101
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
102
|
Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine 2020; 56:102784. [PMID: 32454403 PMCID: PMC7248429 DOI: 10.1016/j.ebiom.2020.102784] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial diseases are amongst the most genetically and phenotypically diverse groups of inherited diseases. The vast phenotypic overlap with other disease entities together with the absence of reliable biomarkers act as driving forces for the integration of unbiased methodologies early in the diagnostic algorithm, such as whole exome sequencing (WES) and whole genome sequencing (WGS). Such approaches are used in variant discovery and in combination with high-throughput functional assays such as transcriptomics in simultaneous variant discovery and validation. By capturing all genes, they not only increase the diagnostic rate in heterogenous mitochondrial disease patients, but accelerate novel disease gene discovery, and are valuable in side-stepping the risk of overlooking unexpected or even treatable genetic disease diagnoses.
Collapse
Affiliation(s)
- Sarah L Stenton
- Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Trogerstraße 32, 81675 München, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Holger Prokisch
- Institut für Humangenetik, Klinikum rechts der Isar, Technische Universität München, Trogerstraße 32, 81675 München, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
103
|
Mitochondrial Diseases: Hope for the Future. Cell 2020; 181:168-188. [PMID: 32220313 DOI: 10.1016/j.cell.2020.02.051] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
Mitochondrial diseases are clinically heterogeneous disorders caused by a wide spectrum of mutations in genes encoded by either the nuclear or the mitochondrial genome. Treatments for mitochondrial diseases are currently focused on symptomatic management rather than improving the biochemical defect caused by a particular mutation. This review focuses on the latest advances in the development of treatments for mitochondrial disease, both small molecules and gene therapies, as well as methods to prevent transmission of mitochondrial disease through the germline.
Collapse
|
104
|
Ng YS, Thompson K, Loher D, Hopton S, Falkous G, Hardy SA, Schaefer AM, Shaunak S, Roberts ME, Lilleker JB, Taylor RW. Novel MT-ND Gene Variants Causing Adult-Onset Mitochondrial Disease and Isolated Complex I Deficiency. Front Genet 2020; 11:24. [PMID: 32158465 PMCID: PMC7052259 DOI: 10.3389/fgene.2020.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial complex I deficiency is associated with a diverse range of clinical phenotypes and can arise due to either mitochondrial DNA (mtDNA) or nuclear gene defects. We investigated two adult patients who exhibited non-syndromic neurological features and evidence of isolated mitochondrial complex I deficiency in skeletal muscle biopsies. The first presented with indolent myopathy, progressive since age 17, while the second developed deafness around age 20 and other relapsing-remitting neurological symptoms since. A novel, likely de novo, frameshift variant in MT-ND6 (m.14512_14513del) and a novel maternally-inherited transversion mutation in MT-ND1 were identified, respectively. Skewed tissue segregation of mutant heteroplasmy level was observed; the mutant heteroplasmy levels of both variants were greater than 70% in muscle homogenate, however, in blood the MT-ND6 variant was undetectable while the mutant heteroplasmy level of the MT-ND1 variant was low (12%). Assessment of complex I assembly by Blue-Native PAGE demonstrated a decrease in fully assembled complex I in the muscle of both cases. SDS-PAGE and immunoblotting showed decreased levels of mtDNA-encoded ND1 and several nuclear encoded complex I subunits in both cases, consistent with functional pathogenic consequences of the identified variants. Pathogenicity of the m.14512_14513del was further corroborated by single-fiber segregation studies.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Directorate of Neurosciences, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniela Loher
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom
| | - Steven A. Hardy
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom
| | - Andrew M. Schaefer
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Directorate of Neurosciences, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sandip Shaunak
- Department of Neurology, Royal Preston Hospital, Preston, United Kingdom
| | - Mark E. Roberts
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, United Kingdom
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
105
|
Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, Alston CL, Oláhová M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 2020; 43:36-50. [PMID: 31021000 PMCID: PMC7041634 DOI: 10.1002/jimd.12104] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial disease is hugely diverse with respect to associated clinical presentations and underlying genetic causes, with pathogenic variants in over 300 disease genes currently described. Approximately half of these have been discovered in the last decade due to the increasingly widespread application of next generation sequencing technologies, in particular unbiased, whole exome-and latterly, whole genome sequencing. These technologies allow more genetic data to be collected from patients with mitochondrial disorders, continually improving the diagnostic success rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of unknown significance have become a major challenge with next generation sequencing strategies and these require significant functional validation to confirm pathogenicity. This interface between diagnostics and research is critical in continuing to expand the list of known pathogenic variants and concomitantly enhance our knowledge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other "omics" techniques such as transcriptomics and proteomics will generate even more data and allow further interrogation and validation of genetic causes, including those outside of coding regions. This will improve diagnostic yields still further and emphasizes the integral role that functional assessment of variant causality plays in this process-the overarching focus of this review.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Jack J. Collier
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ruth I. C. Glasgow
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Fiona M. Robertson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
106
|
Frazier AE, Vincent AE, Turnbull DM, Thorburn DR, Taylor RW. Assessment of mitochondrial respiratory chain enzymes in cells and tissues. Methods Cell Biol 2019; 155:121-156. [PMID: 32183956 DOI: 10.1016/bs.mcb.2019.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Measurement of the individual enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) forms a key part of diagnostic investigations in patients with suspected mitochondrial disease, and can provide crucial information on mitochondrial OXPHOS function in a variety of cells and tissues that are applicable to many research investigations. In this chapter, we present methods for analysis of mitochondrial respiratory chain enzymes in cells and tissues based on assays performed in two geographically separate diagnostic referral centers, as part of clinical diagnostic investigations. Techniques for sample preparation from cells and tissues, and spectrophotometric assays for measurement of the activities of OXPHOS complexes I-V, the combined activity of complexes II+III, and the mitochondrial matrix enzyme citrate synthase, are provided. The activities of mitochondrial respiratory chain enzymes are often expressed relative to citrate synthase activity, since these ratios may be more robust in accounting for variability that may arise due to tissue quality, handling and storage, cell growth conditions, or any mitochondrial proliferation that may be present in tissues from patients with mitochondrial disease. Considerations for adaption of these techniques to other cells, tissues, and organisms are presented, as well as comparisons to alternate methods for analysis of respiratory chain function. In this context, a quantitative immunofluorescence protocol is also provided that is suitable for measurement of the amount of multiple respiratory chain complexes in small diagnostic tissue samples. The analysis and interpretation of OXPHOS enzyme activities are then placed in the context of mitochondrial disease tissue pathology and diagnosis.
Collapse
Affiliation(s)
- Ann E Frazier
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
107
|
George J, Tuomela T, Kemppainen E, Nurminen A, Braun S, Yalgin C, Jacobs HT. Mitochondrial dysfunction generates a growth-restraining signal linked to pyruvate in Drosophila larvae. Fly (Austin) 2019; 13:12-28. [PMID: 31526131 PMCID: PMC6988875 DOI: 10.1080/19336934.2019.1662266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila bang-sensitive mutant tko25t, manifesting a global deficiency in oxidative phosphorylation due to a mitochondrial protein synthesis defect, exhibits a pronounced delay in larval development. We previously identified a number of metabolic abnormalities in tko25t larvae, including elevated pyruvate and lactate, and found the larval gut to be a crucial tissue for the regulation of larval growth in the mutant. Here we established that expression of wild-type tko in any of several other tissues of tko25t also partially alleviates developmental delay. The effects appeared to be additive, whilst knockdown of tko in a variety of specific tissues phenocopied tko25t, producing developmental delay and bang-sensitivity. These findings imply the existence of a systemic signal regulating growth in response to mitochondrial dysfunction. Drugs and RNAi-targeted on pyruvate metabolism interacted with tko25t in ways that implicated pyruvate or one of its metabolic derivatives in playing a central role in generating such a signal. RNA-seq revealed that dietary pyruvate-induced changes in transcript representation were mostly non-coherent with those produced by tko25t or high-sugar, consistent with the idea that growth regulation operates primarily at the translational and/or metabolic level.
Collapse
Affiliation(s)
- Jack George
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Esko Kemppainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuel Braun
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Cagri Yalgin
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
108
|
Boggan RM, Lim A, Taylor RW, McFarland R, Pickett SJ. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol Genet Metab 2019; 128:19-29. [PMID: 31648942 DOI: 10.1016/j.ymgme.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases, caused by mutations in either the nuclear or mitochondrial genomes (mtDNA), are the most common form of inherited neurometabolic disorders. They are remarkably heterogeneous, both in their clinical presentation and genetic etiology, presenting challenges for diagnosis, clinical management and elucidation of molecular mechanism. The multifaceted nature of these diseases, compounded by the unique characteristics of mitochondrial genetics, cement their space in the field of complex disease. In this review we examine the m.3243A>G variant, one of the most prevalent mitochondrial DNA mutations, using it as an exemplar to demonstrate the challenges presented by these complex disorders. Disease caused by m.3243A>G is one of the most phenotypically diverse of all mitochondrial diseases; we outline known causes of this heterogeneity including mtDNA heteroplasmy, mtDNA copy number and nuclear genetic factors. We consider the impact that this has in the clinic, discussing the personalized management of common manifestations attributed to this pathogenic mtDNA variant, including hearing impairment, diabetes mellitus, myopathy, cardiac disease, stroke-like episodes and gastrointestinal disturbances. Future research into this complex disorder must account for this heterogeneity, benefitting from the use of large patient cohorts to build upon current clinical expertise. Through multi-disciplinary collaboration, the complexities of this mitochondrial disease can be addressed with the variety of diagnostic, prognostic, and treatment approaches that are moulded to best fit the needs of each individual patient.
Collapse
Affiliation(s)
- Róisín M Boggan
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|