101
|
Abstract
In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization.
Collapse
Affiliation(s)
- Jonathan D Power
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Anatomy & Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Anatomy & Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Psychology, Washington University in Saint Louis, One Brookings Drive, St. Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
102
|
D'Souza DV, Jonckers E, Bruns A, Künnecke B, von Kienlin M, Van der Linden A, Mueggler T, Verhoye M. Preserved modular network organization in the sedated rat brain. PLoS One 2014; 9:e106156. [PMID: 25181007 PMCID: PMC4152194 DOI: 10.1371/journal.pone.0106156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/30/2014] [Indexed: 01/06/2023] Open
Abstract
Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.
Collapse
Affiliation(s)
- Dany V. D'Souza
- F. Hoffmann-La Roche Pharmaceuticals Ltd, Neuroscience Discovery, Basel, Switzerland
| | | | - Andreas Bruns
- F. Hoffmann-La Roche Pharmaceuticals Ltd, Neuroscience Discovery, Basel, Switzerland
| | - Basil Künnecke
- F. Hoffmann-La Roche Pharmaceuticals Ltd, Neuroscience Discovery, Basel, Switzerland
| | - Markus von Kienlin
- F. Hoffmann-La Roche Pharmaceuticals Ltd, Neuroscience Discovery, Basel, Switzerland
| | | | - Thomas Mueggler
- F. Hoffmann-La Roche Pharmaceuticals Ltd, Neuroscience Discovery, Basel, Switzerland
| | | |
Collapse
|