101
|
Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 2010; 16:735-49. [PMID: 19811095 DOI: 10.1089/ten.tec.2009.0432] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation along the osteogenic, chondrogenic, and adipogenic lineages and have potential applications in a range of therapies. MSCs can be cultured as monolayers on tissue culture plastic, but there are indications that they lose cell-specific properties with time in vitro and so poorly reflect in vivo MSC behavior. We developed dynamic three-dimensional (3D) techniques for in vitro MSC culture using spinner flasks and a rotating wall vessel bioreactor. We characterized the two methods for dynamic 3D MSC culture and compared the properties of these cultures with monolayer MSCs. Our results showed that under optimal conditions, MSCs form compact cellular spheroids and remain viable in dynamic 3D culture. We demonstrated altered cell size and surface antigen expression together with enhanced osteogenic and adipogenic differentiation potential in MSCs from dynamic 3D conditions. By microarray analysis of monolayer and spinner flask MSCs, we identified many differences in gene expression, including those confirming widespread changes to the cellular architecture and extracellular matrix. The upregulation of interleukin 24 in dynamic 3D cultures was shown to selectively impair the viability of prostate cancer cells cultured in medium conditioned by dynamic 3D MSCs. Overall, this work suggests a novel therapeutic application for dynamic 3D MSCs and demonstrates that these methods are a viable alternative to monolayer techniques and may prove beneficial for retaining MSC properties in vitro.
Collapse
Affiliation(s)
- Jessica E Frith
- Department of Biology, University of York, Heslington, York, United Kingdom
| | | | | |
Collapse
|
102
|
Salvi JD, Lim JY, Donahue HJ. Finite element analyses of fluid flow conditions in cell culture. Tissue Eng Part C Methods 2010; 16:661-70. [PMID: 19778171 DOI: 10.1089/ten.tec.2009.0159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies in tissue engineering and biomechanics use fluid flow stimulation, both unidirectional and oscillatory, to analyze the effects of shear stresses on cell behavior. However, it has typically been assumed that these shear stresses are uniform and that cell and substrate properties do not adversely affect these assumptions. With the increasing utilization of fluid flow in cell biology, it would be beneficial to determine the validity of various experimental protocols. Because it is difficult to determine the velocity profiles and shear stresses empirically, we used the finite element method (FEM). Using FEM, we determined the effects of cell confluence on fluid flow, the effects of cell height on the uniformity of shear stresses, apparent shear stresses exhibited by cells cultured on various substrates, and the effects of oscillatory fluid flow relative to the unidirectional flow. FEM analyses could successfully analyze flow patterns over cells for various cell confluence and shape and substrate characteristics. Our data suggest the benefits of the utilization of oscillatory fluid flow and the use of substrates that stimulate cell spreading in the distribution of more uniform shear stresses across the surface of cells. Also we demonstrated that the cells cultured on nanotopographies were exposed to greater apparent shear stresses than cells on flat controls when using the same fluid flow conditions. FEM thus provides an excellent tool for the development of experimental protocols and the design of bioreactor systems.
Collapse
Affiliation(s)
- Joshua D Salvi
- Department of Bioengineering, Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
103
|
McCoy RJ, O'Brien FJ. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:587-601. [PMID: 20799909 DOI: 10.1089/ten.teb.2010.0370] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bone tissue engineering aims to generate clinically applicable bone graft substitutes in an effort to ease the demands and reduce the potential risks associated with traditional autograft and allograft bone replacement procedures. Biomechanical stimuli play an important role under physiologically relevant conditions in the normal formation, development, and homeostasis of bone tissue--predominantly, strain (predicted levels in vivo for humans <2000 με) caused by physical deformation, and fluid shear stress (0.8-3 Pa), generated by interstitial fluid movement through lacunae caused by compression and tension under loading. Therefore, in vitro bone tissue cultivation strategies seek to incorporate biochemical stimuli in an effort to create more physiologically relevant constructs for grafting. This review is focused on collating information pertaining to the relationship between fluid shear stress, cellular deformation, and osteogenic differentiation, providing further insight into the optimal culture conditions for the creation of bone tissue substitutes.
Collapse
Affiliation(s)
- Ryan J McCoy
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
104
|
Subramanian K, Park Y, Verfaillie C, Hu W. Scalable expansion of multipotent adult progenitor cells as three-dimensional cell aggregates. Biotechnol Bioeng 2010; 108:364-75. [DOI: 10.1002/bit.22939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
105
|
Alvarez-Barreto JF, Landy B, VanGordon S, Place L, DeAngelis PL, Sikavitsas VI. Enhanced osteoblastic differentiation of mesenchymal stem cells seeded in RGD-functionalized PLLA scaffolds and cultured in a flow perfusion bioreactor. J Tissue Eng Regen Med 2010; 5:464-75. [DOI: 10.1002/term.338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 05/28/2010] [Indexed: 02/02/2023]
|
106
|
Koch MA, Vrij EJ, Engel E, Planell JA, Lacroix D. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J Biomed Mater Res A 2010; 95:1011-8. [PMID: 20872752 DOI: 10.1002/jbm.a.32927] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 06/29/2010] [Indexed: 11/06/2022]
Abstract
A promising approach to bone tissue engineering lies in the use of perfusion bioreactors where cells are seeded and cultured on scaffolds under conditions of enhanced nutrient supply and removal of metabolic products. Fluid flow alterations can stimulate cell activity, making the engineering of tissue more efficient. Most bioreactor systems are used to culture cells on thin scaffold discs. In clinical use, however, bone substitutes of large dimensions are needed. In this study, MG63 osteoblast-like cells were seeded on large porous PLA/glass scaffolds with a custom developed perfusion bioreactor system. Cells were seeded by oscillating perfusion of cell suspension through the scaffolds. Applicable perfusion parameters for successful cell seeding were determined by varying fluid flow velocity and perfusion cycle number. After perfusion, cell seeding, the cell distribution, and cell seeding efficiency were determined. A fluid flow velocity of 5 mm/s had to be exceeded to achieve a uniform cell distribution throughout the scaffold interior. Cell seeding efficiencies of up to 50% were achieved. Results suggested that perfusion cycle number influenced cell seeding efficiency rather than fluid flow velocities. The cell seeding conducted is a promising basis for further long term cell culture studies in large porous scaffolds.
Collapse
Affiliation(s)
- M A Koch
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | | | | | | | | |
Collapse
|
107
|
Villalona GA, Udelsman B, Duncan DR, McGillicuddy E, Sawh-Martinez RF, Hibino N, Painter C, Mirensky T, Erickson B, Shinoka T, Breuer CK. Cell-seeding techniques in vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:341-50. [PMID: 20085439 DOI: 10.1089/ten.teb.2009.0527] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Previous studies have demonstrated the benefits of cell seeding in the construction of tissue-engineered vascular grafts (TEVG). However, seeding methods are diverse and no method is clearly superior in either promoting seeding efficiency or improving long-term graft function. As we head into an era during which a variety of different TEVG are under investigation in clinical trials around the world, it is important to consider the regulatory issues surrounding the translation of these technologies. In this review, we summarize important advances in the field of vascular tissue engineering, with particular attention on cell-seeding techniques for TEVG development and special emphasis placed on regulatory issues concerning the clinical translation of these various methods.
Collapse
Affiliation(s)
- Gustavo A Villalona
- Department of Surgery, Yale University School of Medicine, Yale New Haven Hospital, New Haven, Connecticut 06520-8062, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Salerno A, Guarnieri D, Iannone M, Zeppetelli S, Netti PA. Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(ɛ-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation In Vitro. Tissue Eng Part A 2010; 16:2661-73. [DOI: 10.1089/ten.tea.2009.0494] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aurelio Salerno
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Institute of Composite and Biomedical Materials and National Research Council, IMCB-CNR, University of Naples Federico II, Naples, Italy
- Italian Institute of Technology, IIT, University of Naples Federico II, Naples, Italy
| | - Daniela Guarnieri
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Italian Institute of Technology, IIT, University of Naples Federico II, Naples, Italy
| | - Maria Iannone
- Department of Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Stefania Zeppetelli
- Institute of Composite and Biomedical Materials and National Research Council, IMCB-CNR, University of Naples Federico II, Naples, Italy
| | - Paolo A. Netti
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Italian Institute of Technology, IIT, University of Naples Federico II, Naples, Italy
- Department of Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|
109
|
Hadjizadeh A, Mohebbi-Kalhori D. Porous hollow membrane sheet for tissue engineering applications. J Biomed Mater Res A 2010; 93:1140-50. [PMID: 19768796 DOI: 10.1002/jbm.a.32608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In spite of the present advances in the scaffolds fabrication and bioreactor systems, the ability to create functional thick tissue masses in vitro is still a great tissue engineering challenge. To overcome this problem, the fabrication of a capillary bed, for nutrient supply to and waste product removal from the tissue engineering construct as it grows, is essential. However, the technical construction of a capillary-like architecture is complex and challenging. This study reports, for the very first time, a simple method to design and fabricate a porous hollow membrane sheet (PHMsh) to provide both a capillary bed and a scaffold to support tissue growth. The PHMsh composed of a flexible porous sheet involving parallel porous channels and can be used as flat-, rolled-, or sandwiched-shape scaffold. The PHMsh was fabricated from poly(epsilon-caprolactone) polymer solution using solvent casting methods (i.e., immersion precipitation and air casting). Optical microscopy and scanning electron microscopy were used for the morphological analyses. The PHMsh was surface treated using n-hepthylamine plasma polymer (HApp) and X-ray photoelectron spectroscopy confirmed successful surface coating. Human umbilical vein endothelial cells (HUVECs) and fibroblast cells were used to evaluate the capability of PHMsh toward cell adhesion. The HApp coating enhanced both HUVEC and fibroblast cells adhesion. The obtained preliminary results demonstrated the successful fabrication of the PHMsh, with potential application for tissue engineering scaffolds, particularly in large tissue mass generation under perfusion systems in vitro, which is our future research direction.
Collapse
Affiliation(s)
- Afra Hadjizadeh
- Department of Chemical Engineering and Biotechnology, University of Sherbrooke, 2500 University Boulevard, Sherbrooke, Québec, Canada J1K 2R1.
| | | |
Collapse
|
110
|
Xing Q, Zhao F, Chen S, McNamara J, DeCoster MA, Lvov YM. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater 2010; 6:2132-9. [PMID: 20035906 DOI: 10.1016/j.actbio.2009.12.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/16/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Physiological tissues, including brain and other organs, have three-dimensional (3-D) aspects that need to be supported to model them in vitro. Here we report the use of cellulose microfibers combined with cross-linked gelatin to make biocompatible porous microscaffolds for the sustained growth of brain cell and human mesenchymal stem cells (hMSCs) in 3-D structure. Live imaging using confocal microscopy indicated that 3-D microscaffolds composed of gelatin or cellulose fiber/gelatin both supported brain cell adhesion and growth for 16days in vitro. Cellulose microfiber/gelatin composites containing up to 75% cellulose fibers can withstand a higher mechanical load than gelatin alone, and composites also provided linear pathways along which brain cells could grow compared to more clumped cell growth in gelatin alone. Therefore, the bulk cellulose microfiber provides a novel skeleton in this new scaffold material. Cellulose fiber/gelatin scaffold supported hMSCs growth and extracellular matrix formation. hMSCs osteogenic and adipogenic assays indicated that hMSCs cultured in cellulose fiber/gelatin composite preserved the multilineage differentiation potential. As natural, biocompatible components, the combination of gelatin and cellulose microfibers, fabricated into 3-D matrices, may therefore provide optimal porosity and tensile strength for long-term maintenance and observation of cells.
Collapse
|
111
|
Ng R, Gurm JS, Yang ST. Centrifugal seeding of mammalian cells in nonwoven fibrous matrices. Biotechnol Prog 2010; 26:239-45. [PMID: 19785042 DOI: 10.1002/btpr.317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) cell cultures have many advantages over two-dimensional cultures. However, seeding cells in 3D scaffolds such as nonwoven fibrous polyethylene terephthalate (PET) matrices has been a challenge task in tissue engineering and cell culture bioprocessing. In this study, a centrifugal seeding method was investigated to improve the cell seeding efficiency in PET matrices with two different porosities (93% and 88%). Both the centrifugal force and centrifugation time were found to affect the seeding efficiency. With an appropriate centrifugation speed, a high 80-90% cell seeding efficiency was achieved and the time to reach this high seeding efficiency was less than 5 min. The seeding efficiency was similar for matrices with different porosities, although the optimal seeding time was significantly shorter for the low-porosity scaffold. Post seeding cell viability was demonstrated by culturing colon cancer cells seeded in PET matrices for over 5 days. The centrifugal seeding method developed in this work can be used to efficiently and uniformly seed small fibrous scaffolds for applications in 3D cell-based assays for high-throughput screening.
Collapse
Affiliation(s)
- Robin Ng
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
112
|
Chen XB, Sui Y, Lee HP, Bai HX, Yu P, Winoto SH, Low HT. Mass Transport in a Microchannel Bioreactor With a Porous Wall. J Biomech Eng 2010; 132:061001. [DOI: 10.1115/1.4001044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A two-dimensional flow model has been developed to simulate mass transport in a microchannel bioreactor with a porous wall. A two-domain approach, based on the finite volume method, was implemented. For the fluid part, the governing equation used was the Navier–Stokes equation; for the porous medium region, the generalized Darcy–Brinkman–Forchheimer extended model was used. For the porous-fluid interface, a stress jump condition was enforced with a continuity of normal stress, and the mass interfacial conditions were continuities of mass and mass flux. Two parameters were defined to characterize the mass transports in the fluid and porous regions. The porous Damkohler number is the ratio of consumption to diffusion of the substrates in the porous medium. The fluid Damkohler number is the ratio of the substrate consumption in the porous medium to the substrate convection in the fluid region. The concentration results were found to be well correlated by the use of a reaction-convection distance parameter, which incorporated the effects of axial distance, substrate consumption, and convection. The reactor efficiency reduced with reaction-convection distance parameter because of reduced reaction (or flux), and smaller local effectiveness factor due to the lower concentration in Michaelis–Menten type reactions. The reactor was more effective, and hence, more efficient with the smaller porous Damkohler number. The generalized results could find applications for the design of bioreactors with a porous wall.
Collapse
Affiliation(s)
- Xiao Bing Chen
- Dynamics Lab., E1–02–01, Department of Mechanical Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576
| | - Yi Sui
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hui Xing Bai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Peng Yu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - S. H. Winoto
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hong Tong Low
- Department of Mechanical Engineering, Division of Bioengineering, National University of Singapore, Singapore 117576
| |
Collapse
|
113
|
|
114
|
Freimark D, Pino-Grace P, Pohl S, Weber C, Wallrapp C, Geigle P, Pörtner R, Czermak P. Use of Encapsulated Stem Cells to Overcome the Bottleneck of Cell Availability for Cell Therapy Approaches. ACTA ACUST UNITED AC 2010; 37:66-73. [PMID: 20737048 DOI: 10.1159/000285777] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/29/2009] [Indexed: 11/19/2022]
Abstract
Nowadays cell-based therapy is rarely in clinical practice because of the limited availability of appropriate cells. To apply cells therapeutically, they must not cause any immune response wherefore mainly autologous cells have been used up to now. The amount of vital cells in patients is limited, and under certain circumstances in highly degenerated tissues no vital cells are left. Moreover, the extraction of these cells is connected with additional surgery; also the expansion in vitro is difficult. Other approaches avoid these problems by using allo-or even xenogenic cells. These cells are more stable concerning their therapeutic behavior and can be produced in stock. To prevent an immune response caused by these cells, cell encapsulation (e.g. with alginate) can be performed. Certain studies showed that encapsulated allo- and xenogenic cells achieve promising results in treatment of several diseases. For such cell therapy approaches, stem cells, particularly mesenchymal stem cells, are an interesting cell source. This review deals on the one hand with the use of encapsulated cells, especially stem cells, in cell therapy and on the other hand with bioreactor systems for the expansion and differentiation of mesenchymal stem cells in reproducible and sufficient amounts for potential clinical use.
Collapse
Affiliation(s)
- D Freimark
- Institute of Biopharmaceutical Technology, University of Applied Sciences, Giessen, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Low oxygen tension and synthetic nanogratings improve the uniformity and stemness of human mesenchymal stem cell layer. Mol Ther 2010; 18:1010-8. [PMID: 20179678 DOI: 10.1038/mt.2010.21] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A free-standing, robust cell sheet comprising aligned human mesenchymal stem cells (hMSCs) offers many interesting opportunities for tissue reconstruction. As a first step toward this goal, a confluent, uniform hMSC layer with a high degree of alignment and stemness maintenance needs to be created. Hypothesizing that topographical cue and a physiologically relevant low-oxygen condition could promote the formation of such an hMSC layer, we studied the culture of hMSCs on synthetic nanogratings (350 nm width and 700 nm pitch) and either under 2 or 20% O(2). Culturing hMSCs on the nanogratings highly aligned the cells, but it tended to create patchy layers and accentuate the hMSC differentiation. The 2% O(2) improved the alignment and uniformity of hMSCs, and reduced their differentiation. Over a 14-day culture period, hMSCs in 2% O(2) showed uniform connexon distribution, secreted abundant extracellular matrix (ECM) proteins, and displayed a high progenicity. After 21-day culture on nanogratings, hMSCs exposed to 2% O(2) maintained a higher viability and differentiation capacity. This study established that a 2% O(2) culture condition could restrict the differentiation of hMSCs cultured on nanopatterns, thereby setting the foundation to fabricate a uniformly aligned hMSC sheet for different regenerative medicine applications.
Collapse
|
116
|
Lv Q, Nair L, Laurencin CT. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J Biomed Mater Res A 2010; 91:679-91. [PMID: 19030184 DOI: 10.1002/jbm.a.32302] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications.
Collapse
Affiliation(s)
- Qing Lv
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
117
|
Zhu H, Schulz J, Schliephake H. Human bone marrow stroma stem cell distribution in calcium carbonate scaffolds using two different seeding methods. Clin Oral Implants Res 2010; 21:182-8. [DOI: 10.1111/j.1600-0501.2009.01816.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
118
|
Altmann B, Welle A, Giselbrecht S, Truckenmüller R, Gottwald E. The famous versus the inconvenient - or the dawn and the rise of 3D-culture systems. World J Stem Cells 2009; 1:43-8. [PMID: 21607106 PMCID: PMC3097909 DOI: 10.4252/wjsc.v1.i1.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 02/06/2023] Open
Abstract
One of the greatest impacts on in vitro cell biology was the introduction of three-dimensional (3D) culture systems more than six decades ago and this era may be called the dawn of 3D-tissue culture. Although the advantages were obvious, this field of research was a "sleeping beauty" until the 1970s when multicellular spheroids were discovered as ideal tumor models. With this rebirth, organotypical culture systems became valuable tools and this trend continues to increase. While in the beginning, simple approaches, such as aggregation culture techniques, were favored due to their simplicity and convenience, now more sophisticated systems are used and are still being developed. One of the boosts in the development of new culture techniques arises from elaborate manufacturing and surface modification techniques, especially micro and nano system technologies that have either improved dramatically or have evolved very recently. With the help of these tools, it will soon be possible to generate even more sophisticated and more organotypic-like culture systems. Since 3D perfused or superfused systems are much more complex to set up and maintain compared to use of petri dishes and culture flasks, the added value of 3D approaches still needs to be demonstrated.
Collapse
Affiliation(s)
- Brigitte Altmann
- Brigitte Altmann, Alexander Welle, Stefan Giselbrecht, Eric Gottwald, Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | |
Collapse
|
119
|
Altmann B, Welle A, Giselbrecht S, Truckenmüller R, Gottwald E. The famous versus the inconvenient - or the dawn and the rise of 3D-culture systems. World J Stem Cells 2009. [PMID: 21607106 DOI: 10.4252/wjsc.v1.i143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the greatest impacts on in vitro cell biology was the introduction of three-dimensional (3D) culture systems more than six decades ago and this era may be called the dawn of 3D-tissue culture. Although the advantages were obvious, this field of research was a "sleeping beauty" until the 1970s when multicellular spheroids were discovered as ideal tumor models. With this rebirth, organotypical culture systems became valuable tools and this trend continues to increase. While in the beginning, simple approaches, such as aggregation culture techniques, were favored due to their simplicity and convenience, now more sophisticated systems are used and are still being developed. One of the boosts in the development of new culture techniques arises from elaborate manufacturing and surface modification techniques, especially micro and nano system technologies that have either improved dramatically or have evolved very recently. With the help of these tools, it will soon be possible to generate even more sophisticated and more organotypic-like culture systems. Since 3D perfused or superfused systems are much more complex to set up and maintain compared to use of petri dishes and culture flasks, the added value of 3D approaches still needs to be demonstrated.
Collapse
Affiliation(s)
- Brigitte Altmann
- Brigitte Altmann, Alexander Welle, Stefan Giselbrecht, Eric Gottwald, Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | |
Collapse
|
120
|
Goralczyk V, Driemel G, Bischof A, Peter A, Berthold A, Kroh L, Blessing L, Schubert H, King R. A multiparallel bioreactor for the cultivation of mammalian cells in a 3D-ceramic matrix. Biotechnol Prog 2009; 26:556-64. [PMID: 20039377 DOI: 10.1002/btpr.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For adherently growing cells, cultivation is limited by the provided growth surface. Excellent surface-to-volume ratios are found in highly porous matrices, which have to face the challenge of nutrient supply inside the matrices' caverns. Therefore, perfusion strategies are recommended which often have to deal with the need of developing an encompassing bioreactor periphery. We present a modular bioreactor system based on a porous ceramic matrix that enables the supply of cells with oxygen and nutrients by perfusion. The present version of the reactor system focuses on simple testing of various inoculation and operation modes. Moreover, it can be used to efficiently test different foam structures. Protocols are given to set-up the system together with handling procedures for long-time cultivation of a CHO cell line. Experimental results confirm vital growth of cells inside the matrices' caverns.
Collapse
Affiliation(s)
- Vicky Goralczyk
- TU Berlin, Chair of Measurement and Control, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 2009; 15:205-19. [PMID: 18694293 DOI: 10.1089/ten.tea.2008.0131] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In a developing organism, tissues emerge from coordinated sequences of cell renewal, differentiation, and assembly that are orchestrated by spatial and temporal gradients of multiple regulatory factors. The composition, architecture, signaling, and biomechanics of the cellular microenvironment act in concert to provide the necessary cues regulating cell function in the developing and adult organism. With recent major advances in stem cell biology, tissue engineering is becoming increasingly oriented toward biologically inspired in vitro cellular microenvironments designed to guide stem cell growth, differentiation, and functional assembly. The premise is that to unlock the full potential of stem cells, at least some aspects of the dynamic three-dimensional (3D) environments that are associated with their renewal, differentiation, and assembly in native tissues need to be reconstructed. In the general context of tissue engineering, we discuss the environments for guiding stem cell function by an interactive use of biomaterial scaffolds and bioreactors, and focus on the interplay between molecular and physical regulatory factors. We highlight some illustrative examples of controllable cell environments developed through the interaction of stem cell biology and tissue engineering at multiple levels.
Collapse
Affiliation(s)
- Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
122
|
Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:353-70. [PMID: 19496677 DOI: 10.1089/ten.teb.2009.0085] [Citation(s) in RCA: 618] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering is currently limited by the inability to adequately vascularize tissues in vitro or in vivo. Issues of nutrient perfusion and mass transport limitations, especially oxygen diffusion, restrict construct development to smaller than clinically relevant dimensions and limit the ability for in vivo integration. There is much interest in the field as researchers have undertaken a variety of approaches to vascularization, including material functionalization, scaffold design, microfabrication, bioreactor development, endothelial cell seeding, modular assembly, and in vivo systems. Efforts to model and measure oxygen diffusion and consumption within these engineered tissues have sought to quantitatively assess and improve these design strategies. This review assesses the current state of the field by outlining the prevailing approaches taken toward producing vascularized tissues and highlighting their strengths and weaknesses.
Collapse
Affiliation(s)
- Michael Lovett
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
123
|
Abstract
The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a "biomimetic" scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle-in vitro cultivation of viable bone grafts of complex geometries-to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions.
Collapse
|
124
|
Zhao F, Sellgren K, Ma T. Low-oxygen pretreatment enhances endothelial cell growth and retention under shear stress. Tissue Eng Part C Methods 2009; 15:135-46. [PMID: 19072661 DOI: 10.1089/ten.tec.2008.0321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxygen (O(2)) tension is an important factor that regulates endothelial cell (EC) growth and adhesion. We hypothesized that low-O(2) treatment of ECs improves the endothelialization and cell retention upon physiologically relevant perfusion flow, due to enhanced cell proliferation and extracellular matrix (ECM) secretion. We assessed the effects of a low-O(2) tension of 5% O(2) upon growth and ECM production of human umbilical vein ECs (HUVECs), in comparison to their counterparts at 20% O(2) on poly(ethylene terephthalate) (PET) films. Low-O(2) pretreatment at 5% O(2) promoted HUVEC proliferation, ECM secretion, and intercellular adhesion. Cell retentions of the endothelialized PET films formed under 5% and 20% O(2) were analyzed by applying shear stress in the range of 5-20 dyn/cm(2) for up to 24 h under the O(2) of 12% and 20%, mimicking arterial and conventional experimental O(2), respectively. The 5% O(2)-pretreated samples exhibited significantly higher cell retention than their normoxic counterparts at high cell density (>30 x 10(3) cells/cm(2)) over extended exposure time (>12 h) when perfused under both 12% and 20% O(2). The endothelium formed under 5% O(2) maintained its ability to respond to perfusion flow by upregulating nitric oxide and prostacyclin production under both O(2) perfusion conditions. The results indicate that pretreatment at 5% O(2) is an effective strategy to enhance endothelialization of vascular grafts by promoting endothelium formation, cell retention, and function.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
125
|
Serra M, Brito C, Costa EM, Sousa MFQ, Alves PM. Integrating human stem cell expansion and neuronal differentiation in bioreactors. BMC Biotechnol 2009; 9:82. [PMID: 19772662 PMCID: PMC2759925 DOI: 10.1186/1472-6750-9-82] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors.
Collapse
Affiliation(s)
- Margarida Serra
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
126
|
Schliephake H, Zghoul N, Jäger V, van Griensven M, Zeichen J, Gelinsky M, Wülfing T. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs. J Biomed Mater Res A 2009; 90:429-37. [PMID: 18523951 DOI: 10.1002/jbm.a.32104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to test the hypothesis that both scaffold material and the type of cell culturing contribute to the results of in vivo osteogenesis in tissue-engineered constructs in an interactive manner. CaCO3 scaffolds and mineralized collagen scaffolds were seeded with human trabecular bone cells at a density of 5 x 10(6) cells/cm(3) and were left to attach under standard conditions for 24 h. Subsequently, they were submitted to static and dynamic culturing for 14 days (groups III and IV, respectively). Dynamic culturing was carried out in a continuous flow perfusion bioreactor. Empty scaffolds and scaffolds that were seeded with cells and kept under standard conditions for 24 h served as controls (groups I and II, respectively). Five scaffolds of each biomaterial and from each group were implanted into the gluteal muscles of rnu rats for 6 weeks. Osteogenesis was assessed quantitatively by histomorphometry and expression of osteocalcin (OC) and vascular endothelial growth factor (VEGF) was determined by immunohistochemistry. CaCO3 scaffolds exhibited 15.8% (SD 3.1) of newly formed bone after static culture and 22.4% (SD 8.2) after dynamic culture. Empty control scaffolds did not show bone formation, and scaffolds after 24 h of standard conditions produced 8.2% of newly formed bone (SD 4.0). Differences between the controls and the scaffolds cultured for 14 days were significant, but there was no significant difference between static and dynamic culturing. Mineralized collagen scaffolds did not show bone formation in any group. There was a significant difference in the expression of OC within the scaffolds submitted to static versus dynamic culturing in the CaCO3 scaffolds. VEGF expression did not show significant differences between static and dynamic culturing in the two biomaterials tested. It is concluded that within the limitations of the study the type of biomaterial had the dominant effect on in vivo bone formation in small tissue-engineered scaffolds. The culture period additionally affected the amount of bone formed, whereas the type of culturing may have had a positive effect on the expression of osteogenic markers but not on the quantity of bone formation.
Collapse
Affiliation(s)
- H Schliephake
- Department of Oral and Maxillofacial Surgery, George-Augusta-University, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
127
|
Wendt D, Riboldi SA, Cioffi M, Martin I. Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3352-67. [PMID: 20882502 DOI: 10.1002/adma.200802748] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Over the last decade, we have witnessed an increased recognition of the importance of 3D culture models to study various aspects of cell physiology and pathology, as well as to engineer implantable tissues. As compared to well-established 2D cell-culture systems, cell/tissue culture within 3D porous biomaterials has introduced new scientific and technical challenges associated with complex transport phenomena, physical forces, and cell-microenvironment interactions. While bioreactor-based 3D model systems have begun to play a crucial role in addressing fundamental scientific questions, numerous hurdles currently impede the most efficient utilization of these systems. We describe how computational modeling and innovative sensor technologies, in conjunction with well-defined and controlled bioreactor-based 3D culture systems, will be key to gain further insight into cell behavior and the complexity of tissue development. These model systems will lay a solid foundation to further develop, optimize, and effectively streamline the essential bioprocesses to safely and reproducibly produce appropriately scaled tissue grafts for clinical studies.
Collapse
Affiliation(s)
- David Wendt
- Department of Surgery and Biomedicine, University Hospital Basel, Switzerland
| | | | | | | |
Collapse
|
128
|
Li H, Friend J, Yeo L, Dasvarma A, Traianedes K. Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. BIOMICROFLUIDICS 2009; 3:34102. [PMID: 20216958 PMCID: PMC2835276 DOI: 10.1063/1.3194282] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/10/2009] [Indexed: 05/02/2023]
Abstract
Surface acoustic waves (SAWs) have been used as a rapid and efficient technique for driving microparticles into a three-dimensional scaffold matrix, raising the possibility that SAW may be effective in seeding live cells into scaffolds, that is, if the cells were able to survive the infusion process. Primary osteoblast-like cells were used to specifically address this issue: To investigate the effects of SAW on the cells' viability, proliferation, and differentiation. Fluorescence-labeled osteoblast-like cells were seeded into polycaprolactone scaffolds using the SAW method with a static method as a control. The cell distribution in the scaffold was assessed through image analysis. The cells were far more uniformly driven into the scaffold with the SAW method compared to the control, and the seeding process with SAW was also significantly faster: Cells were delivered into the scaffold in seconds compared to the hour-long process of static seeding. Over 80% of the osteoblast-like cells were found to be viable after being treated with SAW at 20 MHz for 10-30 s with an applied power of 380 mW over a wide range of cell suspension volumes (10-100 mul) and cell densities (1000-8000 cellsmul). After determining the optimal cell seeding parameters, we further found that the treated cells offered the same functionality as untreated cells. Taken together, these results show that the SAW method has significant potential as a practical scaffold cell seeding method for tissue and orthopedic engineering.
Collapse
|
129
|
Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface. Acta Biomater 2009; 5:2033-44. [PMID: 19299215 DOI: 10.1016/j.actbio.2009.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/31/2008] [Accepted: 02/10/2009] [Indexed: 02/01/2023]
Abstract
Vascular graft surface properties significantly affect adhesion, growth and function of endothelial cells (ECs). The bulk degradation property of poly(lactic acid) (PLA) makes it possible for it to be replaced by cellular materials and PLA is desirable as a scaffold material for vascular grafts. However, PLA has an unfavorable surface property for EC adhesion and proliferation due to the lack of a selective cell adhesion motif. Photo-initiated surface-grafting polymerization is a promising method for immobilizing certain biomacromolecules on material surfaces without compromising bulk properties. N-Maleic acyl-chitosan (NMCS) is a novel biocompatible amphiphilic derivative of chitosan with double bonds and can be initiated by ultraviolet light. In this study, gelatin was complexed with NMCS via hydrophobic interaction, and gel/NMCS complex thus formed was then grafted on the PLA surface to improve EC biocompatibility. X-ray photoelectron and Fourier transform infrared spectroscopy, and water contact angle measurement confirmed immobilization of the gel/NMCS complex on PLA surface. Moreover, the gel/NMCS modified PLA enhanced human umbilical vein endothelial cell (HUVEC) spreading and flattening, and promoted the expression of more structured CD31 and vWF compared to unmodified PLA film. Compared to the unmodified PLA surface, the HUVECs on the modified PLA surface had elevated uptake of acetylated low-density lipoprotein, and maintained the ability to modulate metabolic activity upon exposure to shear stress at 5dyncm(-2) by up-regulating nitric oxide and prostacyclin production. Cell retention was 1.6 times higher on the gel/NMCS-PLA surface, demonstrating its improved potential for hemocompatibility. These results indicate that photo-initiated surface-grafting of the biomimetic gel/NMCS complex is an effective method to modify material surfaces as vascular grafts.
Collapse
|
130
|
Shvartsman I, Dvir T, Harel-Adar T, Cohen S. Perfusion cell seeding and cultivation induce the assembly of thick and functional hepatocellular tissue-like construct. Tissue Eng Part A 2009; 15:751-60. [PMID: 18636945 DOI: 10.1089/ten.tea.2008.0024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developing advanced technologies for encouraging the ex vivo assembly of functional hepatic tissue for implantation into the human body or for in vitro drug testing is one of the challenging tasks facing tissue engineers. In the present study, we utilized a perfusion bioreactor system equipped with a novel flow-distributing mesh for online cell seeding into macroporous alginate scaffolds and cultivation of multiple constructs of the C3A human hepatocyte cell line. Optimization of the medium flow rate (100 mL/min) and perfusion duration (12 h) yielded cell constructs with high cell seeding efficiency (98% of the input cells) and cell distribution throughout the entire scaffold. Further, we show that interstitial medium flow enabled uniform cell delivery into 35 constructs lined across the bioreactor cross section. Perfusion-cultivated cell constructs revealed much greater rates of cell proliferation, albumin-specific secretion, and gene expression of the phase I enzyme, CYP3A4, and phase II enzyme, UGT2B7, than did static-cultivated constructs. Most impressive was the 50-fold increase in CYP3A4 expression of the perfused cell constructs as compared to the level in static-cultivated cell constructs. We thus believe that the hepatic tissue constructs developed herein may be used in drug discovery programs for elucidating drug metabolism and toxicity profiles and for treating failing livers.
Collapse
Affiliation(s)
- Irena Shvartsman
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | |
Collapse
|
131
|
Bok M, Li H, Yeo LY, Friend JR. The dynamics of surface acoustic wave-driven scaffold cell seeding. Biotechnol Bioeng 2009; 103:387-401. [PMID: 19160380 DOI: 10.1002/bit.22243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flow visualization using fluorescent microparticles and cell viability investigations are carried out to examine the mechanisms by which cells are seeded into scaffolds driven by surface acoustic waves. The former consists of observing both the external flow prior to the entry of the suspension into the scaffold and the internal flow within the scaffold pores. The latter involves micro-CT (computed tomography) scans of the particle distributions within the seeded scaffolds and visual and quantitative methods to examine the morphology and proliferation ability of the irradiated cells. The results of these investigations elucidate the mechanisms by which particles are seeded, and hence provide valuable information that form the basis for optimizing this recently discovered method for rapid, efficient, and uniform scaffold cell seeding. Yeast cells are observed to maintain their size and morphology as well as their proliferation ability over 14 days after they are irradiated. The mammalian primary osteoblast cells tested also show little difference in their viability when exposed to the surface acoustic wave irradiation compared to a control set. Together, these provide initial feasibility results that demonstrate the surface acoustic wave technology as a viable seeding method without risk of denaturing the cells.
Collapse
Affiliation(s)
- Melanie Bok
- Department of Mechanical and Aerospace Engineering, Micro/Nanophysics Research Laboratory, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
132
|
Thevenot P, Nair A, Dey J, Yang J, Tang L. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds. Tissue Eng Part C Methods 2009; 14:319-31. [PMID: 19055358 DOI: 10.1089/ten.tec.2008.0221] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Effective cell seeding throughout the tissue scaffold often determines the success of tissue-engineering products, although most current methods focus on determining the total number, not the distribution, of the cells associated with tissue-engineering constructs. The purpose of this investigation was to establish a quick, convenient, and efficient method to quantify cell survival, distribution, and infiltration into degradable scaffolds using a combination of fluorescence cell staining and cryosectioning techniques. After cell seeding and culture for different periods of time, seeded scaffolds were stained with a live cell dye and then cryosectioned. Cryosectioned scaffolds were then recompiled into a three-dimensional (3D) image to visualize cell behavior after seeding. To test the effectiveness of this imaging method, four common seeding methods, including static surface seeding, cell injection, orbital shaker seeding, and centrifuge seeding, were investigated for their seeding efficacy. Using this new method, we were able to visualize the benefits and drawbacks of each seeding method with regard to the cell behavior in 3D within the scaffolds. This method is likely to provide useful information to assist the development of novel materials or cell-seeding methods for producing full-thickness tissue grafts.
Collapse
Affiliation(s)
- Paul Thevenot
- Bioengineering Department, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | | | |
Collapse
|
133
|
Zhao F, Grayson WL, Ma T, Irsigler A. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. J Cell Physiol 2009; 219:421-9. [DOI: 10.1002/jcp.21688] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
134
|
Temtem M, Silva LM, Andrade PZ, dos Santos F, da Silva CL, Cabral JM, Abecasis MM, Aguiar-Ricardo A. Supercritical CO2 generating chitosan devices with controlled morphology. Potential application for drug delivery and mesenchymal stem cell culture. J Supercrit Fluids 2009. [DOI: 10.1016/j.supflu.2008.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
135
|
Flaibani M, Luni C, Sbalchiero E, Elvassore N. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor. Biotechnol Prog 2009; 25:286-95. [DOI: 10.1002/btpr.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
136
|
Yoshii T, Sotome S, Torigoe I, Tsuchiya A, Maehara H, Ichinose S, Shinomiya K. Fresh bone marrow introduction into porous scaffolds using a simple low-pressure loading method for effective osteogenesis in a rabbit model. J Orthop Res 2009; 27:1-7. [PMID: 18524006 DOI: 10.1002/jor.20630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent advances in tissue engineering techniques have allowed porous biomaterials to be combined with osteogenic cells for effective bone regeneration. We developed a simple low-pressure cell-loading method using only syringes and stopcocks, and examined the effect of this method on osteogenesis when applied to the combination of highly porous beta-tricalcium phosphate (beta-TCP) and fresh autologous bone marrow. Both block and granule beta-TCP scaffolds were used to prepare implants in three different ways: without bone marrow as a control, with bone marrow that was allowed to penetrate spontaneously under atmospheric pressure (AP group), and with bone marrow that was seeded under low pressure (ULP group). These implants were transplanted into rabbit intramuscular sites, and the samples were examined biologically and histologically. The penetration efficiency of the block implants after marrow introduction was significantly higher in the ULP group than in the AP group. In the transplanted block samples, alkaline phosphatase activity was significantly higher in the ULP group at 2 weeks after implantation, and significantly more newly formed bone was observed in the ULP group at both 5 and 10 weeks compared with the AP group. Similar results were observed even in the experiment using beta-TCP granules, which are smaller than the blocks and frequently used clinically. Because of its convenience and safety, this low-pressure method might be a novel, effective treatment to promote osteogenesis with bone marrow in clinical bone reconstruction surgeries.
Collapse
Affiliation(s)
- Toshitaka Yoshii
- Section of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
137
|
Diederichs S, Röker S, Marten D, Peterbauer A, Scheper T, van Griensven M, Kasper C. Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z®RP platform. Biotechnol Prog 2009; 25:1762-71. [DOI: 10.1002/btpr.258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
138
|
Abstract
Stem cells have emerged as the starting material of choice for bioprocesses to produce cells and tissues to treat degenerative, genetic, and immunological disease. Translating the biological properties and potential of stem cells into therapies will require overcoming significant cell-manufacturing and regulatory challenges. Bioprocess engineering fundamentals, including bioreactor design and process control, need to be combined with cellular systems biology principles to guide the development of next-generation technologies capable of producing cell-based products in a safe, robust, and cost-effective manner. The step-wise implementation of these bioengineering strategies will enhance cell therapy product quality and safety, expediting clinical development.
Collapse
|
139
|
Sullenbarger B, Bahng JH, Gruner R, Kotov N, Lasky LC. Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol 2008; 37:101-10. [PMID: 19013002 DOI: 10.1016/j.exphem.2008.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Methods producing human platelets using growth on plastic, on feeder layers, or in suspension have been described. We hypothesized that growth of hematopoietic progenitors in a three-dimensional (3D) scaffold would enhance platelet production sans feeder layer. MATERIALS AND METHODS We grew CD34 positively selected human cord blood cells in surgical-grade woven polyester fabric or purpose-built hydrogel scaffolds using a cocktail of cytokines. RESULTS We found production of functional platelets over 10 days with two-dimensional (2D), 24 days with 3D scaffolds in wells, and more than 32 days in a single-pass 3D perfusion bioreactor system. Platelet numbers produced daily were higher in 3D than 2D, and much higher in the 3D perfusion bioreactor system. Platelet output increased in hydrogel scaffolds coated with thrombopoietin and/or fibronectin, although this effect was largely obviated with markedly increased production caused by changes in added cytokines. In response to thrombin, the platelets produced aggregated and displayed increased surface CD62 and CD63. CONCLUSION Use of 3D scaffolds, especially in a bioreactor-maintained milieu, may allow construction of devices for clinical platelet production without cellular feeder layers.
Collapse
Affiliation(s)
- Brent Sullenbarger
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
140
|
Thevenot P, Nair A, Dey J, Yang J, Tang L. Method to Analyze Three-Dimensional Cell Distribution and Infiltration in Degradable Scaffolds. Tissue Eng Part A 2008. [DOI: 10.1089/ten.tea.2008.0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
141
|
Thevenot P, Sohaebuddin S, Poudyal N, Liu JP, Tang L. Magnetic Nanoparticles to Enhance Cell Seeding and Distribution in Tissue Engineering Scaffolds. PROCEEDINGS OF THE ... IEEE CONFERENCE ON NANOTECHNOLOGY. IEEE CONFERENCE ON NANOTECHNOLOGY 2008; 2008:646-649. [PMID: 22348179 PMCID: PMC3279920 DOI: 10.1109/nano.2008.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The success of tissue engineering scaffolds is intimately linked with the ability of the seeded cells to adequately distribute and proliferate within the scaffold matrix. In tissue engineering scaffolds, it is difficult to achieve adequate distribution due to the hydrophobic nature of most scaffold materials and poor initial distribution following scaffold seeding. In this study, we investigated the distribution of cells in PLGA salt-leached scaffolds after seeding with magnetic nanoparticle loaded cells with a neodymium magnet placed below. The combined use of magnetic nanoparticle seeded cells and magnetic force was able to not only increase the total number of scaffold adherent cells, but also increase the infiltration and distribution compared with controls. This method to control the distribution of cells may provide a method to increase the functionality of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Paul Thevenot
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX
| | - Syed Sohaebuddin
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX
| | - Narayan Poudyal
- Department of Physics, The University of Texas at Arlington, Arlington, TX
| | - J. Ping Liu
- Department of Physics, The University of Texas at Arlington, Arlington, TX
| | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX
| |
Collapse
|
142
|
Li Z, Gunn J, Chen M, Cooper A, Zhang M. On‐site alginate gelation for enhanced cell proliferation and uniform distribution in porous scaffolds. J Biomed Mater Res A 2008; 86:552-9. [DOI: 10.1002/jbm.a.31596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
143
|
Scaglione S, Wendt D, Miggino S, Papadimitropoulos A, Fato M, Quarto R, Martin I. Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. J Biomed Mater Res A 2008; 86:411-9. [DOI: 10.1002/jbm.a.31607] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
144
|
Ichinohe N, Takamoto T, Tabata Y. Proliferation, osteogenic differentiation, and distribution of rat bone marrow stromal cells in nonwoven fabrics by different culture methods. Tissue Eng Part A 2008; 14:107-16. [PMID: 18333809 DOI: 10.1089/ten.a.2007.0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proliferation, osteogenic differentiation, and distribution patterns of stromal cells from rat bone marrow were investigated in a three-dimensional nonwoven fabric of polyethylene terephthalate fiber by the static, agitated, and stirred culture methods; stirring speeds were 10, 50, and 100 rpm in the stirred culture method. The culture method affected the time profile of proliferation and osteogenic differentiation of cells or their distribution in the fabric. The extent of cell proliferation and osteogenic differentiation became higher in order of the stirred at 100 rpm = the stirred at 50 rpm > the stirred at 10 rpm > the agitated > the static methods. In addition, the cells were more uniformly proliferated in the fabric by the stirred culture method with time than they were proliferated in the fabric by other methods. The alkaline phosphatase (ALP) activity and calcium content were higher for cells cultured by the stirred culture method than those cultured by other methods. The total ALP activity, calcium content, and bone mineral density were higher for every stirred method than those for other methods. However, the distribution uniformity of cells differentiated was low irrespective of the culture method. It is concluded that the extent of proliferation and differentiation of cells or their distribution uniformity in the nonwoven fabrics was influenced by the culture method.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Pathophysiology, Cancer Research Institute, Sapporo Medical University, Sapporo, Japan
| | | | | |
Collapse
|
145
|
Ciofani G, Migliore A, Raffa V, Menciassi A, Dario P. Bicompartmental device for dynamic cell coculture: Design, realisation and preliminary results. J Biosci Bioeng 2008; 105:536-44. [DOI: 10.1263/jbb.105.536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/20/2008] [Indexed: 11/17/2022]
|
146
|
Ding CM, Zhou Y, He YN, Tan WS. Perfusion seeding of collagen–chitosan sponges for dermal tissue engineering. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
147
|
Suen MC, Lee HT, Chen HE, Chen CC. Water remaining properties of nonwoven fabrics treated with the polyurethane polymers containing carboxylic acid group and the thermal and structural characterization of the polymers. J Appl Polym Sci 2008. [DOI: 10.1002/app.27365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
148
|
Torigoe I, Sotome S, Tsuchiya A, Yoshii T, Takahashi M, Kawabata S, Shinomiya K. Novel cell seeding system into a porous scaffold using a modified low-pressure method to enhance cell seeding efficiency and bone formation. Cell Transplant 2008; 16:729-39. [PMID: 18019362 DOI: 10.3727/000000007783465109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The efficient seeding of cells into porous scaffolds is important in bone tissue engineering techniques. To enhance efficiency, we modified the previously reported cell seeding techniques using low-pressure conditions. In this study, the effects of low pressure on bone marrow-derived stromal cells (BMSCs) of rats and the usefulness of the modified technique were assessed. There was no significant difference found in the proliferative and osteogenic capabilities among various low-pressure (50-760 mmHg, 1-10 min) conditions. To analyze the efficacies of the cell seeding techniques, BMSCs suspended in the plasma of rats were seeded into porous beta-tricalcium phosphate (beta-TCP) blocks by the following three procedures: 1) spontaneous penetration of cell suspension under atmospheric pressure (SP); 2) spontaneous penetration and subsequent low pressure treatment (SPSL), the conventional technique; and 3) spontaneous penetration under low pressure conditions (SPUL), the modified technique. Subsequently, these BMSCs/beta-TCP composites were used for the analysis of cell seeding efficiency or in vivo bone formation capability. Both the number of BMSCs seeded into beta-TCP blocks and the amount of bone formation of the SPUL group were significantly higher than those of the other groups. The SPUL method with a simple technique permits high cell seeding efficiency and is useful for bone tissue engineering using BMSCs and porous scaffolds.
Collapse
Affiliation(s)
- Ichiro Torigoe
- Section of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
149
|
Ichinohe N, Takamoto T, Tabata Y. Proliferation, Osteogenic Differentiation, and Distribution of Rat Bone Marrow Stromal Cells in Nonwoven Fabrics by Different Culture Methods. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
150
|
Bioreactors for Tissue Engineering of Cartilage. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|