101
|
Rudd BD, Brien JD, Davenport MP, Nikolich-Zugich J. Cutting edge: TLR ligands increase TCR triggering by slowing peptide-MHC class I decay rates. THE JOURNAL OF IMMUNOLOGY 2008; 181:5199-203. [PMID: 18832671 DOI: 10.4049/jimmunol.181.8.5199] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR ligands are among the key stimuli driving the optimal dendritic cell (DC) maturation critical for strong and efficacious T cell priming. In this study, we show that part of this effect occurs via increased TCR triggering. Pretreatment of DCs with TLR ligands resulted in the triggering of many more TCRs in responding CD8(+) T cells. Importantly, even when DCs expressed the same amount of cognate peptide-MHC (pMHC) molecules, TLR ligand treatment resulted in down-regulation of larger numbers of TCR molecules. This was independent of the up-regulation of costimulatory, adhesion or cytokine molecules or the amount of noncognate pMHCs. Rather, DCs pretreated with TLR ligands exhibited increased stability of cognate pMHCs, enabling extended TCR triggering. These findings are of potential importance to T cell vaccination.
Collapse
Affiliation(s)
- Brian D Rudd
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85718, USA
| | | | | | | |
Collapse
|
102
|
Wang S, Welte T, McGargill M, Town T, Thompson J, Anderson JF, Flavell RA, Fikrig E, Hedrick SM, Wang T. Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 181:2084-91. [PMID: 18641347 DOI: 10.4049/jimmunol.181.3.2084] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2), a member of the death-associated protein family of serine/threonine kinases, is specifically expressed in T and B cells. In the absence of Drak2, mice are resistant to experimental autoimmune encephalomyelitis due to a decrease in the number of cells infiltrating the CNS. In the present study, we investigated the role of Drak2 in West Nile virus (WNV)-induced encephalitis and found that Drak2(-/-) mice were also more resistant to lethal WNV infection than wild-type mice. Although Drak2(-/-) mice had an increase in the number of IFN-gamma-producing T cells in the spleen after infection, viral levels in the peripheral tissues were not significantly different between these two groups of mice. In contrast, there was a reduced viral load in the brains of Drak2(-/-) mice, which was accompanied by a decrease in the number of Drak2(-/-) CD4(+) and CD8(+) T cells in the brain following WNV infection. Moreover, we detected viral Ags in T cells isolated from the spleen or brain of WNV-infected mice. These results suggest that following a systemic infection, WNV might cross the blood brain barrier and enter the CNS by being carried by infected infiltrating T cells.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Maciel M, Kellathur SN, Chikhlikar P, Dhalia R, Sidney J, Sette A, August TJ, Marques ET. Comprehensive analysis of T cell epitope discovery strategies using 17DD yellow fever virus structural proteins and BALB/c (H2d) mice model. Virology 2008; 378:105-17. [PMID: 18579176 PMCID: PMC2615555 DOI: 10.1016/j.virol.2008.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/07/2008] [Accepted: 04/30/2008] [Indexed: 01/19/2023]
Abstract
Immunomics research uses in silico epitope prediction, as well as in vivo and in vitro approaches. We inoculated BALB/c (H2d) mice with 17DD yellow fever vaccine to investigate the correlations between approaches used for epitope discovery: ELISPOT assays, binding assays, and prediction software. Our results showed a good agreement between ELISPOT and binding assays, which seemed to correlate with the protein immunogenicity. PREDBALB/c prediction software partially agreed with the ELISPOT and binding assay results, but presented low specificity. The use of prediction software to exclude peptides containing no epitopes, followed by high throughput screening of the remaining peptides by ELISPOT, and the use of MHC-biding assays to characterize the MHC restrictions demonstrated to be an efficient strategy. The results allowed the characterization of 2 MHC class I and 17 class II epitopes in the envelope protein of the YF virus in BALB/c (H2d) mice.
Collapse
Affiliation(s)
- Milton Maciel
- Johns Hopkins University, School of Medicine, Pharmacology Department, Baltimore, USA
| | - Srinivasan N. Kellathur
- Johns Hopkins University, School of Medicine, Pharmacology Department, Baltimore, USA,Johns Hopkins Singapore, Singapore
| | - Pryia Chikhlikar
- Johns Hopkins University, School of Medicine, Pharmacology Department, Baltimore, USA
| | - Rafael Dhalia
- Oswaldo Cruz Foundation (FIOCRUZ), Instituto Aggeu Magalhaes, Recife, Brazil
| | | | | | - Thomas J. August
- Johns Hopkins University, School of Medicine, Pharmacology Department, Baltimore, USA
| | - Ernesto T.A. Marques
- Johns Hopkins University, School of Medicine, Pharmacology Department, Baltimore, USA,Johns Hopkins, School of Medicine, Department of Infectious Diseases, Baltimore, USA,Oswaldo Cruz Foundation (FIOCRUZ), Instituto Aggeu Magalhaes, Recife, Brazil,Corresponding author. Johns Hopkins University, School of Medicine, Pharmacology Department, Baltimore, USA
| |
Collapse
|
104
|
Parsons R, Lelic A, Hayes L, Carter A, Marshall L, Evelegh C, Drebot M, Andonova M, McMurtrey C, Hildebrand W, Loeb MB, Bramson JL. The memory T cell response to West Nile virus in symptomatic humans following natural infection is not influenced by age and is dominated by a restricted set of CD8+ T cell epitopes. THE JOURNAL OF IMMUNOLOGY 2008; 181:1563-72. [PMID: 18606712 DOI: 10.4049/jimmunol.181.2.1563] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We examined the West Nile virus (WNV)-specific T cell response in a cohort of 52 patients with symptomatic WNV infections, including neuroinvasive and non-invasive disease. Although all virus proteins were shown to contain T cell epitopes, certain proteins, such as E, were more commonly targeted by the T cell response. Most patients exhibited reactivity toward 3-4 individual WNV peptides; however, several patients exhibited reactivity toward >10 individual peptides. The relative hierarchy of T cell reactivities in all patients showed a fixed pattern that was sustained throughout the 12-mo period of the current study. Surprisingly, we did not observe any relationship between age and either the breadth or magnitude of the T cell response following infection. We also did not observe a relationship between disease severity and either the breadth or magnitude of the T cell response. The T cell epitopes were distributed in a non-random fashion across the viral polyprotein and a limited number of epitopes appeared to dominate the CD8(+) T cell response within our cohort. These data provide important new insight into the T cell response against WNV in humans.
Collapse
Affiliation(s)
- Robin Parsons
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol 2008; 82:8956-64. [PMID: 18632856 DOI: 10.1128/jvi.01118-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans, especially in immunocompromised individuals. Previous studies have shown essential protective roles for antiviral cytokines (e.g., alpha interferon [IFN-alpha] and IFN-gamma) against WNV in mice. However, studies using cell culture offer conflicting answers regarding whether tumor necrosis factor alpha (TNF-alpha) has an anti-WNV function. To test the biological significance of TNF-alpha against WNV in vivo, experiments were performed with TNF receptor-1 (TNF-R1)-deficient and TNF-alpha-depleted C57BL/6 mice. TNF-R1(-/-) mice had enhanced mortality and decreased survival time after WNV infection compared to congenic wild-type mice. Consistent with this, administration of a neutralizing anti-TNF-alpha monoclonal antibody also decreased survival after WNV infection. Relatively small differences in viral burdens in peripheral tissues of TNF-R1(-/-) mice were observed, and this occurrence correlated with a modest antiviral effect of TNF-alpha on primary macrophages but not dendritic cells. In contrast, the viral titers detected in the central nervous systems of TNF-R1(-/-) mice were significantly increased compared to those of wild-type mice, although TNF-alpha did not have a direct antiviral effect in primary neuron cultures. Whereas no defect in priming of adaptive B- and T-cell responses in TNF-R1(-/-) mice was observed, there were significant reductions in accumulations of CD8+ T cells and macrophages in the brain. Our data are most consistent with a model in which interaction of TNF-alpha with TNF-R1 protects against WNV infection by regulating migration of protective inflammatory cells into the brain during acute infection.
Collapse
|
106
|
Lanteri M, Heitman J, Owen R, Busch T, Gefter N, Kiely N, Kamel H, Tobler L, Busch M, Norris P. Comprehensive Analysis of West Nile Virus–Specific T Cell Responses in Humans. J Infect Dis 2008; 197:1296-306. [DOI: 10.1086/586898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
107
|
Lang A, Brien JD, Messaoudi I, Nikolich-Zugich J. Age-related dysregulation of CD8+ T cell memory specific for a persistent virus is independent of viral replication. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4848-57. [PMID: 18354208 PMCID: PMC4161215 DOI: 10.4049/jimmunol.180.7.4848] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The immune system devotes substantial resources to the lifelong control of persistent pathogens, which were hypothesized to play an important role in immune aging. Specifically, the presence of latent herpesviruses has been correlated with immune exhaustion and shorter lifespan in octogenarians. But neither the causality nor the mechanistic link(s) were established, and the relative roles of persistent antigenic stimulation and of virus-independent homeostatic disturbances in T cell aging remain unresolved. We longitudinally analyzed expansion, contraction, and long-term maintenance of CD8(+) T cells responding to localized infection with a latent virus, HSV-1. Young mice exhibited the expected expansion and contraction of HSV-1-specific cells and the stable maintenance of memory T cells into advanced adulthood. However, upon entry into senescence, many (>40%) animals exhibited an accumulation in Ag-specific cells (memory inflation) which in some animals was comparable to that observed in acute infection. Inflation occurred to the same extent in control mice and mice continuously treated with the anti-HSV drug famciclovir, which inhibits viral replication and was able to reduce expression of the glycoprotein B. Age-related inflation was also found long after infection with an acute virus. The inflating cells largely maintained Ag-specific function, and exhibited typical central memory phenotype, with no signs of Ag-specific activation. They exhibited increased expression of CD122 and CD127, akin to the Ag-independent T cell clonal expansions found in old specific pathogen-free laboratory mice. This collectively suggests that, in this model, the inflating cells may be selected for high responsiveness to environmental cytokines largely in an Ag-independent manner.
Collapse
Affiliation(s)
- Anna Lang
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - James D. Brien
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| |
Collapse
|
108
|
Epitope discovery in West Nile virus infection: Identification and immune recognition of viral epitopes. Proc Natl Acad Sci U S A 2008; 105:2981-6. [PMID: 18299564 DOI: 10.1073/pnas.0711874105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) play an important role in the control and elimination of infection by West Nile virus (WNV), yet the class I human leukocyte antigen (HLA)-presented peptide epitopes that enable CTL recognition of WNV-infected cells remain uncharacterized. The goals of this work were first to discover the peptide epitopes that distinguish the class I HLA of WNV-infected cells and then to test the T cell reactivity of newly discovered WNV epitopes. To discover WNV-immune epitopes, class I HLA was harvested from WNV (NY99 strain)-infected and uninfected HeLa cells. Then peptide epitopes were eluted from affinity-purified HLA, and peptide epitopes from infected and uninfected cells were comparatively mapped by mass spectroscopy. Six virus-derived peptides from five different viral proteins (E, NS2b, NS3, NS4b, and NS5) were discovered as unique to HLA-A*0201 of infected cells, demonstrating that the peptides sampled by class I HLA are distributed widely throughout the WNV proteome. When tested with CTL from infected individuals, one dominant WNV target was apparent, two epitopes were subdominant, and three demonstrated little CTL reactivity. Finally, a sequence comparison of these epitopes with the hundreds of viral isolates shows that HLA-A*0201 presents epitopes derived from conserved regions of the virus. Detection and recovery from WNV infection are therefore functions of the ability of class I HLA molecules to reveal conserved WNV epitopes to an intact cellular immune system that subsequently recognizes infected cells.
Collapse
|
109
|
Shrestha B, Ng T, Chu HJ, Noll M, Diamond MS. The relative contribution of antibody and CD8+ T cells to vaccine immunity against West Nile encephalitis virus. Vaccine 2008; 26:2020-33. [PMID: 18339459 DOI: 10.1016/j.vaccine.2008.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 01/23/2008] [Accepted: 02/04/2008] [Indexed: 12/30/2022]
Abstract
West Nile virus (WNV) is a mosquito borne, neurotropic flavivirus that causes a severe central nervous system (CNS) infection in humans and animals. Although commercial vaccines are available for horses, none is currently approved for human use. In this study, we evaluated the efficacy and mechanism of immune protection of two candidate WNV vaccines in mice. A formalin-inactivated WNV vaccine induced higher levels of specific and neutralizing antibodies compared to a DNA plasmid vaccine that produces virus-like particles. Accordingly, partial and almost complete protection against a highly stringent lethal intracranial WNV challenge were observed in mice 60 days after single dose immunization with the DNA plasmid and inactivated virus vaccines, respectively. In mice immunized with a single dose of DNA plasmid or inactivated vaccine, antigen-specific CD8(+) T cells were induced and contributed to protective immunity as acquired or genetic deficiencies of CD8(+) T cells lowered the survival rates. In contrast, in boosted animals, WNV-specific antibody titers were higher, survival rates after challenge were greater, and an absence of CD8(+) T cells did not appreciably affect mortality. Overall, our experiments suggest that in mice, both inactivated WNV and DNA plasmid vaccines are protective after two doses, and the specific contribution of antibody and CD8(+) T cells to vaccine immunity against WNV is modulated by the prime-boost strategy.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, 660 S. Euclid Avenue, Box 8051, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | | | | | |
Collapse
|
110
|
Lindesmith LC, Donaldson EF, LoBue AD, Cannon JL, Zheng DP, Vinje J, Baric RS. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med 2008; 5:e31. [PMID: 18271619 PMCID: PMC2235898 DOI: 10.1371/journal.pmed.0050031] [Citation(s) in RCA: 419] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 12/12/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Noroviruses are the leading cause of viral acute gastroenteritis in humans, noted for causing epidemic outbreaks in communities, the military, cruise ships, hospitals, and assisted living communities. The evolutionary mechanisms governing the persistence and emergence of new norovirus strains in human populations are unknown. Primarily organized by sequence homology into two major human genogroups defined by multiple genoclusters, the majority of norovirus outbreaks are caused by viruses from the GII.4 genocluster, which was first recognized as the major epidemic strain in the mid-1990s. Previous studies by our laboratory and others indicate that some noroviruses readily infect individuals who carry a gene encoding a functional alpha-1,2-fucosyltransferase (FUT2) and are designated "secretor-positive" to indicate that they express ABH histo-blood group antigens (HBGAs), a highly heterogeneous group of related carbohydrates on mucosal surfaces. Individuals with defects in the FUT2 gene are termed secretor-negative, do not express the appropriate HBGA necessary for docking, and are resistant to Norwalk infection. These data argue that FUT2 and other genes encoding enzymes that regulate processing of the HBGA carbohydrates function as susceptibility alleles. However, secretor-negative individuals can be infected with other norovirus strains, and reinfection with the GII.4 strains is common in human populations. In this article, we analyze molecular mechanisms governing GII.4 epidemiology, susceptibility, and persistence in human populations. METHODS AND FINDINGS Phylogenetic analyses of the GII.4 capsid sequences suggested an epochal evolution over the last 20 y with periods of stasis followed by rapid evolution of novel epidemic strains. The epidemic strains show a linear relationship in time, whereby serial replacements emerge from the previous cluster. Five major evolutionary clusters were identified, and representative ORF2 capsid genes for each cluster were expressed as virus-like particles (VLPs). Using salivary and carbohydrate-binding assays, we showed that GII.4 VLP-carbohydrate ligand binding patterns have changed over time and include carbohydrates regulated by the human FUT2 and FUT3 pathways, suggesting that strain sensitivity to human susceptibility alleles will vary. Variation in surface-exposed residues and in residues that surround the fucose ligand interaction domain suggests that antigenic drift may promote GII.4 persistence in human populations. Evidence supporting antigenic drift was obtained by measuring the antigenic relatedness of GII.4 VLPs using murine and human sera and demonstrating strain-specific serologic and carbohydrate-binding blockade responses. These data suggest that the GII.4 noroviruses persist by altering their HBGA carbohydrate-binding targets over time, which not only allows for escape from highly penetrant host susceptibility alleles, but simultaneously allows for immune-driven selection in the receptor-binding region to facilitate escape from protective herd immunity. CONCLUSIONS Our data suggest that the surface-exposed carbohydrate ligand binding domain in the norovirus capsid is under heavy immune selection and likely evolves by antigenic drift in the face of human herd immunity. Variation in the capsid carbohydrate-binding domain is tolerated because of the large repertoire of similar, yet distinct HBGA carbohydrate receptors available on mucosal surfaces that could interface with the remodeled architecture of the capsid ligand-binding pocket. The continuing evolution of new replacement strains suggests that, as with influenza viruses, vaccines could be targeted that protect against norovirus infections, and that continued epidemiologic surveillance and reformulations of norovirus vaccines will be essential in the control of future outbreaks.
Collapse
Affiliation(s)
- Lisa C Lindesmith
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric F Donaldson
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anna D LoBue
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jennifer L Cannon
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Du-Ping Zheng
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Vinje
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ralph S Baric
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
111
|
Purtha WE, Myers N, Mitaksov V, Sitati E, Connolly J, Fremont DH, Hansen TH, Diamond MS. Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur J Immunol 2007; 37:1845-54. [PMID: 17559174 DOI: 10.1002/eji.200737192] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Infection with West Nile virus (WNV) causes fatal encephalitis in immunocompromised animals. Previous studies in mice have established that T cell protection is required for clearance of WNV infection from tissues and preventing viral persistence. The current study assessed whether specific WNV peptide epitopes could elicit a cytotoxic T lymphocyte (CTL) response capable of protecting against virus infection. Hidden Markov model analysis was used to identify WNV-encoded peptides that bound the MHC class I proteins K(b) or D(b). Of the 35 peptides predicted to bind MHC class I molecules, one immunodominant CTL recognition peptide was identified in each of the envelope and non-structural protein 4B genes. Addition of these but not control peptides to CD8(+) T cells from WNV-infected mice induced IFN-gamma production. CTL clones that were generated ex vivo lysed peptide-pulsed or WNV-infected target cells in an antigen-specific manner. Finally, adoptive transfer of a mixture of envelope- and non-structural protein 4B-specific CTL to recipient mice protected against lethal WNV challenge. Based on this, we conclude that CTL responses against immundominant WNV epitopes confer protective immunity and thus should be targets for inclusion in new vaccines.
Collapse
Affiliation(s)
- Whitney E Purtha
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|