101
|
Cabannes-Boué B, Yang Q, Lalevée J, Morlet-Savary F, Poly J. Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent. Polym Chem 2017. [DOI: 10.1039/c6py02220k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new dithiocarbamate with a N-carbazole Z group is synthesized and investigated as a chain-transfer agent (CTA) in a photo-mediated RAFT polymerization mechanism involving its partial and reversible photolysis.
Collapse
Affiliation(s)
- Benjamin Cabannes-Boué
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
- France
| | - Qizhi Yang
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
- France
| | - Jacques Lalevée
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
- France
| | - Fabrice Morlet-Savary
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
- France
| | - Julien Poly
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
- France
| |
Collapse
|
102
|
Affiliation(s)
- Sivaprakash Shanmugam
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
103
|
Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
104
|
Li J, Ding C, Zhang Z, Pan X, Li N, Zhu J, Zhu X. Visible Light-Induced Living Radical Polymerization of Butyl Acrylate: Photocatalyst-Free, Ultrafast, and Oxygen Tolerance. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600482] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jiajia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Chunlai Ding
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Na Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
105
|
Yang Q, Lalevée J, Poly J. Development of a Robust Photocatalyzed ATRP Mechanism Exhibiting Good Tolerance to Oxygen and Inhibitors. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01808] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qizhi Yang
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Jacques Lalevée
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Julien Poly
- Université
de Strasbourg
– Université de Haute-Alsace (UHA) − Centre National de la Recherche Scientifique (CNRS), Institut de Science des Matériaux de Mulhouse
(IS2M), UMR 7361 – CNRS/UHA, 15 rue Jean Starcky, 68057 Mulhouse, France
| |
Collapse
|
106
|
Dumur F, Gigmes D, Fouassier JP, Lalevée J. Organic Electronics: An El Dorado in the Quest of New Photocatalysts for Polymerization Reactions. Acc Chem Res 2016; 49:1980-9. [PMID: 27560545 DOI: 10.1021/acs.accounts.6b00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoinitiated polymerization has been the subject of continued research efforts due to the numerous applications in which this polymerization technique is involved (coatings, inks, adhesives, optoelectronic, laser imaging, stereolithography, nanotechnology, etc.). More recently, photopolymerization has received renewed interest due to the emergence of 3D-printing technologies. However, despite current academic and industrial interest in photopolymerization methodologies, a major limitation lies in the slow rates of photopolymerization. The development of new photoinitiating systems aimed at addressing this limitation is an active area of research. Photopolymerization occurs through the exposure of a curable formulation to light, generating radical and/or cationic species to initiate polymerization. At present, photopolymerization is facing numerous challenges related to safety, economic and ecological concerns. Furthermore, practical considerations such as the curing depth and the competition for light absorption between the chromophores and other species in the formulation are key parameters drastically affecting the photopolymerization process. To address these issues, photoinitiating systems operating under low intensity visible light irradiation, in the absence of solvents are highly sought after. In this context, the use of photoredox catalysis can be highly advantageous; that is, photoredox catalysts can provide high reactivities with low catalyst loading, permitting access to high performance photoinitiating systems. However, to act as efficient photoredox catalysts, specific criteria have to be fulfilled. A strong absorption over the visible range, an ability to easily oxidize or reduce as well as sufficient photochemical stability are basic prerequisites to make these molecules desirable candidates for photoredox catalysis. Considering the similarity of requirements between organic electronics and photopolymerization, numerous materials initially designed for applications in organic electronics have been revisited in the context of photopolymerization. Organic electronics is a branch of electronics and materials science focusing on the development of semiconductors devoted to three main research fields; organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells (OSCs). The contribution of organic electronics to the field of electronics is important as it paves the way toward cheaper, lighter, and more energy efficient devices. In the present context of photopolymerization, materials that were investigated as photocatalysts were indifferently organic semiconductors used for transistors, charge-transport materials, and light-emitting materials used in electroluminescent devices or conjugated polymers and small molecule dyes for solar cells. In this Account, we summarize our latest developments in elaborating on photocatalytic systems based on these new classes of compounds. Through an in-depth understanding of the parameters governing their reactivities and our efforts to incorporate these materials into photoinitiating systems, we provide new knowledge and a valuable insight for future prospects.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix-Marseille
Université, CNRS, Institut de Chimie Radicalaire ICR, UMR7273, F-13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille
Université, CNRS, Institut de Chimie Radicalaire ICR, UMR7273, F-13397 Marseille, France
| | | | - Jacques Lalevée
- Institut de Science
des Matériaux de Mulhouse IS2M, LRC CNRS 7228, UHA, 15 rue Jean Starcky, F-68057 Cedex Mulhouse, France
| |
Collapse
|
107
|
Yeow J, Shanmugam S, Corrigan N, Kuchel RP, Xu J, Boyer C. A Polymerization-Induced Self-Assembly Approach to Nanoparticles Loaded with Singlet Oxygen Generators. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01581] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P. Kuchel
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for
NanoMedicine, School of Chemical Engineering, and ‡Electron Microscope Unit, Mark
Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
108
|
Pearson RM, Lim CH, McCarthy BG, Musgrave CB, Miyake GM. Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts. J Am Chem Soc 2016; 138:11399-407. [PMID: 27554292 PMCID: PMC5485656 DOI: 10.1021/jacs.6b08068] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
N-Aryl phenoxazines have been synthesized and introduced as strongly reducing metal-free photoredox catalysts in organocatalyzed atom transfer radical polymerization for the synthesis of well-defined polymers. Experiments confirmed quantum chemical predictions that, like their dihydrophenazine analogs, the photoexcited states of phenoxazine photoredox catalysts are strongly reducing and achieve superior performance when they possess charge transfer character. We compare phenoxazines to previously reported dihydrophenazines and phenothiazines as photoredox catalysts to gain insight into the performance of these catalysts and establish principles for catalyst design. A key finding reveals that maintenance of a planar conformation of the phenoxazine catalyst during the catalytic cycle encourages the synthesis of well-defined macromolecules. Using these principles, we realized a core substituted phenoxazine as a visible light photoredox catalyst that performed superior to UV-absorbing phenoxazines as well as previously reported organic photocatalysts in organocatalyzed atom transfer radical polymerization. Using this catalyst and irradiating with white LEDs resulted in the production of polymers with targeted molecular weights through achieving quantitative initiator efficiencies, which possess dispersities ranging from 1.13 to 1.31.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Chern-Hooi Lim
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Blaine G McCarthy
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Charles B Musgrave
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Garret M Miyake
- Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §Materials Science and Engineering Program, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|
109
|
Yang Q, Balverde S, Dumur F, Lalevée J, Poly J. Synergetic effect of the epoxide functional groups in the photocatalyzed atom transfer radical copolymerization of glycidyl methacrylate. Polym Chem 2016. [DOI: 10.1039/c6py01443g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl methacrylate (MMA) and glycidyl methacrylate (GMA) were copolymerized by photocatalyzed atom transfer radical polymerization under visible light irradiation. The polymerization was made faster by the epoxide group, which played the role of a reducing agent and thus favored the regeneration of the activator.
Collapse
Affiliation(s)
- Qizhi Yang
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| | - Sophie Balverde
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| | - Frédéric Dumur
- Aix-Marseille Université
- CNRS
- ICR UMR7273
- 13397 Marseille
- France
| | - Jacques Lalevée
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| | - Julien Poly
- Université de Strasbourg – Université de Haute-Alsace (UHA) – Centre National de la Recherche Scientifique (CNRS)
- France
- Institut de Science des Matériaux de Mulhouse (IS2M)
- UMR 7361 – CNRS/UHA
- 68057 Mulhouse
| |
Collapse
|
110
|
Abstract
The use of photocatalysts for visible light mediated reversible deactivation radical polymerization (RDRP) provides an efficient route for the synthesis of well-defined polymers with spatial, temporal and sequence control.
Collapse
Affiliation(s)
- Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| |
Collapse
|