal.pbio.1001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Recombination rate in Drosophila species shapes the impact of selection in the genome and is positively correlated with nucleotide diversity. One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. Individuals within a species differ in the DNA sequences of their genes. This sequence variation affects how well individuals survive or reproduce and is transmitted to their offspring. Genes near each other on individual chromosomes tend to be passed to offspring together—neighboring genes are unlikely to be separated by exchanges of genetic material derived from different parents during meiotic recombination. When genes are inherited together, however, the evolutionary forces acting on one gene can interfere with variation at its neighbors. Thus, variation at multiple genes can be lost if natural selection acts on one gene in close proximity. Recombination can prevent or reduce this loss of variation, but previous tests of this phenomenon failed to account for recombination rate differences between species. In this study, we show that some parts of the genome differ in recombination rate between two species of fruit fly, Drosophila pseudoobscura and D. miranda. Avoiding an assumption made in previous studies, we then examine sequence variation within and between fly species in those parts of the genome that have conserved recombination rates. Based on the results, we conclude that recombination indeed preserves variation within species that would otherwise have been eliminated by natural selection.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Biology Department, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The arbuscular mycorrhizal fungi (AMF) are important symbionts of land plants, which are known for their tremendous positive effects on terrestrial ecosystems, their peculiar cellular features, and their very old evolutionary history. To date, no sexual stage or apparatus have ever been observed in these organisms; a remarkable absence for a eukaryotic lineage. For this reason, AMF have long been considered an evolutionary oddity, having evolved for over 500 millions of years in the absence of sexual reproduction and meiosis. Here, we discuss the recent identification across a number of AMF genomes, of many genes that are known to be involved in the process of meiosis in several eukaryotic model species. The presence of these genes in AMF is a previously unsuspected and highly intriguing finding, which suggests the presence of a “hidden” sexual (or parasexual) reproduction that awaits formal observation in these poorly studied fungi.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research; Department of Biology; University of Ottawa; Ottawa, ON Canada
| | | |
Collapse
|
125
|
Heil CSS, Noor MAF. Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila. PLoS One 2012; 7:e45055. [PMID: 23028758 PMCID: PMC3445564 DOI: 10.1371/journal.pone.0045055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023] Open
Abstract
In humans and mice, the Cys(2)His(2) zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys(2)His(2) zinc fingers to predict nucleotide binding motifs for all Cys(2)His(2) zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.
Collapse
Affiliation(s)
- Caiti S S Heil
- Department of Biology, Duke University, Durham, North Carolina, USA.
| | | |
Collapse
|
126
|
Choleva L, Janko K, De Gelas K, Bohlen J, Šlechtová V, Rábová M, Ráb P. SYNTHESIS OF CLONALITY AND POLYPLOIDY IN VERTEBRATE ANIMALS BY HYBRIDIZATION BETWEEN TWO SEXUAL SPECIES. Evolution 2012; 66:2191-203. [DOI: 10.1111/j.1558-5646.2012.01589.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
127
|
Jiráková K, Kulda J, Nohýnková E. How nuclei of Giardia pass through cell differentiation: semi-open mitosis followed by nuclear interconnection. Protist 2011; 163:465-79. [PMID: 22209008 DOI: 10.1016/j.protis.2011.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/10/2011] [Indexed: 12/30/2022]
Abstract
Differentiation into infectious cysts (encystation) and multiplication of pathogenic trophozoites after hatching from the cyst (excystation) are fundamental processes in the life cycle of the human intestinal parasite Giardia intestinalis. During encystation, a bi-nucleated trophozoite transforms to a dormant tetra-nucleated cyst enveloped by a protective cyst wall. Nuclear division during encystation is not followed by cytokinesis. In contrast to the well-studied mechanism of cyst wall formation, information on nuclei behavior is incomplete and basic cytological data are lacking. Here we present evidence that (1) the nuclei divide by semi-open mitosis during early encystment; (2) the daughter nuclei coming from different parent nuclei are always arranged in pairs; (3) in both pairs, the nuclei are interconnected via bridges formed by fusion of their nuclear envelopes; (4) each interconnected nuclear pair is associated with one basal body tetrad of the undivided diplomonad mastigont; and (5) the interconnection between nuclei persists through the cyst stage being a characteristic feature of encysted Giardia. Based on the presented results, a model of nuclei behavior during Giardia differentiation is proposed.
Collapse
Affiliation(s)
- Klára Jiráková
- Department of Tropical Medicine, 1(st) Faculty of Medicine, Charles University in Prague and Faculty Hospital Bulovka, Studnickova 7, Prague 2, 128 00, Czech Republic
| | | | | |
Collapse
|
128
|
Pan K, Qin J, Li S, Dai W, Zhu B, Jin Y, Yu W, Yang G, Li D. NUCLEAR MONOPLOIDY AND ASEXUAL PROPAGATION OF NANNOCHLOROPSIS OCEANICA (EUSTIGMATOPHYCEAE) AS REVEALED BY ITS GENOME SEQUENCE(1). JOURNAL OF PHYCOLOGY 2011; 47:1425-1432. [PMID: 27020366 DOI: 10.1111/j.1529-8817.2011.01057.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Species in genus Nannochloropsis are promising candidates for both biofuel and biomass production due to their ability to accumulate rich fatty acids and grow fast; however, their sexual reproduction has not been studied. It is clear that the construction of their metabolic pathways, such as that of polyunsaturated fatty acid (PUFA) biosynthesis, and understanding of their biological characteristics, such as nuclear ploidy and reproductive strategy, will certainly facilitate their genetic improvement through gene engineering and mutation and clonal expansion. In this study, the genome of N. oceanica S. Suda et Miyashita was sequenced with the next-generation Illumina GA sequencing technologies. The genome was ∼30 Mb in size, which contained 11,129 protein-encoding genes. Of them, 59.65% were annotated by aligning with those in diverse protein databases, and 29.68% were assigned at least one function described in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Less frequent polymorphic nucleotides (one in 22.06 kb) and the obvious deviation from 1:1 (major:minor, minor ≥10) expectation indicated the nuclear monoploidy of N. oceanica. The lack of the majority of meiosis-specific proteins implied the asexual reproduction of this alga. In combination, the nuclear monoploidy and asexual propagation led us to favor the hypothesis that N. oceanica was a premeiotic or ameiotic alga. In addition, sequence similarity-based searching identified the elongase- and desaturase-encoding genes involved in the biosynthesis of long-chain PUFAs, which provided the genetic basis of its rich content of eicosapentaenoic acid (EPA). The functional genes and their metabolic pathways profiled against its genome sequence will facilitate its integrative investigations.
Collapse
Affiliation(s)
- Kehou Pan
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Junjie Qin
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Si Li
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Wenkui Dai
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Baohua Zhu
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Yuanchun Jin
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Wengong Yu
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Guanpin Yang
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| | - Dongfang Li
- Key Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, China Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China Graduate University of Chinese Academy of Sciences, Beijing 100049, China Beijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaKey Laboratory of Mariculture of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, ChinaCollege of Medicine and Drugs, Ocean University of China, Qingdao 266003, ChinaKey Laboratory of Marine Genetics and Breeding of Chinese Ministry of Education, Ocean University of China, Qingdao 266003, ChinaBeijing Genomics Institute (BGI) at Shenzhen, Shenzhen 518083, China
| |
Collapse
|
129
|
Halary S, Malik SB, Lildhar L, Slamovits CH, Hijri M, Corradi N. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biol Evol 2011; 3:950-8. [PMID: 21876220 PMCID: PMC3184777 DOI: 10.1093/gbe/evr089] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) represent an ecologically important and evolutionarily intriguing group of symbionts of land plants, currently thought to have propagated clonally for over 500 Myr. AMF produce multinucleate spores and may exchange nuclei through anastomosis, but meiosis has never been observed in this group. A provocative alternative for their successful and long asexual evolutionary history is that these organisms may have cryptic sex, allowing them to recombine alleles and compensate for deleterious mutations. This is partly supported by reports of recombination among some of their natural populations. We explored this hypothesis by searching for some of the primary tools for a sustainable sexual cycle—the genes whose products are required for proper completion of meiotic recombination in yeast—in the genomes of four AMF and compared them with homologs of representative ascomycete, basidiomycete, chytridiomycete, and zygomycete fungi. Our investigation used molecular and bioinformatic tools to identify homologs of 51 meiotic genes, including seven meiosis-specific genes and other “core meiotic genes” conserved in the genomes of the AMF Glomus diaphanum (MUCL 43196), Glomus irregulare (DAOM-197198), Glomus clarum (DAOM 234281), and Glomus cerebriforme (DAOM 227022). Homology of AMF meiosis-specific genes was verified by phylogenetic analyses with representative fungi, animals (Mus, Hydra), and a choanoflagellate (Monosiga). Together, these results indicate that these supposedly ancient asexual fungi may be capable of undergoing a conventional meiosis; a hypothesis that is consistent with previous reports of recombination within and across some of their populations.
Collapse
Affiliation(s)
- Sébastien Halary
- Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
130
|
Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 2011; 6:35. [PMID: 21714941 PMCID: PMC3152533 DOI: 10.1186/1745-6150-6-35] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. RESULTS The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. CONCLUSIONS The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. REVIEWERS This article was reviewed by: Eugene Koonin, William Martin, Ford Doolittle and Mark van der Giezen. For complete reports see the Reviewers' Comments section.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
131
|
Tait A, Morrison LJ, Duffy CW, Cooper A, Turner CMR, Macleod A. Trypanosome genetics: populations, phenotypes and diversity. Vet Parasitol 2011; 181:61-8. [PMID: 21570772 DOI: 10.1016/j.vetpar.2011.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the last decade, there has been a wide range of studies using a series of molecular markers to investigate the genotypic diversity of some of the important species of African trypanosomes. Here, we review this work and provide an update of our current understanding of the mechanisms that generate this diversity based on population genetic analysis. In parallel with field based studies, our knowledge of the key features of the system of genetic exchange in Trypanosoma brucei, based on laboratory analysis, has reached the point at which this system can be used as a tool to determine the genetic basis of a phenotype. In this context, we have outlined our current knowledge of the basis for phenotypic variation among strains of trypanosomes, and highlight that this is a relatively under researched area, except for work on drug resistance. There is clear evidence for 'strain'-specific variation in tsetse transmission, a range of virulence/pathogenesis phenotypes and the ability to cross the blood brain barrier. The potential for using genetic analysis to dissect these phenotypes is illustrated by the recent work defining a locus determining organomegaly for T. brucei. When these results are considered in relation to the body of research on the variability of the host response to infection, it is clear that there is a need to integrate the study of host and parasite diversity in relation to understanding infection outcome.
Collapse
Affiliation(s)
- Andy Tait
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
Sexual reproduction enables eukaryotic organisms to reassort genetic diversity and purge deleterious mutations, producing better-fit progeny. Sex arose early and pervades eukaryotes. Fungal and parasite pathogens once thought asexual have maintained cryptic sexual cycles, including unisexual or parasexual reproduction. As pathogens become niche and host adapted, sex appears to specialize to promote inbreeding and clonality yet maintain outcrossing potential. During self-fertile sexual modes, sex itself may generate genetic diversity de novo. Mating-type loci govern fungal sexual identity; how parasites establish sexual identity is unknown. Comparing and contrasting fungal and parasite sex promises to reveal how microbial pathogens evolved and are evolving.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
133
|
Burns C, Stajich JE, Rechtsteiner A, Casselton L, Hanlon SE, Wilke SK, Savytskyy OP, Gathman AC, Lilly WW, Lieb JD, Zolan ME, Pukkila PJ. Analysis of the Basidiomycete Coprinopsis cinerea reveals conservation of the core meiotic expression program over half a billion years of evolution. PLoS Genet 2010; 6:e1001135. [PMID: 20885784 PMCID: PMC2944786 DOI: 10.1371/journal.pgen.1001135] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023] Open
Abstract
Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray. As with other organisms, a large proportion (∼20%) of genes are differentially regulated during this developmental process, with successive waves of transcription apparent in nine transcriptional clusters, including one enriched for meiotic functions. C. cinerea and the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe diverged ∼500–900 million years ago, permitting a comparison of transcriptional programs across a broad evolutionary time scale. Previous studies of S. cerevisiae and S. pombe compared genes that were induced upon entry into meiosis; inclusion of C. cinerea data indicates that meiotic genes are more conserved in their patterns of induction across species than genes not known to be meiotic. In addition, we found that meiotic genes are significantly more conserved in their transcript profiles than genes not known to be meiotic, which indicates a remarkable conservation of the meiotic process across evolutionarily distant organisms. Overall, meiotic function genes are more conserved in both induction and transcript profile than genes not known to be meiotic. However, of 50 meiotic function genes that were co-induced in all three species, 41 transcript profiles were well-correlated in at least two of the three species, but only a single gene (rad50) exhibited coordinated induction and well-correlated transcript profiles in all three species, indicating that co-induction does not necessarily predict correlated expression or vice versa. Differences may reflect differences in meiotic mechanisms or new roles for paralogs. Similarities in induction, transcript profiles, or both, should contribute to gene discovery for orthologs without currently characterized meiotic roles. Meiosis is the part of the sexual reproduction process in which the number of chromosomes in an organism is halved. This occurs in most plants, animals, and fungi; and many of the proteins involved are the same in the different organisms that have been studied. We wanted to ask whether the genes involved in the meiotic process are turned on and off at the same stages of meiosis in organisms that separated a long time ago. To do this we looked at three fungal species, Saccharomyces cerevisiae (baker's yeast), Schizosaccharomyces pombe (a very distantly related fungus of the same phylum), and Coprinopsis cinerea (a mushroom-forming fungus of a different phylum), which had a common ancestor 500–900 million years ago (in comparison, rats and mice separated ∼23 million years ago). We lined up meiotic stages and found that gene expression during the meiotic process was more conserved for meiotic genes than for non-meiotic genes, indicating ancient conservation of the meiotic process.
Collapse
Affiliation(s)
- Claire Burns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jason E. Stajich
- Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Andreas Rechtsteiner
- Department of Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lorna Casselton
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Sean E. Hanlon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah K. Wilke
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Oleksandr P. Savytskyy
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Allen C. Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, United States of America
| | - Walt W. Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Miriam E. Zolan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Patricia J. Pukkila
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
134
|
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. THE PLANT CELL 2010; 22:2943-55. [PMID: 20852019 PMCID: PMC2965543 DOI: 10.1105/tpc.110.076406] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 05/18/2023]
Abstract
Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.
Collapse
Affiliation(s)
- Guillaume Blanc
- Centre National de la Recherche Scientifique, Laboratoire Information Génomique et Structurale UPR2589, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Gross J, Bhattacharya D. Uniting sex and eukaryote origins in an emerging oxygenic world. Biol Direct 2010; 5:53. [PMID: 20731852 PMCID: PMC2933680 DOI: 10.1186/1745-6150-5-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 11/14/2022] Open
Abstract
Background Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. Presentation of the hypothesis We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Testing the hypothesis Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation, prokaryotic DNA recombination, and the universality of nuclear-mediated meiotic activities might corroborate the hypothesis that sex and the nucleus evolved to support DNA repair. Implications of the hypothesis Oxygen tolerance emerges as an important principle to investigate eukaryogenesis. The evolution of eukaryotic complexity might be best understood as a synergic process between key evolutionary innovations, of which meiosis (sex) played a central role. Reviewers This manuscript was reviewed by Eugene V. Koonin, Anthony M. Poole, and Gáspár Jékely.
Collapse
Affiliation(s)
- Jeferson Gross
- Department of Ecology, Evolution and Natural Resources, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, 08901, USA
| | | |
Collapse
|
136
|
Lee SC, Ni M, Li W, Shertz C, Heitman J. The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 2010; 74:298-340. [PMID: 20508251 PMCID: PMC2884414 DOI: 10.1128/mmbr.00005-10] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex is shrouded in mystery. Not only does it preferentially occur in the dark for both fungi and many animals, but evolutionary biologists continue to debate its benefits given costs in light of its pervasive nature. Experimental studies of the benefits and costs of sexual reproduction with fungi as model systems have begun to provide evidence that the balance between sexual and asexual reproduction shifts in response to selective pressures. Given their unique evolutionary history as opisthokonts, along with metazoans, fungi serve as exceptional models for the evolution of sex and sex-determining regions of the genome (the mating type locus) and for transitions that commonly occur between outcrossing/self-sterile and inbreeding/self-fertile modes of reproduction. We review here the state of the understanding of sex and its evolution in the fungal kingdom and also areas where the field has contributed and will continue to contribute to illuminating general principles and paradigms of sexual reproduction.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Min Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Cecelia Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
137
|
Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 2010; 5:e10539. [PMID: 20479876 PMCID: PMC2866331 DOI: 10.1371/journal.pone.0010539] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Sylvia Doan
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
138
|
D'Souza TG, Michiels NK. The Costs and Benefits of Occasional Sex: Theoretical Predictions and a Case Study. J Hered 2010; 101 Suppl 1:S34-41. [DOI: 10.1093/jhered/esq005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
139
|
Archetti M. Complementation, Genetic Conflict, and the Evolution of Sex and Recombination. J Hered 2010; 101 Suppl 1:S21-33. [DOI: 10.1093/jhered/esq009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
140
|
Fungal meiosis and parasexual reproduction--lessons from pathogenic yeast. Curr Opin Microbiol 2009; 12:599-607. [PMID: 19892588 DOI: 10.1016/j.mib.2009.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
Meiosis is an integral part of sexual reproduction in eukaryotic species. It performs the dual functions of halving the genetic content in the cell, as well as increasing genetic diversity by promoting recombination between chromosome homologs. Despite extensive studies of meiosis in model yeast, it is now apparent that both the regulation of meiosis and the machinery mediating recombination have significantly diverged, even between closely related species. To highlight this, we discuss new studies on sex in Candida species, a diverse collection of hemiascomycetes that are related to Saccharomyces cerevisiae and are important human pathogens. These provide new insights into the most conserved, as well as the most plastic, aspects of meiosis, meiotic recombination, and related parasexual processes.
Collapse
|
141
|
Molecular barcoding and phylogeography of sexual and asexual freshwater planarians of the genus Dugesia in the Western Mediterranean (Platyhelminthes, Tricladida, Dugesiidae). Mol Phylogenet Evol 2009; 52:835-45. [DOI: 10.1016/j.ympev.2009.04.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/18/2009] [Accepted: 04/25/2009] [Indexed: 11/19/2022]
|
142
|
Neiman M, Meirmans S, Meirmans PG. What Can Asexual Lineage Age Tell Us about the Maintenance of Sex? Ann N Y Acad Sci 2009; 1168:185-200. [DOI: 10.1111/j.1749-6632.2009.04572.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
143
|
Duffy CW, Morrison LJ, Black A, Pinchbeck GL, Christley RM, Schoenefeld A, Tait A, Turner CMR, MacLeod A. Trypanosoma vivax displays a clonal population structure. Int J Parasitol 2009; 39:1475-83. [PMID: 19520081 DOI: 10.1016/j.ijpara.2009.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
African animal trypanosomiasis, or Nagana, is a debilitating and economically costly disease with a major impact on animal health in sub-Saharan Africa. Trypanosoma vivax, one of the principal trypanosome species responsible for the disease, infects a wide host range including cattle, goats, horses and donkeys and is transmitted both cyclically by tsetse flies and mechanically by other biting flies, resulting in a distribution covering large swathes of South America and much of sub-Saharan Africa. While there is evidence for mating in some of the related trypanosome species, Trypanosoma brucei, Trypanosoma congolense and Trypanosoma cruzi, very little work has been carried out to examine this question in T. vivax. Understanding whether mating occurs in T. vivax will provide insight into the dynamics of trait inheritance, for example the spread of drug resistance, as well as examining the origins of meiosis in the order Kinetoplastida. With this in mind we have identified orthologues of eight core meiotic genes within the genome, the presence of which imply that the potential for mating exists in this species. In order to address whether mating occurs, we have investigated a sympatric field population of T. vivax collected from livestock in The Gambia, using microsatellite markers developed for this species. Our analysis has identified a clonal population structure showing significant linkage disequilibrium, homozygote deficits and disagreement with Hardy-Weinberg predictions at six microsatellite loci, indicative of a lack of mating in this population of T. vivax.
Collapse
Affiliation(s)
- Craig W Duffy
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Discovery of mating in the major African livestock pathogen Trypanosoma congolense. PLoS One 2009; 4:e5564. [PMID: 19440370 PMCID: PMC2679202 DOI: 10.1371/journal.pone.0005564] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/12/2009] [Indexed: 12/04/2022] Open
Abstract
The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen.
Collapse
|
145
|
Schurko AM, Neiman M, Logsdon JM. Signs of sex: what we know and how we know it. Trends Ecol Evol 2009; 24:208-17. [DOI: 10.1016/j.tree.2008.11.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 12/26/2022]
|
146
|
|
147
|
An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 2007; 3:e2879. [PMID: 18663385 PMCID: PMC2488364 DOI: 10.1371/journal.pone.0002879] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/08/2008] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.
Collapse
|