101
|
Bone sarcomas: from biology to targeted therapies. Sarcoma 2012; 2012:301975. [PMID: 23226965 PMCID: PMC3514839 DOI: 10.1155/2012/301975] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/10/2012] [Indexed: 12/20/2022] Open
Abstract
Primary malignant bone tumours, osteosarcomas, and Ewing sarcomas are rare diseases which occur mainly in adolescents and young adults. With the current therapies, some patients remain very difficult to treat, such as tumour with poor histological response to preoperative CT (or large initial tumour volume for Ewing sarcomas not operated), patients with multiple metastases at or those who relapsed. In order to develop new therapies against these rare tumours, we need to unveil the key driving factors and molecular abnormalities behind the malignant characteristics and to broaden our understanding of the phenomena sustaining the metastatic phenotype and treatment resistance in these tumours. In this paper, starting with the biology of these tumours, we will discuss potential therapeutic targets aimed at increasing local tumour control, limiting metastatic spread, and finally improving patient survival.
Collapse
|
102
|
β-Catenin Does Not Confer Tumorigenicity When Introduced into Partially Transformed Human Mesenchymal Stem Cells. Sarcoma 2012; 2012:164803. [PMID: 23125530 PMCID: PMC3483784 DOI: 10.1155/2012/164803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/23/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022] Open
Abstract
Although osteosarcoma is the most common primary malignant bone tumor in children and adolescents, its cell of origin and the genetic alterations are unclear. Previous studies have shown that serially introducing hTERT, SV40 large TAg, and H-Ras transforms human mesenchymal stem cells into two distinct sarcomas cell populations, but they do not form osteoid. In this study, β-catenin was introduced into mesenchymal stem cells already containing hTERT and SV40 large TAg to analyze if this resulted in a model which more closely recapitulated osteosarcoma. Results. Regardless of the level of induced β-catenin expression in the stable transfectants, there were no marked differences induced in their phenotype or invasion and migration capacity. Perhaps more importantly, none of them formed tumors when injected into immunocompromised mice. Moreover, the resulting transformed cells could be induced to osteogenic and chondrogenic differentiation but not to adipogenic differentiation. Conclusions. β-catenin, although fostering osteogenic differentiation, does not induce the malignant features and tumorigenicity conveyed by oncogenic H-RAS when introduced into partly transformed mesenchymal stem cells. This may have implications for the role of β-catenin in osteosarcoma pathogenesis. It also may suggest that adipogenesis is an earlier branch point than osteogenesis and chondrogenesis in normal mesenchymal differentiation.
Collapse
|
103
|
Dieudonné FX, Marion A, Marie PJ, Modrowski D. Targeted inhibition of T-cell factor activity promotes syndecan-2 expression and sensitization to doxorubicin in osteosarcoma cells and bone tumors in mice. J Bone Miner Res 2012; 27:2118-29. [PMID: 22550000 DOI: 10.1002/jbmr.1650] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alterations of Wnt signaling appear to be involved in the pathogenesis of osteosarcoma, presenting mutations of adenomatous polyposis coli (APC) and epigenetic downregulation of Wnt inhibitory factor 1. However, the precise role of Wnt effectors in the bone cancer progression remains unclear. We previously showed that Wnt/β-catenin/T-cell factor (TCF) activation are responsible for the repression of syndecan-2, a key modulator of apoptosis and chemosensitivity in osteosarcoma cells, suggesting a role of Wnt signaling in chemoresistance. In this study, we investigated the functional relationship between syndecan-2, Wnt/β-catenin/TCF signaling and chemosensitivity in these cells. To this goal, we selected resistant osteosarcoma cells from sensitive human cell lines using repeated exposures to doxorubicin. In doxorubicin-responsive but not in doxorubicin-resistant-derived cells syndecan-2 expression was upregulated by doxorubicin treatment. Moreover, syndecan-2 overexpression restored the sensitivity to doxorubicin in resistant-derived cells. We found that syndecan-2 induction by doxorubicin is forkhead box protein O3A (Foxo3a)-dependent. Foxo3a overexpression resulted in increased syndecan-2 expression in sensitive and resistant-derived cells. Doxorubicin modulated Foxo3a binding on syndecan-2 gene promoter and induced Foxo-dependent inhibition of Wnt/TCF activity. Conversely, β-catenin/TCF activation impaired syndecan-2 induction by doxorubicin, indicating that Wnt signaling is competing with the action of the cytotoxic drug. However, β-catenin was also found to be required for Foxo3a activity. Consistently, Dickkopf 1 (DKK1) and secreted frizzled-related protein 1 (sFRP-1) altered doxorubicin action in sensitive cells, whereas inhibition of TCF activity strongly decreased cell viability and increased sensitivity to doxorubicin in sensitive and resistant cells. TCF inhibition also increased the effect of doxorubicin treatment in an orthotopic bone tumor model in mice. Altogether, these data provide evidence that the repression of syndecan-2 by Wnt/β-catenin/TCF signaling contributes to the resistance of osteosarcoma cells to doxorubicin and suggest that TCF inhibition may represent a novel therapeutic strategy in osteosarcoma.
Collapse
|
104
|
The activities of Smad and Gli mediated signalling pathways in high-grade conventional osteosarcoma. Eur J Cancer 2012; 48:3429-38. [PMID: 22868198 DOI: 10.1016/j.ejca.2012.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/08/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
High-grade conventional osteosarcoma is a malignant tumour predominantly affecting adolescents and, despite multimodal intensive therapy, lethal for one third of the patients. Although there is currently detailed knowledge of normal skeletal development, this has not been integrated into research on the genesis of osteosarcoma. Recently we showed that the canonical Wnt pathway is not active in osteosarcoma and that its reactivation is disadvantageous to osteosarcoma cells. Since Wnt is regulating normal skeletogenesis together with other pathways, here we report on the activities of the bone morphogenic protein (BMP), the transforming growth factor beta (TGFβ) and the hedgehog (Hh) pathways in osteosarcoma. Human osteosarcoma samples (n=210), benign bone tumours of osteoblastic lineage called osteoblastoma (n=25) and osteosarcoma cell lines (n=19) were examined. For pathway activity luciferase transcriptional reporter assays and gene and protein expression analyses were performed. Immunohistochemical analysis of phosphorylated Smad1 and Smad2, the intracellular effectors of BMP and TGFβ, respectively, showed nuclear expression of both proteins in 70% of the osteosarcoma samples at levels comparable to osteoblastoma. Interestingly cases with lower expression showed significantly worse disease free survival. This may imply that drugs restoring impaired signalling pathways in osteosarcoma might change the tumour's aggressive clinical course, however targeted pathway modulation in vitro did not affect cell proliferation.
Collapse
|
105
|
Honoki K, Fujii H, Tohma Y, Tsujiuchi T, Kido A, Tsukamoto S, Mori T, Tanaka Y. Comparison of gene expression profiling in sarcomas and mesenchymal stem cells identifies tumorigenic pathways in chemically induced rat sarcoma model. ISRN ONCOLOGY 2012; 2012:909453. [PMID: 22852096 PMCID: PMC3407640 DOI: 10.5402/2012/909453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/20/2012] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) are believed to be the cell of origin for most sarcomas including osteosarcoma and malignant fibrous histiocytoma (MFH/UPS). To identify the signaling pathways involved in sarcoma pathogenesis, we compared gene expression profiles in rat osteosarcoma and MFH cells with those in syngeneic rat MSCs. Analysis of genes that characterize MSCs such as CD44, CD105, CD73, and CD90 showed higher expression in MSCs compared to sarcomas. Pathways involved in focal and cell adhesion, cytokine-cytokine receptors, extracellular matrix receptors, chemokines, and Wnt signaling were down-regulated in both sarcomas. Meanwhile, DNA replication, cell cycle, mismatch repair, Hedgehog signaling, and metabolic pathways were upregulated in both sarcomas. Downregulation of p21Cip1 and higher expression of CDK4-cyclinD1 and CDK2-cyclinE could accelerate cell cycle in sarcomas. The current study indicated that these rat sarcomas could be a good model for their human counterparts and will provide the further insights into the molecular pathways and mechanisms involved in sarcoma pathogenesis.
Collapse
Affiliation(s)
- Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Xu S, De Becker A, De Raeve H, Van Camp B, Vanderkerken K, Van Riet I. In vitro expanded bone marrow-derived murine (C57Bl/KaLwRij) mesenchymal stem cells can acquire CD34 expression and induce sarcoma formation in vivo. Biochem Biophys Res Commun 2012; 424:391-7. [PMID: 22771324 DOI: 10.1016/j.bbrc.2012.06.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have currently generated numerous interests in pre-clinical and clinical applications due to their multiple lineages differentiation potential and immunomodulary effects. However, accumulating evidence indicates that MSCs, especially murine MSCs (mMSCs), can undergo spontaneous transformation after long-term in vitro culturing, which might reduce the therapeutic application possibilities of these stem cells. In the present study, we observed that in vitro expanded bone marrow (BM) derived mMSCs from the C57Bl/KaLwRij mouse strain can lose their specific stem cells markers (CD90 and CD105) and acquire CD34 expression, accompanied with an altered morphology and an impaired tri-lineages differentiation capacity. Compared to normal mMSCs, these transformed mMSCs exhibited an increased proliferation rate, an enhanced colony formation and migration ability as well as a higher sensitivity to anti-tumor drugs. Transformed mMSCs were highly tumorigenic in vivo, resulting in aggressive sarcoma formation when transplanted in non-immunocompromised mice. Furthermore, we found that Notch signaling downstream genes (hey1, hey2 and heyL) were significantly upregulated in transformed mMSCs, while Hedgehog signaling downstream genes Gli1 and Ptch1 and the Wnt signaling downstream gene beta-catenin were all decreased. Taken together, we observed that murine in vitro expanded BM-MSCs can transform into CD34 expressing cells that induce sarcoma formation in vivo. We assume that dysregulation of the Notch(+)/Hh(-)/Wnt(-) signaling pathway is associated with the malignant phenotype of the transformed mMSCs.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | | | | | | | | | | |
Collapse
|
107
|
Wittenburg LA, Ptitsyn AA, Thamm DH. A systems biology approach to identify molecular pathways altered by HDAC inhibition in osteosarcoma. J Cell Biochem 2012; 113:773-83. [PMID: 21976144 DOI: 10.1002/jcb.23403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary tumor in humans and dogs affecting the skeleton, and spontaneously occurring OS in dogs serves as an extremely useful model. Unacceptable toxicities using current treatment protocols prevent further dose-intensification from being a viable option to improve patient survival and thus, novel treatment strategies must be developed. Histone deacetylase inhibitors (HDACi) have recently emerged as a promising class of therapeutics demonstrating an ability to enhance the anti-tumor activity of traditional chemotherapeutics. To date, gene expression analysis of OS cell lines treated with HDACi has not been reported, and evaluation of the resultant gene expression changes may provide insight into the mechanisms that lead to success of HDACi. Canine OS cells, treated with a clinically relevant concentration of the HDACi valproic acid (VPA), were used for expression analysis on the Affymetrix canine v2.0 genechip. Differentially expressed genes were grouped into pathways based upon functional annotation; pathway analysis was performed with MetaCore and Ingenuity Pathways Analysis software. Validation of microarray results was performed by a combination of qRT-PCR and functional/biochemical assays revealing oxidative phosphorylation, cytoskeleton remodeling, cell cycle, and ubiquitin-proteasome among those pathways most affected by HDACi. The mitomycin C-bioactivating enzyme NQ01 also demonstrated upregulation following VPA treatment, leading to synergistic reductions in cell viability. These results provide a better understanding of the mechanisms by which HDACi exert their effect in OS, and have the potential to identify biomarkers that may serve as novel targets and/or predictors of response to HDACi-containing combination therapies in OS.
Collapse
Affiliation(s)
- Luke A Wittenburg
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University Animal Cancer Center, 300 W. Drake Rd., Fort Collins, Colorado 80523-1620, USA.
| | | | | |
Collapse
|
108
|
Immunohistochemical investigation of cell cycle and apoptosis regulators (survivin, β-catenin, p53, caspase 3) in canine appendicular osteosarcoma. BMC Vet Res 2012; 8:78. [PMID: 22686277 PMCID: PMC3514374 DOI: 10.1186/1746-6148-8-78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 05/22/2012] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OSA) represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53) involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI) and overall survival (OS). Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells) was significantly associated with the development of metastasis (P = 0.014); moderate/high nuclear p53 expression (≥10% positive cells) was significantly associated with moderate/high histological grade (P = 0.017) and shorter OS (P = 0.049). Moderate/high nuclear survivin expression (≥15% positive cells) showed a tendency toward a longer OS (P = 0,088). Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies are needed to confirm these hypotheses.
Collapse
|
109
|
Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett 2012; 338:158-67. [PMID: 22659734 DOI: 10.1016/j.canlet.2012.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Upal Basu-Roy
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|
110
|
Assar R, Leisewitz AV, Garcia A, Inestrosa NC, Montecino MA, Sherman DJ. Reusing and composing models of cell fate regulation of human bone precursor cells. Biosystems 2012; 108:63-72. [PMID: 22309764 DOI: 10.1016/j.biosystems.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/28/2011] [Accepted: 01/19/2012] [Indexed: 01/22/2023]
Abstract
In order to treat osteoporosis and other bone mass disorders it is necessary to understand the regulatory processes that control the cell fate decisions responsible for going from bone precursor cells to bone tissue. Many processes interact to regulate cell division, differentiation and apoptosis. There are models for these basic processes, but not for their interactions. In this work we use the theory of switched systems, reuse and composition of validated models to describe the cell fate decisions leading to bone and fat formation. We describe the differentiation of osteo-adipo progenitor cells by composing its model with differentiation stimuli. We use the activation of the Wnt pathway as stimulus to osteoblast lineage, including regulation of cell division and apoptosis. This model is our first step to simulate physiological responses in silico to treatments for bone mass disorders.
Collapse
Affiliation(s)
- Rodrigo Assar
- INRIA Bordeaux Sud-Ouest, Project-team (EPC) MAGNOME common to INRIA, CNRS, Talence, France.
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
BACKGROUND To review the current progress in osteosarcoma stem cells, including isolation and identification, special cell surface markers, relationship between drug-resistance and metastasis, and the involving signal pathways. METHODS A review of the literature encompassing osteosarcoma stem cells was performed. RESULTS Although the cancer stem cells hypothesis was first proposed about 50 years ago, it is only in the last 10 years that advances in stem cell biology have provided increasing experimental evidence supporting this hypothesis. It has been postulated that within a tumor, a minor subpopulation of cells, termed cancer stem cells (CSC), drive the self-renewal and differentiation that account for the initiation, proliferation, metastasis, therapeutic resistance and recurrence of cancer. The CSC hypothesis opens up a novel conceptual approach for curing tumors that selectively kills CSCs, making it possible to eradicate cancer. Currently, osteosarcoma stem cells have been isolated and identified using various methods. Given the specific stem cell features, the study of CSCs has important implications in osteosarcoma prevention, detection and treatment, especially in curing early metastasis and preventing drug resistance. Focusing on their stem-like character, CSCs can be appropriately targeted by identifying links between the cells and their microenvironment. CONCLUSION All of this research is in its infancy - many problems still exist. Further studies are needed to search for specific targeted therapies for osteosarcoma, in-depth study of mechanism of drug resistance, identifying the role that CSCs play in tumor metastasis, and demonstrate the imbalance of specific pathways in osteosarcoma stem cells.
Collapse
Affiliation(s)
- Bin Liu
- Department of Orthopedic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China
| | | | | | | |
Collapse
|
112
|
Miclea RL, Siebelt M, Finos L, Goeman JJ, Löwik CWGM, Oostdijk W, Weinans H, Wit JM, Robanus-Maandag EC, Karperien M. Inhibition of Gsk3β in cartilage induces osteoarthritic features through activation of the canonical Wnt signaling pathway. Osteoarthritis Cartilage 2011; 19:1363-72. [PMID: 21911068 DOI: 10.1016/j.joca.2011.07.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 07/24/2011] [Accepted: 07/29/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In the past years, the canonical Wnt/β-catenin signaling pathway has emerged as a critical regulator of cartilage development and homeostasis. In this pathway, glycogen synthase kinase-3β (GSK3β) down-regulates transduction of the canonical Wnt signal by promoting degradation of β-catenin. In this study we wanted to further investigate the role of Gsk3β in cartilage maintenance. DESIGN Therefore, we have treated chondrocytes ex vivo and in vivo with GIN, a selective GSK3β inhibitor. RESULTS In E17.5 fetal mouse metatarsals, GIN treatment resulted in loss of expression of cartilage markers and decreased chondrocyte proliferation from day 1 onward. Late (3 days) effects of GIN included cartilage matrix degradation and increased apoptosis. Prolonged (7 days) GIN treatment resulted in resorption of the metatarsal. These changes were confirmed by microarray analysis showing a decrease in expression of typical chondrocyte markers and induction of expression of proteinases involved in cartilage matrix degradation. An intra-articular injection of GIN in rat knee joints induced nuclear accumulation of β-catenin in chondrocytes 72 h later. Three intra-articular GIN injections with a 2 days interval were associated with surface fibrillation, a decrease in glycosaminoglycan expression and chondrocyte hypocellularity 6 weeks later. CONCLUSIONS These results suggest that, by down-regulating β-catenin, Gsk3β preserves the chondrocytic phenotype, and is involved in maintenance of the cartilage extracellular matrix. Short term β-catenin up-regulation in cartilage secondary to Gsk3β inhibition may be sufficient to induce osteoarthritis-like features in vivo.
Collapse
Affiliation(s)
- R L Miclea
- Department of Pediatrics, Leiden University Medical Centre, Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Piskun CM, Muthuswamy A, Huelsmeyer MK, Thompson V, Stein TJ. Wnt/β-catenin expression does not correlate with serum alkaline phosphatase concentration in canine osteosarcoma patients. PLoS One 2011; 6:e26106. [PMID: 22022527 PMCID: PMC3191167 DOI: 10.1371/journal.pone.0026106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/19/2011] [Indexed: 01/30/2023] Open
Abstract
Osteosarcoma is an aggressive malignancy of the bone and an increase in serum alkaline phosphatase concentration has clinical prognostic value in both humans and canines. Increased serum alkaline phosphatase concentration at the time of diagnosis has been associated with poorer outcomes for osteosarcoma patients. The biology underlying this negative prognostic factor is poorly understood. Given that activation of the Wnt signaling pathway has been associated with alkaline phosphatase expression in osteoblasts, we hypothesized that the Wnt/β-catenin signaling pathway would be differentially activated in osteosarcoma tissue based on serum ALP status. Archived canine osteosarcoma samples and primary canine osteosarcoma cell lines were used to evaluate the status of Wnt/β-catenin signaling pathway activity through immunohistochemical staining, western immunoblot analyses, quantitative reverse-transcription polymerase chain reaction, and a Wnt-responsive promoter activity assay. We found no significant difference in β-catenin expression or activation between OSA populations differing in serum ALP concentration. Pathway activity was mildly increased in the primary OSA cell line generated from a patient with increased serum ALP compared to the normal serum ALP OSA cell line. Further investigation into the mechanisms underlying differences in serum ALP concentration is necessary to improve our understanding of the biological implications of this negative prognostic indicator.
Collapse
Affiliation(s)
- Caroline M. Piskun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anantharaman Muthuswamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael K. Huelsmeyer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Victoria Thompson
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Stein
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
114
|
Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH, Mansukhani A, Basilico C. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 2011; 31:2270-82. [PMID: 21927024 PMCID: PMC3243769 DOI: 10.1038/onc.2011.405] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumors are thought to be sustained by a reservoir of self-renewing cells, termed tumor initiating cells or cancer stem cells. Osteosarcomas are high-grade sarcomas derived from osteoblast progenitor cells and are the most common pediatric bone malignancy. In this report we show that the stem cell transcription factor Sox2 is highly expressed in human and murine osteosarcoma cell lines as well as in tumor samples. Osteosarcoma cells have increased ability to grow in suspension as osteospheres, that are greatly enriched in expression of Sox2 and the stem cell marker, Sca-1. Depletion of Sox2 by shRNAs in independent murine osteosarcoma-derived cells drastically reduces their transformed properties in vitro and their ability to form tumors. Sox2-depleted osteosarcoma cells can no longer form osteospheres, and differentiate into mature osteoblasts. Concomitantly, they exhibit decreased Sca-1 expression and upregulation of the Wnt signaling pathway. Thus, despite other mutations, these tumor cells maintain a proliferative requirement for Sox2. Our data indicate that Sox2 is required for osteosarcoma cell self-renewal, and that Sox2 antagonizes the pro-differentiation Wnt pathway, that can in turn reduce Sox2 expression. These studies define Sox2 as a survival factor and a novel biomarker of self-renewal in osteosarcomas, and support a tumor suppressive role for the Wnt pathway in tumors of mesenchymal origin. Our findings could provide the basis for novel therapeutic strategies based on inhibiting Sox2 or enhancing Wnt signaling for the treatment of osteosarcomas.
Collapse
Affiliation(s)
- U Basu-Roy
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH. The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 2011; 11:1223-32. [PMID: 21916576 DOI: 10.1586/era.11.94] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is the most common primary bone malignancy, with a high propensity for local invasion, early metastasis and relapse. While the molecular mechanisms behind osteosarcoma development and metastasis have not yet been fully elucidated, research has highlighted an important role for Wnt signaling. Several Wnt ligands, receptors and coreceptors are highly expressed in osteosarcoma cell lines, while Wnt inhibitors are downregulated. As a result, research has begun to identify mechanisms with which to inhibit Wnt signaling. The use of Wnt pathway inhibitors and the targeting of c-Met, a Wnt regulated proto-oncogene, may be two possible mechanisms for treatment of osteosarcoma. In addition, as the Wnt signaling pathway is a regulator of stem cells, reagents that function as Wnt inhibitors are currently under investigation as inhibitors of cancer stem cell proliferation. Research involving the Wnt signaling pathway and cancer stem cells holds promise for novel treatment options in the future.
Collapse
Affiliation(s)
- Peter McQueen
- Department of Orthopaedic Surgery, University of California at Irvine, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
116
|
Mohseny AB, Hogendoorn PCW. Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells 2011; 29:397-403. [PMID: 21425403 DOI: 10.1002/stem.596] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sarcomas are nonepithelial, nonhematopoietic malignant tumors that arise from the embryonic mesoderm. Despite their rarity, less than 10% of all cancers, sarcomas are accountable for relatively high morbidity and mortality especially in children and adolescents. Although there are some hereditary conditions predisposing sarcoma, such as the Li-Fraumeni and Retinoblastoma syndrome, the vast majority of these tumors are sporadic. Based on their histological morphology, sarcomas have been divided into a broad spectrum of subtypes recognized in the 2002 WHO classification of tumors. This wide lineage range suggests that sarcomas originate from either many committed different cell types or from a multipotent cell, subsequently driven into a certain lineage. Mesenchymal stem cells (MSCs) are able to differentiate into many cell types needed to create mature structures like vessels, muscle, and bone. These multipotent cells can be isolated from several adult human tissues and massively expanded in culture, making them both of use for research as well as potential beneficial therapeutical agents. For this reason MSCs are being extensively studied, however, concerns have raised about whether they are the putative originating cells of sarcoma and their questionable role in cancer progression. Recent accomplishments in the field have broadened our knowledge of MSCs in relation to sarcoma origin, sarcoma treatment and the safety of MSCs usage in therapeutic settings.
Collapse
Affiliation(s)
- Alexander B Mohseny
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
117
|
Zhang F, Chen A, Chen J, Yu T, Guo F. Influence of β-catenin small interfering RNA on human osteosarcoma cells. ACTA ACUST UNITED AC 2011; 31:353-358. [PMID: 21671177 DOI: 10.1007/s11596-011-0380-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 01/06/2023]
Abstract
This study examined the effect of small interfering RNA-mediated β-catenin knockdown on the survival, invasion and chemosensitivity of human osteosarcoma cells (U2-OS cells). The siRNA against β-catenin was constructed and transfected into U2-OS cells. The expression of β-catenin was detected by qRT-PCR and Western blotting. Cell growth and apoptosis was detected in the presence or absence of doxorubicin by MTT and flow cytometry, respectively. Cell invasion ability was measured by transwell assay. The results showed that the transfection of β-catenin siRNA resulted in decreased expression of β-catenin, suppression of invasion and motility of U2-OS cells, reduced chemosensitivity to doxorubicin in vitro, and little change in cell growth and apoptosis. Additionally, down-regulated MT1-MMP expression was found after transfection. It was concluded that knockdown of β-catenin gene may decrease the invasive ability of human osteosarcoma cells through down-regulated MT1-MMP expression, and the chemosensitivity of osteosarcoma cells against doxorubicin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian Yu
- Wuhan Aier Eye Hospital, Wuhan, 430060, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
118
|
Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, Schwartz Z. Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater 2011; 7:2740-50. [PMID: 21352958 DOI: 10.1016/j.actbio.2011.02.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/18/2011] [Accepted: 02/16/2011] [Indexed: 12/22/2022]
Abstract
The Wnt signaling pathway inhibitor Dickkopf-2 (Dkk2) regulates osteoblast differentiation on microstructured titanium (Ti) surfaces, suggesting involvement of Wnt signaling in this process. To test this, human osteoblast-like MG63 cells were cultured on tissue culture polystyrene or Ti (smooth PT (Ra=0.2 μm), sand-blasted and acid-etched SLA (Ra=3.22 μm), modSLA (hydrophilic SLA)). Expression of Wnt pathway receptors, activators and inhibitors was measured by qPCR. Non-canonical pathway ligands, receptors and intracellular signaling molecules, as well as bone morphogenetic proteins BMP2 and BMP4, were upregulated on SLA and modSLA, whereas canonical pathway members were downregulated. To confirm that non-canonical signaling was involved, cells were cultured daily with exogenous Wnt3a (canonical pathway) or Wnt5a (non-canonical pathway). Alternatively, cells were cultured with antibodies to Wnt3a or Wnt5a to validate that Wnt proteins secreted by the cells were mediating cell responses to the surface. Wnt5a, but not Wnt3a, increased MG63 cell differentiation and BMP2 and BMP4 proteins, suggesting Wnt5a promotes osteogenic differentiation through production of BMPs. Effects of exogenous and endogenous Wnt5a were synergistic with surface microstructure, suggesting the response also depends on cell maturation state. These results indicate a major role for the non-canonical, calcium-dependent Wnt pathway in differentiation of osteoblasts on microstructured titanium surfaces during implant osseointegration.
Collapse
Affiliation(s)
- Rene Olivares-Navarrete
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G, Grumolato L, Aaronson SA. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 2011; 19:601-12. [PMID: 21575861 PMCID: PMC3116447 DOI: 10.1016/j.ccr.2011.03.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/11/2010] [Accepted: 03/15/2011] [Indexed: 12/20/2022]
Abstract
Wnt canonical signaling is critical for normal development as well as homeostasis of several epithelial tissues, and constitutive activation of this pathway is commonly observed in carcinomas. We show here that 50% of human sarcomas (n = 45) and 65% of sarcoma cell lines (n = 23) of diverse histological subtypes exhibit upregulated autocrine canonical Wnt signaling. Furthermore, in Wnt autocrine cell lines, we identify alterations including overexpression or gene amplification of Wnt ligands and/or LRP5/6 coreceptors and epigenetic silencing of different cell surface Wnt antagonists. Mutations in adenomatous polyposis coli (APC) gene were observed in two nonautocrine Wnt-positive sarcoma cell lines. Finally, downregulation of the activated Wnt pathway inhibited sarcoma cell proliferation both in vitro and in vivo by a mechanism involving the downregulation of CDC25A.
Collapse
|
120
|
Stein TJ, Holmes KE, Muthuswamy A, Thompson V, Huelsmeyer MK. Characterization of β-catenin expression in canine osteosarcoma. Vet Comp Oncol 2011; 9:65-73. [PMID: 21303455 DOI: 10.1111/j.1476-5829.2010.00236.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Osteosarcoma (OSA) is the most frequently occurring malignant primary bone tumour in dogs and children and arises from cells of the osteoblast lineage. Inappropriate Wnt signalling activity has been implicated in human OSA. Altered expression of β-catenin, an integral member of the Wnt signalling pathway, has been associated with numerous human cancers, including OSA. In this study, 30 of the 37 primary canine OSA tissues and 2 of the 3 metastatic OSAs were positive for β-catenin expression as determined by immunohistochemistry, whereas 2 normal bones stained negative for β-catenin. No mutations were identified in exon 3 of β-catenin in the three OSA cases in which DNA sequencing was performed. Finally, there was no relationship between β-catenin expression and overall survival time or disease-free interval. Our results indicate β-catenin is frequently expressed within the cytoplasm of neoplastic cells in canine OSA but contains no detectable mutations in exon 3, similar to human OSA.
Collapse
Affiliation(s)
- T J Stein
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706-1102, USA.
| | | | | | | | | |
Collapse
|
121
|
PosthumaDeBoer J, Witlox MA, Kaspers GJL, van Royen BJ. Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature. Clin Exp Metastasis 2011; 28:493-503. [PMID: 21461590 PMCID: PMC3081058 DOI: 10.1007/s10585-011-9384-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 03/18/2011] [Indexed: 01/06/2023]
Abstract
Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy and targeting these features might enhance the efficacy of current treatment. A detailed study of the biological characteristics and behaviour of metastatic OS cells may provide a rational basis for innovative treatment strategies. The aim of this review is to give an overview of the biological changes in metastatic OS cells and the preclinical and clinical efforts targeting the different steps in OS metastases and how these contribute to designing a metastasis directed treatment for OS.
Collapse
Affiliation(s)
- J. PosthumaDeBoer
- Department of Orthopaedic Surgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - M. A. Witlox
- Department of Orthopaedic Surgery, Westfries Gasthuis, Hoorn, The Netherlands
| | - G. J. L. Kaspers
- Paediatric Oncology/Haematology, VU University Medical Center, Amsterdam, The Netherlands
| | - B. J. van Royen
- Department of Orthopaedic Surgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
122
|
Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater 2011. [PMID: 21352958 DOI: 10.1016/j.actbio.2011.02.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wnt signaling pathway inhibitor Dickkopf-2 (Dkk2) regulates osteoblast differentiation on microstructured titanium (Ti) surfaces, suggesting involvement of Wnt signaling in this process. To test this, human osteoblast-like MG63 cells were cultured on tissue culture polystyrene or Ti (smooth PT (Ra=0.2 μm), sand-blasted and acid-etched SLA (Ra=3.22 μm), modSLA (hydrophilic SLA)). Expression of Wnt pathway receptors, activators and inhibitors was measured by qPCR. Non-canonical pathway ligands, receptors and intracellular signaling molecules, as well as bone morphogenetic proteins BMP2 and BMP4, were upregulated on SLA and modSLA, whereas canonical pathway members were downregulated. To confirm that non-canonical signaling was involved, cells were cultured daily with exogenous Wnt3a (canonical pathway) or Wnt5a (non-canonical pathway). Alternatively, cells were cultured with antibodies to Wnt3a or Wnt5a to validate that Wnt proteins secreted by the cells were mediating cell responses to the surface. Wnt5a, but not Wnt3a, increased MG63 cell differentiation and BMP2 and BMP4 proteins, suggesting Wnt5a promotes osteogenic differentiation through production of BMPs. Effects of exogenous and endogenous Wnt5a were synergistic with surface microstructure, suggesting the response also depends on cell maturation state. These results indicate a major role for the non-canonical, calcium-dependent Wnt pathway in differentiation of osteoblasts on microstructured titanium surfaces during implant osseointegration.
Collapse
|
123
|
Guimarães APG, Rocha RM, da Cunha IW, Guimarães GC, Carvalho AL, de Camargo B, Lopes A, Squire JA, Soares FA. Prognostic impact of adenomatous polyposis coli gene expression in osteosarcoma of the extremities. Eur J Cancer 2010; 46:3307-15. [DOI: 10.1016/j.ejca.2010.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/27/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
124
|
Kurek KC, Del Mare S, Salah Z, Abdeen S, Sadiq H, Lee SH, Gaudio E, Zanesi N, Jones KB, DeYoung B, Amir G, Gebhardt M, Warman M, Stein GS, Stein JL, Lian JB, Aqeilan RI. Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression. Cancer Res 2010; 70:5577-86. [PMID: 20530675 DOI: 10.1158/0008-5472.can-09-4602] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P < 0.0001). Compared with the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorigenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas RUNX2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease.
Collapse
Affiliation(s)
- Kyle C Kurek
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Dieudonné FX, Marion A, Haÿ E, Marie PJ, Modrowski D. High Wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res 2010; 70:5399-408. [PMID: 20530678 DOI: 10.1158/0008-5472.can-10-0090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is characterized by frequent relapse and metastatic disease associated with resistance to chemotherapy. We previously showed that syndecan-2 is a mediator of the antioncogenic effect of chemotherapeutic drugs. The purpose of this work was to elucidate molecular mechanisms responsible for the low expression of syndecan-2 in osteosarcoma. We compared the regulatory activity of cis-acting DNA sequences of the syndecan-2 gene in osteosarcoma and osteoblastic cell lines. We identified a DNA region that negatively regulates syndecan-2 transcription in the osteosarcoma cells. T-cell factors (TCF) bind to this sequence in vivo. Wnt3a stimulation, beta-catenin activation, and TCF overexpression resulted in syndecan-2 repression, whereas Wnt inhibition using sFRP-1 increased syndecan-2 expression in U2OS cells. RhoA activation blunted the stimulatory effect of sFRP-1 on syndecan-2 transcription, whereas RhoA inhibition enhanced syndecan-2 expression. These results indicate that Wnt/beta-catenin and Wnt/RhoA signaling contribute to syndecan-2 repression. The alteration of syndecan-2 expression in osteosarcoma cell lines also seemed to be related to a higher shedding, controlled by Wnt/RhoA. Conversely, syndecan-2 was found to activate its own expression in U2OS cells through RhoA inhibition. These data identify a molecular network that may contribute to the low expression of the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. The high activity of the canonical Wnt pathway in the different osteosarcoma cells induces a constitutive repression of syndecan-2 transcription, whereas Wnt/RhoA signaling blocks the amplification loop of syndecan-2 expression. Our results identify syndecan-2 as a Wnt target and bring new insights into a possible pathologic role of Wnt signaling in osteosarcoma.
Collapse
Affiliation(s)
- François-Xavier Dieudonné
- Laboratory of Osteoblast Biology and Pathology, UMR 606 INSERM and University of Paris Diderot, Paris, France
| | | | | | | | | |
Collapse
|
126
|
Abstract
It has been difficult to identify the molecular features central to the pathogenesis of osteosarcoma owing to a lack of understanding of the cell or origin, the absence of identifiable precursor lesions, and its marked genetic complexity at the time of presentation. Interestingly, several human genetic disorders and familial cancer syndromes, such as Li-Fraumeni syndrome, are linked to an increased risk of osteosarcoma. Association of these same genetic alterations and osteosarcoma risk have been confirmed in murine models. Osteosarcoma is associated with a variety of genetic abnormalities that are among the most commonly observed in human cancer; it remains unclear, however, what events initiate and are necessary to form osteosarcoma. The availability of new resources for studying osteosarcoma and newer research methodologies offer an opportunity and promise to answer these currently unanswered questions. Even in the absence of a more fundamental understanding of osteosarcoma, association studies and preclinical drug testing may yield clinically relevant information.
Collapse
Affiliation(s)
- Richard Gorlick
- Department of Pediatrics and Molecular Pharmacology, The Albert Einstein College of Medicine, Yeshiva University, Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY 10467, USA.
| | | |
Collapse
|
127
|
Cleton-Jansen AM, Anninga JK, Briaire-de Bruijn IH, Romeo S, Oosting J, Egeler RM, Gelderblom H, Taminiau AHM, Hogendoorn PCW. Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer 2009; 101:1909-18. [PMID: 19888226 PMCID: PMC2788255 DOI: 10.1038/sj.bjc.6605405] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background: Osteosarcoma is the most prevalent primary malignant bone tumour in children and young adults, with poor survival in 40% of patients. To identify the signalling pathways involved in tumourigenesis, we compared gene expression in osteosarcoma with that in its presumed normal counterparts. Methods: Genome-wide expression profiles were generated from 25 high-grade central osteosarcoma prechemotherapy biopsies, 5 osteoblastomas, 5 mesenchymal stem cell (MSC) populations and these same MSCs differentiated into osteoblasts. Genes that were differentially expressed were analysed in the context of the pathways in which they function using the GenMAPP programme. Results: MSCs, osteoblasts, osteoblastomas and osteosarcomas clustered separately and thousands of differentially expressed genes were identified. The most significantly altered pathways are involved in cell cycle regulation and DNA replication. Several upstream components of the Wnt signalling pathway are downregulated in osteosarcoma. Two genes involved in degradation of β-catenin protein, the key effectors of Wnt signalling, Axin and GSK3-β, show decreased expression, suggesting that Wnt signalling is no longer under the control of regular signals. Comparing benign osteoblastomas with osteosarcomas identified cell cycle regulation as the most prominently changed pathway. Conclusion: These results show that upregulation of the cell cycle and downregulation of Wnt signalling have an important role in osteosarcoma genesis. Gene expression differences between highly malignant osteosarcoma and benign osteoblastoma involve cell cycle regulation.
Collapse
Affiliation(s)
- A-M Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, PO box 9600, Leiden 2300 RC, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|