101
|
Ong HH, Wright AC, Wehrli FW. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res 2012; 27:2573-81. [PMID: 22807107 PMCID: PMC3488140 DOI: 10.1002/jbmr.1709] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/26/2012] [Accepted: 07/05/2012] [Indexed: 12/22/2022]
Abstract
Bone water (BW) plays a pivotal role in nutrient transport and conferring bone with its viscoelastic mechanical properties. BW is partitioned between the pore spaces of the Haversian and lacuno-canalicular system, and water predominantly bound to the matrix proteins (essentially collagen). The general model of BW is that the former predominantly experiences fast isotropic molecular reorientation, whereas water in the bone matrix undergoes slower anisotropic rotational diffusion. Here, we provide direct evidence for the correctness of this model and show that unambiguous quantification in situ of these two functionally and dynamically different BW fractions is possible. The approach chosen relies on nuclear magnetic resonance (NMR) of deuterium ((2) H) that unambiguously separates and quantifies the two fractions on the basis of their distinguishing microdynamic properties. Twenty-four specimens of the human tibial cortex from 6 donors (3 male, 3 female, ages 27-83 years) were cored and (2) H spectra recorded at 62 MHz (9.4 Tesla) on a Bruker Instruments DMX 400 spectrometer after exchange of native BW with (2) H(2) O. Spectra consisted of a doublet signal resulting from quadrupole interaction of water bound to collagen. Doublet splittings were found to depend on the orientation of the osteonal axis with respect to the magnetic field direction (8.2 and 4.3 kHz for parallel and perpendicular orientation, respectively). In contrast, the isotropically reorienting pore-resident water yielded a single resonance line superimposed on the doublet. Nulling of the singlet resonance allowed separation of the two fractions. The results indicate that in human cortical bone 60% to 80% of detectable BW is collagen-bound. Porosity determined as the difference between total BW and collagen bound water fraction was found to strongly parallel micro-computed tomography (µCT)-based measurements (R(2) = 0.91). Our method provides means for direct validation of emerging relaxation-based measurements of cortical bone porosity by proton MRI.
Collapse
Affiliation(s)
- Henry H Ong
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
102
|
Nyman JS, Gorochow LE, Adam Horch R, Uppuganti S, Zein-Sabatto A, Manhard MK, Does MD. Partial removal of pore and loosely bound water by low-energy drying decreases cortical bone toughness in young and old donors. J Mech Behav Biomed Mater 2012; 22:136-45. [PMID: 23631897 DOI: 10.1016/j.jmbbm.2012.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/20/2012] [Accepted: 08/18/2012] [Indexed: 01/05/2023]
Abstract
With an ability to quantify matrix-bound and pore water in bone, (1)H nuclear magnetic resonance (NMR) relaxometry can potentially be implemented in clinical imaging to assess the fracture resistance of bone in a way that is independent of current X-ray techniques, which assess bone mineral density as a correlate of bone strength. Working towards that goal, we quantified the effect of partial dehydration in air on the mechanical and NMR properties of human cortical bone in order to understand whether NMR is sensitive to water-bone interactions at low energy and whether such interactions contribute to the age-related difference in the toughness of bone. Cadaveric femurs were collected from male and female donors falling into two age groups: 21-60 years of age (young) and 74-99 years of age (old). After extracting two samples from the medial cortex of the mid-shaft, tensile tests were conducted on Wet specimens and paired, Partially Dry (PtlD) specimens (prepared by low-energy drying in air to remove ∼3% of original mass before testing). Prior analysis by micro-computed tomography found that there were no differences in intra-cortical porosity between the Wet and PtlD specimens nor did an age-related difference in porosity exist. PtlD specimens from young and old donors had significantly less toughness than Wet specimens, primarily due to a dehydration-related decrease in post-yield strain. The low-energy drying protocol did not affect the modulus and yield strength of bone. Subsequent dehydration of the PtlD specimens in a vacuum oven at 62°C and then 103°C, with quantification of water loss at each temperature, revealed an age-related shift from more loosely bound water to more tightly bound water. NMR detected a change in both bound and pore water pools with low-energy air-drying, and both pools were effectively removed when bone was oven-dried at 62°C, irrespective of donor age. Although not strictly significant due to variability in the drying and testing conditions, the absolute difference in toughness between Wet and PtlD tended to be greater for the younger donors that had higher bone toughness and more bound water for the wet condition than did the older donors. With sensitivity to low-energy bone-water interactions, NMR, which underpins magnetic resonance imaging, has potential to assess fracture resistance of bone as it relates to bone toughness.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 27212, USA.
| | | | | | | | | | | | | |
Collapse
|
103
|
Du J, Hermida JC, Diaz E, Corbeil J, Znamirowski R, D'Lima DD, Bydder GM. Assessment of cortical bone with clinical and ultrashort echo time sequences. Magn Reson Med 2012; 70:697-704. [PMID: 23001864 DOI: 10.1002/mrm.24497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022]
Abstract
We describe the use of ultrashort echo time (UTE) sequences and fast spin echo sequences to assess cortical bone using a clinical 3T scanner. Regular two- and three-dimensional UTE sequences were used to image both bound and free water in cortical bone. Adiabatic inversion recovery prepared UTE sequences were used to image water bound to the organic matrix. Two-dimensional fast spin echo sequences were used to image free water. Regular UTE sequences were used together with bicomponent analysis to measure T*2s and relative fractions of bound and free water components in cortical bone. Inversion recovery prepared UTE sequences were used to measure the T*2 of bound water. Saturation recovery UTE sequences were used to measure the T1 of bone water. Eight cadaveric human cortical bone samples and a lower leg specimen were studied. Preliminary results show two distinct components in UTE detected signal decay, a single component in inversion recovery prepared UTE detected signal decay, and a single component in saturation recovery UTE detected signal recovery. Regular UTE sequences appear to depict both bound and free water in cortical bone. Inversion recovery prepared UTE sequences appear to depict water bound to the organic matrix. Two-dimensional fast spin echo sequences appear to depict bone structure corresponding to free water in large pores.
Collapse
Affiliation(s)
- Jiang Du
- Department of Radiology, University of California, San Diego, California, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2012; 21:275-89. [PMID: 22129641 DOI: 10.1097/rmr.0b013e31823ccebc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Magnetic resonance imaging (MRI) examination of musculoskeletal tissues is being performed routinely for diagnoses of injury and diseases. Although conventional MRI using spin echo sequences has been effective, a number of important musculoskeletal soft tissues remain "magnetic resonance-invisible" because of their intrinsically short T2 values resulting in a rapid signal decay. This makes visualization and quantitative characterization difficult. With the advent and refinement of ultrashort time-to-echo (UTE) MRI techniques, it is now possible to directly visualize and quantitatively characterize these tissues. This review explores the anatomy, conventional MRI, and UTE MRI of articular cartilage, meniscus of the knee, and intervertebral disks and provides a survey of magnetic resonance studies used to better understand tissue structure, composition, and function, as well as subtle changes in diseases.
Collapse
|
105
|
Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 2012; 27:848-57. [PMID: 22190232 PMCID: PMC3463505 DOI: 10.1002/jbmr.1535] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we describe the use of ultrashort echo time (UTE) magnetic resonance imaging (MRI) to evaluate short and long T2* components as well as the water content of cortical bone. Fourteen human cadaveric distal femur and proximal tibia were sectioned to produce 44 rectangular slabs of cortical bone for quantitative UTE MR imaging, microcomputed tomography (µCT), and biomechanical testing. A two-dimensional (2D) UTE pulse sequence with a minimal nominal TE of 8 µseconds was used together with bicomponent analysis to quantify the bound and free water in cortical bone using a clinical 3T scanner. Total water concentration was measured using a 3D UTE sequence together with a reference water phantom. UTE MR measures of water content (total, free, and bound), T2* (short and long), and short and long T2* fractions were compared with porosity assessed with µCT, as well as elastic (modulus, yield stress, and strain) and failure (ultimate stress, failure strain, and energy) properties, using Pearson correlation. Porosity significantly correlated positively with total (R(2) = 0.23; p < 0.01) and free (R(2) = 0.31; p < 0.001) water content as well as long T2* fraction (R(2) = 0.25; p < 0.001), and negatively with short T2* fraction and short T2* (R(2) = 0.24; p < 0.01). Failure strain significantly correlated positively with short T2* (R(2) = 0.29; p < 0.001), ultimate stress significantly correlated negatively with total (R(2) = 0.25; p < 0.001) and bound (R(2) = 0.22; p < 0.01) water content, and failure energy significantly correlated positively with both short (R(2) = 0 30; p < 0.001) and long (R(2) = 0.17; p < 0.01) T2* values. These results suggest that UTE MR measures are sensitive to the structure and failure properties of human cortical bone, and may provide a novel way of evaluating cortical bone quality.
Collapse
Affiliation(s)
- Won C Bae
- Department of Radiology, University of California, San Diego, San Diego, CA 92103-8226, USA
| | | | | | | | | | | |
Collapse
|
106
|
Biswas R, Bae W, Diaz E, Masuda K, Chung CB, Bydder GM, Du J. Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 2012; 50:749-55. [PMID: 22178540 PMCID: PMC3463503 DOI: 10.1016/j.bone.2011.11.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/21/2022]
Abstract
Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8 μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air drying to evaluate free water loss, followed by oven drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R=0.91; P<0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air drying, and a significant correlation (R=0.69; P<0.01) between UTE bound water loss and gravimetric bone weight loss during oven drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix.
Collapse
Affiliation(s)
- Reni Biswas
- Department of Radiology, University of California, San Diego
| | - Won Bae
- Department of Radiology, University of California, San Diego
| | - Eric Diaz
- Department of Radiology, University of California, San Diego
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego
| | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego
| | - Jiang Du
- Department of Radiology, University of California, San Diego
| |
Collapse
|
107
|
Reiter DA, Irrechukwu O, Lin PC, Moghadam S, Von Thaer S, Pleshko N, Spencer RG. Improved MR-based characterization of engineered cartilage using multiexponential T2 relaxation and multivariate analysis. NMR IN BIOMEDICINE 2012; 25:476-88. [PMID: 22287335 PMCID: PMC3366280 DOI: 10.1002/nbm.1804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 08/30/2011] [Accepted: 09/23/2011] [Indexed: 05/27/2023]
Abstract
Noninvasive monitoring of tissue quality would be of substantial use in the development of cartilage tissue engineering strategies. Conventional MR parameters provide noninvasive measures of biophysical tissue properties and are sensitive to changes in matrix development, but do not clearly distinguish between groups with different levels of matrix development. Furthermore, MR outcomes are nonspecific, with particular changes in matrix components resulting in changes in multiple MR parameters. To address these limitations, we present two new approaches for the evaluation of tissue engineered constructs using MR, and apply them to immature and mature engineered cartilage after 1 and 5 weeks of development, respectively. First, we applied multiexponential T(2) analysis for the quantification of matrix macromolecule-associated water compartments. Second, we applied multivariate support vector machine analysis using multiple MR parameters to improve detection of degree of matrix development. Monoexponential T(2) values decreased with maturation, but without further specificity. Much more specific information was provided by multiexponential analysis. The T(2) distribution in both immature and mature constructs was qualitatively comparable to that of native cartilage. The analysis showed that proteoglycan-bound water increased significantly during maturation, from a fraction of 0.05 ± 0.01 to 0.07 ± 0.01. Classification of samples based on individual MR parameters, T(1), T(2), k(m) or apparent diffusion coefficient, showed that the best classifiers were T(1) and k(m), with classification accuracies of 85% and 84%, respectively. Support vector machine analysis improved the accuracy to 98% using the combination (k(m), apparent diffusion coefficient). These approaches were validated using biochemical and Fourier transform infrared imaging spectroscopic analyses, which showed increased proteoglycan and collagen with maturation. In summary, multiexponential T(2) and multivariate support vector machine analyses provide improved sensitivity to changes in matrix development and specificity to matrix composition in tissue engineered cartilage. These approaches show substantial potential for the evaluation of engineered cartilage tissue and for extension to other tissue engineering constructs.
Collapse
Affiliation(s)
- David A Reiter
- Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21225, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Horch RA, Gochberg DF, Nyman JS, Does MD. Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med 2012; 68:1774-84. [PMID: 22294340 DOI: 10.1002/mrm.24186] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/19/2011] [Accepted: 01/05/2012] [Indexed: 01/17/2023]
Abstract
Advances in modern magnetic resonance imaging (MRI) pulse sequences have enabled clinically practical cortical bone imaging. Human cortical bone is known to contain a distribution of T(1) and T(2) components attributed to bound and pore water, although clinical imaging approaches have yet to discriminate bound from pore water based on their relaxation properties. Herein, two clinically compatible MRI strategies are proposed for selectively imaging either bound or pore water by utilizing differences in their T(1)s and T(2)s. The strategies are validated in a population of ex vivo human cortical bones, and estimates obtained for bound and pore water are compared to bone mechanical properties. Results show that the two MRI strategies provide good estimates of bound and pore water that correlate to bone mechanical properties. As such, the strategies for bound and pore water discrimination shown herein should provide diagnostically useful tools for assessing bone fracture risk, once applied to clinical MRI.
Collapse
Affiliation(s)
- R Adam Horch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
109
|
Bydder GM. Review. The Agfa Mayneord lecture: MRI of short and ultrashort T₂ and T₂* components of tissues, fluids and materials using clinical systems. Br J Radiol 2011; 84:1067-82. [PMID: 22101579 PMCID: PMC3473831 DOI: 10.1259/bjr/74368403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/29/2011] [Accepted: 06/30/2011] [Indexed: 11/05/2022] Open
Abstract
A variety of techniques are now available to directly or indirectly detect signal from tissues, fluids and materials that have short, ultrashort or supershort T₂ or T₂* components. There are also methods of developing image contrast between tissues and fluids in the short T₂ or T₂* range that can provide visualisation of anatomy, which has not been previously seen with MRI. Magnetisation transfer methods can now be applied to previously invisible tissues, providing indirect access to supershort T₂ components. Particular methods have been developed to target susceptibility effects and quantify them after correcting for anatomical distortion. Specific methods have also been developed to image the effects of magnetic iron oxide particles with positive contrast. Major advances have been made in techniques designed to correct for loss of signal and gross image distortion near metal. These methods are likely to substantially increase the range of application for MRI.
Collapse
Affiliation(s)
- G M Bydder
- Department of Radiology, University of California San Diego, San Diego, CA 92103-8226, USA.
| |
Collapse
|
110
|
Krug R, Larson PEZ, Wang C, Burghardt AJ, Kelley DAC, Link TM, Zhang X, Vigneron DB, Majumdar S. Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging 2011; 34:691-5. [PMID: 21769960 DOI: 10.1002/jmri.22648] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 04/11/2011] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To implement and examine the feasibility of a three-dimensional (3D) ultrashort TE (UTE) sequence on a 7 Tesla (T) clinical MR scanner in comparison with 3T MRI at high isotropic resolution. MATERIALS AND METHODS Using an in-house built saddle coil at both field strengths we have imaged mid-diaphysial sections of five fresh cadaveric specimens of the distal tibia. An additional in vivo scan was performed at 7 Tesla using a quadrature knee coil. RESULTS Using the same type of saddle coil at both field strengths, a significant increase in SNR at 7T compared with 3T (factor 1.7) was found. Significantly shorter T2* values were found at the higher field strength (T2* = 552.2 ± 126 μs at 7T versus T2* = 1163 ± 391 μs at 3T). CONCLUSION UHF MRI at 7T has great potential for imaging tissues with short T2.
Collapse
Affiliation(s)
- Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Horch RA, Gore JC, Does MD. Origins of the ultrashort-T2 1H NMR signals in myelinated nerve: a direct measure of myelin content? Magn Reson Med 2011; 66:24-31. [PMID: 21574183 PMCID: PMC3120910 DOI: 10.1002/mrm.22980] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 11/09/2022]
Abstract
Recently developed MRI techniques have enabled clinical imaging of short-lived (1)H NMR signals with T(2) < 1 ms. Using these techniques, novel signal enhancement has been observed in myelinated tissues, although the source of this enhancement has not been identified. Herein, we report studies of the nature and origins of ultrashort T(2) (uT(2)) signals (50 μs < T(2) < 1 ms) from amphibian and mammalian myelinated nerves. NMR measurements and comparisons with myelin phantoms and expected myelin components indicate that these uT(2) signals arise predominantly from methylene (1)H on/in the myelin membranes, which suggests that direct measurement of uT(2) signals can be used as a new means for quantitative myelin mapping.
Collapse
Affiliation(s)
- R. Adam Horch
- Dept. of Biomedical Engineering, Vanderbilt University
- Institute of Imaging Science, Vanderbilt University
| | - John C. Gore
- Dept. of Biomedical Engineering, Vanderbilt University
- Institute of Imaging Science, Vanderbilt University
- Radiology and Radiological Sciences, Vanderbilt University
- Molecular Physiology and Biophysics, Vanderbilt University
| | - Mark D. Does
- Dept. of Biomedical Engineering, Vanderbilt University
- Institute of Imaging Science, Vanderbilt University
- Radiology and Radiological Sciences, Vanderbilt University
- Electrical Engineering, Vanderbilt University
| |
Collapse
|
112
|
Horch RA, Wilkens K, Gochberg DF, Does MD. RF coil considerations for short-T2 MRI. Magn Reson Med 2011; 64:1652-7. [PMID: 20665825 DOI: 10.1002/mrm.22558] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With continuing hardware and pulse sequence advancements, modern MRI is gaining sensitivity to signals from short-T(2) (1)H species under practical experimental conditions. However, conventional MRI coils are typically not designed for this type of application, as they often contain proton-rich construction materials that may contribute confounding (1)H background signal during short-T(2) measurements. An example of this is shown herein. Separately, a loop-gap style coil was used to compare different coil construction materials and configurations with respect to observed (1)H background signal sizes in a small animal imaging system. Background signal sources were spatially identified and quantified in a number of different coil configurations. It was found that the type and placement of structural coil materials around the loop-gap resonator, as well as the coil's shielding configuration, are critical determinants of the coil's background signal size. Although this study employed a loop-gap resonator design, these findings are directly relevant to standard volume coils commonly used for MRI.
Collapse
Affiliation(s)
- R Adam Horch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232-2310, USA
| | | | | | | |
Collapse
|
113
|
Reiter DA, Roque RA, Lin PC, Irrechukwu O, Doty S, Longo DL, Pleshko N, Spencer RG. Mapping proteoglycan-bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis. Magn Reson Med 2011; 65:377-84. [PMID: 21264931 PMCID: PMC3350808 DOI: 10.1002/mrm.22673] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 08/19/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
Abstract
Association of MR parameters with cartilage matrix components remains an area of ongoing investigation. Multiexponential analysis of nonlocalized transverse relaxation data has previously been used to quantify water compartments associated with matrix macromolecules in cartilage. We extend this to mapping the proteoglycan (PG)-bound water fraction in cartilage, using mature and young bovine nasal cartilage model systems, toward the goal of matrix component-specific imaging. PG-bound water fraction from mature and young bovine nasal cartilage was 0.31 ± 0.04 and 0.22 ± 0.06, respectively, in agreement with biochemically derived PG content and PG-to-water weight ratios. Fourier transform infrared imaging spectroscopic-derived PG maps normalized by water content (IR-PG(ww) ) showed spatial correspondence with PG-bound water fraction maps. Extensive simulation analysis demonstrated that the accuracy and precision of our determination of PG-bound water fraction was within 2%, which is well-within the observed tissue differences. Our results demonstrate the feasibility of performing imaging-based multiexponential analysis of transverse relaxation data to map PG in cartilage.
Collapse
Affiliation(s)
- David A Reiter
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Horch RA, Gochberg DF, Nyman JS, Does MD. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray. PLoS One 2011; 6:e16359. [PMID: 21283693 PMCID: PMC3025007 DOI: 10.1371/journal.pone.0016359] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, 1H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that 1H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These 1H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.
Collapse
Affiliation(s)
- R. Adam Horch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Daniel F. Gochberg
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jeffry S. Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JSN); (MDD)
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JSN); (MDD)
| |
Collapse
|
115
|
Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:304-11. [PMID: 20980179 DOI: 10.1016/j.jmr.2010.09.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 09/15/2010] [Accepted: 09/19/2010] [Indexed: 05/05/2023]
Abstract
We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T(2) water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T(2) measurement. Saturation recovery UTE acquisitions were used for T(1) measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm(3) in a scan time of 5 min. A mean T(1) of 223 ± 11 ms and mean T(2) of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences.
Collapse
Affiliation(s)
- Jiang Du
- Department of Radiology, University of California, San Diego, United States.
| | | | | | | | | | | |
Collapse
|