101
|
Froment C, Hourset M, Sáenz-Oyhéréguy N, Mouton-Barbosa E, Willmann C, Zanolli C, Esclassan R, Donat R, Thèves C, Burlet-Schiltz O, Mollereau C. Analysis of 5000 year-old human teeth using optimized large-scale and targeted proteomics approaches for detection of sex-specific peptides. J Proteomics 2019; 211:103548. [PMID: 31626997 DOI: 10.1016/j.jprot.2019.103548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
The study demonstrates the high potential of MS-based proteomics coupled to an iterative database search strategy for the in-depth investigation of ancient proteomes. An efficient targeted PRM MS-based approach, although limited to the detection of a single pair of sex-specific amelogenin peptides, allowed confirming the sex of individuals in ancient dental remains, an essential information for paleoanthropologists facing the issue of sex determination and dimorphism.
Collapse
Affiliation(s)
- Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathilde Hourset
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France; Faculté de chirurgie dentaire de Toulouse, Université de Toulouse, UPS, Toulouse, France
| | - Nancy Sáenz-Oyhéréguy
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Willmann
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France; Faculté de chirurgie dentaire de Toulouse, Université de Toulouse, UPS, Toulouse, France
| | - Clément Zanolli
- Laboratoire PACEA, UMR 5199 CNRS, Université de Bordeaux, Pessac, France
| | - Rémi Esclassan
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France; Faculté de chirurgie dentaire de Toulouse, Université de Toulouse, UPS, Toulouse, France
| | - Richard Donat
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Catherine Thèves
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Catherine Mollereau
- Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
102
|
Verbruggen S, Ndah E, Van Criekinge W, Gessulat S, Kuster B, Wilhelm M, Van Damme P, Menschaert G. PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms. Mol Cell Proteomics 2019; 18:S126-S140. [PMID: 31040227 PMCID: PMC6692777 DOI: 10.1074/mcp.ra118.001218] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
PROTEOFORMER is a pipeline that enables the automated processing of data derived from ribosome profiling (RIBO-seq, i.e. the sequencing of ribosome-protected mRNA fragments). As such, genome-wide ribosome occupancies lead to the delineation of data-specific translation product candidates and these can improve the mass spectrometry-based identification. Since its first publication, different upgrades, new features and extensions have been added to the PROTEOFORMER pipeline. Some of the most important upgrades include P-site offset calculation during mapping, comprehensive data pre-exploration, the introduction of two alternative proteoform calling strategies and extended pipeline output features. These novelties are illustrated by analyzing ribosome profiling data of human HCT116 and Jurkat data. The different proteoform calling strategies are used alongside one another and in the end combined together with reference sequences from UniProt. Matching mass spectrometry data are searched against this extended search space with MaxQuant. Overall, besides annotated proteoforms, this pipeline leads to the identification and validation of different categories of new proteoforms, including translation products of up- and downstream open reading frames, 5' and 3' extended and truncated proteoforms, single amino acid variants, splice variants and translation products of so-called noncoding regions. Further, proof-of-concept is reported for the improvement of spectrum matching by including Prosit, a deep neural network strategy that adds extra fragmentation spectrum intensity features to the analysis. In the light of ribosome profiling-driven proteogenomics, it is shown that this allows validating the spectrum matches of newly identified proteoforms with elevated stringency. These updates and novel conclusions provide new insights and lessons for the ribosome profiling-based proteogenomic research field. More practical information on the pipeline, raw code, the user manual (README) and explanations on the different modes of availability can be found at the GitHub repository of PROTEOFORMER: https://github.com/Biobix/proteoformer.
Collapse
Affiliation(s)
- Steven Verbruggen
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Elvis Ndah
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Wim Van Criekinge
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Siegfried Gessulat
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Munich, Germany; SAP SE, Potsdam, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Munich, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Munich, Germany
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Gerben Menschaert
- BioBix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
103
|
Gupta S, Turan D, Tavernier J, Martens L. The online Tabloid Proteome: an annotated database of protein associations. Nucleic Acids Res 2019; 46:D581-D585. [PMID: 29040688 PMCID: PMC5753264 DOI: 10.1093/nar/gkx930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
A complete knowledge of the proteome can only be attained by determining the associations between proteins, along with the nature of these associations (e.g. physical contact in protein–protein interactions, participation in complex formation or different roles in the same pathway). Despite extensive efforts in elucidating direct protein interactions, our knowledge on the complete spectrum of protein associations remains limited. We therefore developed a new approach that detects protein associations from identifications obtained after re-processing of large-scale, public mass spectrometry-based proteomics data. Our approach infers protein association based on the co-occurrence of proteins across many different proteomics experiments, and provides information that is almost completely complementary to traditional direct protein interaction studies. We here present a web interface to query and explore the associations derived from this method, called the online Tabloid Proteome. The online Tabloid Proteome also integrates biological knowledge from several existing resources to annotate our derived protein associations. The online Tabloid Proteome is freely available through a user-friendly web interface, which provides intuitive navigation and data exploration options for the user at http://iomics.ugent.be/tabloidproteome.
Collapse
Affiliation(s)
- Surya Gupta
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9000, Belgium.,Department of Biochemistry, Ghent University, Ghent 9000, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent 9000, Belgium
| | - Demet Turan
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9000, Belgium.,Department of Biochemistry, Ghent University, Ghent 9000, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent 9000, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9000, Belgium.,Department of Biochemistry, Ghent University, Ghent 9000, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9000, Belgium.,Department of Biochemistry, Ghent University, Ghent 9000, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
104
|
A Standardized and Reproducible Proteomics Protocol for Bottom-Up Quantitative Analysis of Protein Samples Using SP3 and Mass Spectrometry. Methods Mol Biol 2019; 1959:65-87. [PMID: 30852816 DOI: 10.1007/978-1-4939-9164-8_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The broad utility of mass spectrometry (MS) for investigating the proteomes of a diverse array of sample types has significantly expanded the use of this technology in biological studies. This widespread use has resulted in a substantial collection of protocols and acquisition approaches designed to obtain the highest-quality data for each experiment. As a result, distilling this information to develop a standard operating protocol for essential workflows, such as bottom-up quantitative shotgun whole proteome analysis, can be complex for users new to MS technology. Further complicating this matter, in-depth description of the methodological choices is seldom given in the literature. In this work, we describe a workflow for quantitative whole proteome analysis that is suitable for biomarker discovery, giving detailed consideration to important stages, including (1) cell lysis and protein cleanup using SP3 paramagnetic beads, (2) quantitative labeling, (3) offline peptide fractionation, (4) MS analysis, and (5) data analysis and interpretation. Special attention is paid to providing comprehensive details for all stages of this proteomics workflow to enhance transferability to external labs. The standardized protocol described here will provide a simplified resource to the proteomics community toward efficient adaptation of MS technology in proteomics studies.
Collapse
|
105
|
Belousov PV, Afanasyeva MA, Gubernatorova EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM, Kopylov AT, Demin DE, Tatosyan KA, Ustiugova AS, Prokofjeva MM, Lanshchakov KV, Vanushko VE, Zaretsky AR, Severskaia NV, Dvinskikh NY, Abrosimov AY, Kuprash DV, Schwartz AM. Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRAS Q61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer Lett 2019; 467:96-106. [PMID: 31326556 DOI: 10.1016/j.canlet.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.
Collapse
Affiliation(s)
- Pavel V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Genetics and Life Sciences, Educational Center «Sirius», Sochi, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Denis E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Lanshchakov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; Central Clinical Hospital of the Presidential Administration of the Russian Federation, Moscow, Russia
| | - Vladimir E Vanushko
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Shemyakin-Ovchinnikov Research Institute for Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Evrogen Lab LLC, Moscow, Russia
| | - Natalya V Severskaia
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Nina Y Dvinskikh
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Alexander Y Abrosimov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; National University of Science & Technology «MISIS», Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
106
|
Cordeiro RDA, Evangelista AJDJ, Serpa R, de Andrade ARC, Mendes PBL, de Oliveira JS, de Alencar LP, Pereira VS, Lima-Neto RG, Brilhante RN, Sidrim JJC, Maia DCBSC, Rocha MFG. Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Front Microbiol 2019; 10:1337. [PMID: 31316472 PMCID: PMC6609871 DOI: 10.3389/fmicb.2019.01337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
It is well known that prolonged antibiotic therapy alters the mucosal microbiota composition, increasing the risk of invasive fungal infection (IFI) in immunocompromised patients. The present study investigated the direct effect of β-lactam antibiotics cefepime (CEF) and amoxicillin (AMOX) on biofilm production by Candida albicans ATCC 10231. Antibacterials at the peak plasmatic concentration of each drug were tested against biofilms grown on polystyrene surfaces. Biofilms were evaluated for biomass production, metabolic activity, carbohydrate and protein contents, proteolytic activity, ultrastructure, and tolerance to antifungals. CEF and AMOX enhanced biofilm production by C. albicans ATCC 10231, stimulating biomass production, metabolic activity, viable cell counts, and proteolytic activity, as well as increased biovolume and thickness of these structures. Nevertheless, AMOX induced more significant changes in C. albicans biofilms than CEF. In addition, it was shown that AMOX increased the amount of chitin in these biofilms, making them more tolerant to caspofungin. Finally, it was seen that, in response to AMOX, C. albicans biofilms produce Hsp70 - a protein with chaperone function related to stressful conditions. These results may have a direct impact on the pathophysiology of opportunistic IFIs in patients at risk.
Collapse
Affiliation(s)
| | | | - Rosana Serpa
- Medical Mycology Specialized Center, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | | - Marcos Fábio Gadelha Rocha
- Medical Mycology Specialized Center, Federal University of Ceará, Fortaleza, Brazil.,Post Graduate Program in Veterinary Sciences, College of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| |
Collapse
|
107
|
Machado KCT, Fortuin S, Tomazella GG, Fonseca AF, Warren RM, Wiker HG, de Souza SJ, de Souza GA. On the Impact of the Pangenome and Annotation Discrepancies While Building Protein Sequence Databases for Bacteria Proteogenomics. Front Microbiol 2019; 10:1410. [PMID: 31281302 PMCID: PMC6596428 DOI: 10.3389/fmicb.2019.01410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 01/19/2023] Open
Abstract
In proteomics, peptide information within mass spectrometry (MS) data from a specific organism sample is routinely matched against a protein sequence database that best represent such organism. However, if the species/strain in the sample is unknown or genetically poorly characterized, it becomes challenging to determine a database which can represent such sample. Building customized protein sequence databases merging multiple strains for a given species has become a strategy to overcome such restrictions. However, as more genetic information is publicly available and interesting genetic features such as the existence of pan- and core genes within a species are revealed, we questioned how efficient such merging strategies are to report relevant information. To test this assumption, we constructed databases containing conserved and unique sequences for 10 different species. Features that are relevant for probabilistic-based protein identification by proteomics were then monitored. As expected, increase in database complexity correlates with pangenomic complexity. However, Mycobacterium tuberculosis and Bordetella pertussis generated very complex databases even having low pangenomic complexity. We further tested database performance by using MS data from eight clinical strains from M. tuberculosis, and from two published datasets from Staphylococcus aureus. We show that by using an approach where database size is controlled by removing repeated identical tryptic sequences across strains/species, computational time can be reduced drastically as database complexity increases.
Collapse
Affiliation(s)
- Karla C T Machado
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Suereta Fortuin
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gisele Guicardi Tomazella
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, Bergen, Norway
- The Institute of Bioinformatics and Biotechnology, Natal, Brazil
| | - Andre F Fonseca
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Robin Mark Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sandro Jose de Souza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- The Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Gustavo Antonio de Souza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
108
|
Hurrell T, Segeritz CP, Vallier L, Lilley KS, Cromarty AD. Proteomic Comparison of Various Hepatic Cell Cultures for Preclinical Safety Pharmacology. Toxicol Sci 2019; 164:229-239. [PMID: 29635369 DOI: 10.1093/toxsci/kfy084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental drugs need to be screened for safety within time constraints. Hepatotoxicity is one concerning contributor to the failure of investigational new drugs and a major rationale for postmarketing withdrawal decisions. Ethical considerations in preclinical research force the requirement for highly predictive in vitro assays using human tissue which retains functionality reflective of primary tissue. Here, the proteome of cells commonly used to assess preclinical hepatotoxicity was compared. Primary human hepatocytes (PHHs), hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells, HepG2 cell monolayers and HepG2 cell 3D spheroids were cultured and collected as whole cell lysates. Over 6000 proteins were identified and quantified in terms of relative abundance in replicate proteomic experiments using isobaric tagging methods. Comparison of these quantitative data provides biological insight into the feasibility of using HLCs, HepG2 monolayers, and HepG2 3D spheroids for hepatotoxicity testing. Collectively these data reveal how HLCs differentiated for 35 days and HepG2 cells proteomes differ from one another and that of PHHs. HepG2 cells possess a strong cancer cell signature and do not adequately express key metabolic proteins which mark the hepatic phenotype, this was not substantially altered by culturing as 3D spheroids. These data suggest that while no single hepatic model reflects the diverse array of outcomes required to mimic the in vivo liver functions, that HLCs are the most suitable investigational avenue for replacing PHHs in vitro.
Collapse
Affiliation(s)
- Tracey Hurrell
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria 0007, South Africa
| | - Charis-Patricia Segeritz
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK
| | - Allan Duncan Cromarty
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria 0007, South Africa
| |
Collapse
|
109
|
Lorentzen LG, Chuang CY, Rogowska-Wrzesinska A, Davies MJ. Identification and quantification of sites of nitration and oxidation in the key matrix protein laminin and the structural consequences of these modifications. Redox Biol 2019; 24:101226. [PMID: 31154162 PMCID: PMC6543125 DOI: 10.1016/j.redox.2019.101226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Laminin is a major protein of the basement membrane (BM), a specialized extracellular matrix (ECM) of the artery wall. The potent oxidizing and nitrating agent peroxynitrous acid (ONOOH) is formed at sites of inflammation, and data implicate ONOOH in ECM damage and cardiovascular disease. Co-localization of 3-nitrotyrosine, a product of ONOOH-mediated tyrosine (Tyr) modification, and laminin has been reported in human atherosclerotic lesions. The sites and consequences of 3-nitrotyrosine (and related nitrated tryptophan) formation on laminin, it's self-assembly and cell interactions are poorly understood. In this study murine laminin-111 was exposed to ONOOH (1–500-fold molar excess). Nitration sites were mapped and quantified using LC-MS/MS. Mono-nitration was detected at 148 sites (126 Tyr, 22 Trp), and di-nitration at 14 sites. Label-free quantification showed enhanced nitration with increasing oxidant doses. Tyr nitration was ∼10-fold greater than at Trp. CO2 modulated damage in a site-specific manner, with most sites less extensively nitrated. 119 mono-nitration sites were identified with CO2 present, and no unique sites were detected. 23 di-nitration sites were detected, with 15 unique to the presence of CO2. Extensive modification was detected at sites involved in cell adhesion, protein-protein interactions and self-polymerization. Tyr-145 on the γ1 chain was extensively nitrated, and endothelial cells exhibited decreased adhesion to a nitrated peptide modelling this site. Modification of residues involved in self-polymerization interfered with the formation of ordered polymers as detected by scanning electron microscopy. These laminin modifications may contribute to endothelial cell dysfunction and modulate ECM structure and assembly, and thereby contribute to atherogenesis. Laminin is a major extracellular matrix protein of the artery wall. Peroxynitrous acid exposure gives nitration of tyrosine and tryptophan residues. CO2 both increases and decreases damage depending of the reaction site. LC-MS/MS used to map modifications to protein structure and functional domains. Sites for cell adhesion, protein interactions and self-polymerization are modified.
Collapse
Affiliation(s)
- Lasse G Lorentzen
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Dept. of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
110
|
Shushkova NA, Vavilov NE, Novikova SE, Farafonova TE, Tikhonova OV, Liao PC, Zgoda VG. [Quantitative proteomics of human blood exosomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:496-504. [PMID: 30632977 DOI: 10.18097/pbmc20186406496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exosomes are extracellular membrane vesicles secreted by cells into biological fluids. The outer membrane of exosomes protects their content from degradation and contains markers of the parent cell. Almost all cells of the body produce exosomes, however, tumor cells secrete them more intensively. Due to fact that exosomes contain proteins of cells secreting them, these vesicles could be a valuable source for biomarkers discovery. Currently, a number of studies prove the participation of exosomes in carcinogenesis. However, there is a problem of isolating pure and characterized exosomes for further use in investigation of functions or identification of tumor protein biomarkers. In this work, we have performed experiments on exosomes isolation from human plasma by three methods: differential ultracentrifugation, ultracentrifugation in sucrose cushion, sedimentation of the exosomal fraction from serum by using a commercial kit. The protein composition of the obtained samples was determined by mass spectrometric methods of selected reactions monitoring (SRM) and shotgun proteomic analysis. The obtained exosomal samples were searched for the presence of exosomal markers (CD9, CD82, HSPA8, CD63). In the samples of exosomes isolated by ultracentrifugation with the sucrose cushion, the content of the above markers was determined as 32.85, 15.59, 6.07 fmol/mg of total protein, correspondently. It was shown that the centrifugation method with the sucrose cushion was optimal for the isolation of exosomes.
Collapse
Affiliation(s)
| | - N E Vavilov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - P-C Liao
- National Cheng-Kung University, Taiwan
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
111
|
Galeazzo GA, Mirza JD, Dorr FA, Pinto E, Stevani CV, Lohrmann KB, Oliveira AG. Characterizing the Bioluminescence of the Humboldt Squid,
Dosidicus gigas
(d'Orbigny, 1835): One of the Largest Luminescent Animals in the World. Photochem Photobiol 2019; 95:1179-1185. [DOI: 10.1111/php.13106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Gabriela A. Galeazzo
- Departamento de Oceanografia Física, Química e Geológica Instituto Oceanográfico Universidade de São Paulo São Paulo Brazil
| | - Jeremy D. Mirza
- Departamento de Oceanografia Física, Química e Geológica Instituto Oceanográfico Universidade de São Paulo São Paulo Brazil
- Departamento de Química Instituto de Ciências Ambientais, Químicas e Farmacêuticas Universidade Federal de São Paulo Diadema SP Brazil
| | - Felipe A. Dorr
- Departamento de Análises Clínicas e Toxicológicas Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo SP Brazil
| | - Ernani Pinto
- Departamento de Análises Clínicas e Toxicológicas Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo SP Brazil
| | - Cassius V. Stevani
- Departamento de Química Fundamental Instituto de Química Universidade de São Paulo São Paulo SP Brazil
| | - Karin B. Lohrmann
- Departamento de Biología Marina Facultad de Ciencias del Mar Centro Innovación Acuícola Aquapacífico Universidad Católica del Norte Coquimbo Chile
| | - Anderson G. Oliveira
- Departamento de Oceanografia Física, Química e Geológica Instituto Oceanográfico Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
112
|
Kölbel H, Hathazi D, Jennings M, Horvath R, Roos A, Schara U. Identification of Candidate Protein Markers in Skeletal Muscle of Laminin-211-Deficient CMD Type 1A-Patients. Front Neurol 2019; 10:470. [PMID: 31133972 PMCID: PMC6514157 DOI: 10.3389/fneur.2019.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Laminin-211 deficiency leads to the most common form of congenital muscular dystrophy in childhood, MDC1A. The clinical picture is characterized by severe muscle weakness, brain abnormalities and delayed motor milestones defining MDC1A as one of the most severe forms of congenital muscular diseases. Although the molecular genetic basis of this neurological disease is well-known and molecular studies of mouse muscle and human cultured muscle cells allowed first insights into the underlying pathophysiology, the definition of marker proteins in human vulnerable tissue such as skeletal muscle is still lacking. To systematically address this need, we analyzed the proteomic signature of laminin-211-deficient vastus muscle derived from four patients and identified 86 proteins (35 were increased and 51 decreased) as skeletal muscle markers and verified paradigmatic findings in a total of two further MDC1A muscle biopsies. Functions of proteins suggests fibrosis but also hints at altered synaptic transmission and accords with central nervous system alterations as part of the clinical spectrum of MDC1A. In addition, a profound mitochondrial vulnerability of the laminin-211-deficient muscle is indicated and also altered abundances of other proteins support the concept that metabolic alterations could be novel mechanisms that underline MDC1A and might constitute therapeutic targets. Intersection of our data with the proteomic signature of murine laminin-211-deficient gastrocnemius and diaphragm allowed the definition of nine common vulnerable proteins representing potential tissue markers.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jennings
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Roos
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
113
|
Koch E, Finne K, Eikrem Ø, Landolt L, Beisland C, Leh S, Delaleu N, Granly M, Vikse BE, Osman T, Scherer A, Marti HP. Transcriptome-proteome integration of archival human renal cell carcinoma biopsies enables identification of molecular mechanisms. Am J Physiol Renal Physiol 2019; 316:F1053-F1067. [DOI: 10.1152/ajprenal.00424.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Renal cell cancer is among the most common forms of cancer in humans, with around 35,000 deaths attributed to kidney carcinoma in the European Union in 2012 alone. Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and the most lethal of all genitourinary cancers. Here, we apply omics technologies to archival core biopsies to investigate the biology underlying ccRCC. Knowledge of these underlying processes should be useful for the discovery and/or confirmation of novel therapeutic approaches and ccRCC biomarker development. From partial or full nephrectomies of 11 patients, paired core biopsies of ccRCC-affected tissue and adjacent (“peritumorous”) nontumor tissue were both sampled and subjected to proteomics analyses. We combined proteomics results with our published mRNA sequencing data from the same patients and with published miRNA sequencing data from an overlapping patient cohort from our institution. Statistical analysis and pathway analysis were performed with JMP Genomics and Ingenuity Pathway Analysis (IPA), respectively. Proteomics analysis confirmed the involvement of metabolism and oxidative stress-related pathways in ccRCC, whereas the most affected pathways in the mRNA sequencing data were related to the immune system. Unlike proteomics or mRNA sequencing alone, a combinatorial cross-omics pathway analysis approach captured a broad spectrum of biological processes underlying ccRCC, such as mitochondrial damage, repression of apoptosis, and immune system pathways. Sirtuins, immunoproteasome genes, and CD74 are proposed as potential targets for the treatment of ccRCC.
Collapse
Affiliation(s)
- Even Koch
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Nicolas Delaleu
- 2C SysBioMed, Contra, Switzerland
- Molecular Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Magnus Granly
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
114
|
Sotillo J, Pearson MS, Becker L, Mekonnen GG, Amoah AS, van Dam G, Corstjens PLAM, Murray J, Mduluza T, Mutapi F, Loukas A. In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Negl Trop Dis 2019; 13:e0007362. [PMID: 31091291 PMCID: PMC6538189 DOI: 10.1371/journal.pntd.0007362] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 04/05/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Schistosomiasis is a neglected disease affecting hundreds of millions worldwide. Of the three main species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. S. haematobium infection can cause different urogenital clinical complications, particularly in the bladder, and furthermore, this parasite has been strongly linked with squamous cell carcinoma. A comprehensive analysis of the molecular composition of its different proteomes will contribute to developing new tools against this devastating disease. METHODS AND FINDINGS By combining a comprehensive protein fractionation approach consisting of OFFGEL electrophoresis with high-throughput mass spectrometry, we have performed the first in-depth characterisation of the different discrete proteomes of S. haematobium that are predicted to interact with human host tissues, including the secreted and tegumental proteomes of adult flukes and secreted and soluble egg proteomes. A total of 662, 239, 210 and 138 proteins were found in the adult tegument, adult secreted, soluble egg and secreted egg proteomes, respectively. In addition, we probed these distinct proteomes with urine to assess urinary antibody responses from naturally infected human subjects with different infection intensities, and identified adult fluke secreted and tegument extracts as being the best predictors of infection. CONCLUSION We provide a comprehensive dataset of proteins from the adult and egg stages of S. haematobium and highlight their utility as diagnostic markers of infection intensity. Protein composition was markedly different between the different extracts, highlighting the distinct subsets of proteins that different development stages present in their different niches. Furthermore, we have identified adult fluke ES and tegument extracts as best predictors of infection using urine antibodies of naturally infected people. This study provides the first steps towards the development of novel tools to control this important neglected tropical disease.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Laboratorio de Referencia en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Gebeyaw G. Mekonnen
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Abena S. Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul L. A. M. Corstjens
- Department of Molecular Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janice Murray
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh, United Kingdom
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Zimbabwe
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
115
|
Schiebenhoefer H, Van Den Bossche T, Fuchs S, Renard BY, Muth T, Martens L. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Rev Proteomics 2019; 16:375-390. [PMID: 31002542 DOI: 10.1080/14789450.2019.1609944] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The study of microbial communities based on the combined analysis of genomic and proteomic data - called metaproteogenomics - has gained increased research attention in recent years. This relatively young field aims to elucidate the functional and taxonomic interplay of proteins in microbiomes and its implications on human health and the environment. Areas covered: This article reviews bioinformatics methods and software tools dedicated to the analysis of data from metaproteomics and metaproteogenomics experiments. In particular, it focuses on the creation of tailored protein sequence databases, on the optimal use of database search algorithms including methods of error rate estimation, and finally on taxonomic and functional annotation of peptide and protein identifications. Expert opinion: Recently, various promising strategies and software tools have been proposed for handling typical data analysis issues in metaproteomics. However, severe challenges remain that are highlighted and discussed in this article; these include: (i) robust false-positive assessment of peptide and protein identifications, (ii) complex protein inference against a background of highly redundant data, (iii) taxonomic and functional post-processing of identification data, and finally, (iv) the assessment and provision of metrics and tools for quantitative analysis.
Collapse
Affiliation(s)
- Henning Schiebenhoefer
- a Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure , Robert Koch Institute , Berlin , Germany
| | - Tim Van Den Bossche
- b VIB - UGent Center for Medical Biotechnology, VIB , Ghent , Belgium.,c Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| | - Stephan Fuchs
- d FG13 Division of Nosocomial Pathogens and Antibiotic Resistances , Robert Koch Institute , Wernigerode , Germany
| | - Bernhard Y Renard
- a Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure , Robert Koch Institute , Berlin , Germany
| | - Thilo Muth
- a Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure , Robert Koch Institute , Berlin , Germany
| | - Lennart Martens
- b VIB - UGent Center for Medical Biotechnology, VIB , Ghent , Belgium.,c Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| |
Collapse
|
116
|
Abstract
A critical step in proteomics analysis is the optimal extraction and processing of protein material to ensure the highest sensitivity in downstream detection. Achieving this requires a sample-handling technology that exhibits unbiased protein manipulation, flexibility in reagent use, and virtually lossless processing. Addressing these needs, the single-pot, solid-phase-enhanced sample-preparation (SP3) technology is a paramagnetic bead-based approach for rapid, robust, and efficient processing of protein samples for proteomic analysis. SP3 uses a hydrophilic interaction mechanism for exchange or removal of components that are commonly used to facilitate cell or tissue lysis, protein solubilization, and enzymatic digestion (e.g., detergents, chaotropes, salts, buffers, acids, and solvents) before downstream proteomic analysis. The SP3 protocol consists of nonselective protein binding and rinsing steps that are enabled through the use of ethanol-driven solvation capture on the surface of hydrophilic beads, and elution of purified material in aqueous conditions. In contrast to alternative approaches, SP3 combines compatibility with a substantial collection of solution additives with virtually lossless and unbiased recovery of proteins independent of input quantity, all in a simplified single-tube protocol. The SP3 protocol is simple and efficient, and can be easily completed by a standard user in ~30 min, including reagent preparation. As a result of these properties, SP3 has successfully been used to facilitate examination of a broad range of sample types spanning simple and complex protein mixtures in large and very small amounts, across numerous organisms. This work describes the steps and extensive considerations involved in performing SP3 in bottom-up proteomics, using a simplified protein cleanup scenario for illustration.
Collapse
|
117
|
Lisitsa AV, Petushkova NA, Levitsky LI, Zgoda VG, Larina OV, Kisrieva YS, Frankevich VE, Gamidov SI. Comparative Analysis of the Performаnce of Mascot and IdentiPy Algorithms on a Benchmark Dataset Obtained by Tandem Mass Spectrometry Analysis of Testicular Biopsies. Mol Biol 2019. [DOI: 10.1134/s0026893319010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
118
|
Limpikirati P, Hale JE, Hazelbaker M, Huang Y, Jia Z, Yazdani M, Graban EM, Vaughan RC, Vachet RW. Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics. MAbs 2019; 11:463-476. [PMID: 30636503 PMCID: PMC6512938 DOI: 10.1080/19420862.2019.1565748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 01/26/2023] Open
Abstract
Monoclonal antibodies are among the fastest growing therapeutics in the pharmaceutical industry. Detecting higher-order structure changes of antibodies upon storage or mishandling, however, is a challenging problem. In this study, we describe the use of diethylpyrocarbonate (DEPC)-based covalent labeling (CL) - mass spectrometry (MS) to detect conformational changes caused by heat stress, using rituximab as a model system. The structural resolution obtained from DEPC CL-MS is high enough to probe subtle conformation changes that are not detectable by common biophysical techniques. Results demonstrate that DEPC CL-MS can detect and identify sites of conformational changes at the temperatures below the antibody melting temperature (e.g., 55 ᴼC). The observed labeling changes at lower temperatures are validated by activity assays that indicate changes in the Fab region. At higher temperatures (e.g., 65 ᴼC), conformational changes and aggregation sites are identified from changes in CL levels, and these results are confirmed by complementary biophysical and activity measurements. Given the sensitivity and simplicity of DEPC CL-MS, this method should be amenable to the structural investigations of other antibody therapeutics.
Collapse
Affiliation(s)
| | | | - Mark Hazelbaker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Yongbo Huang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Robert C. Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
119
|
Grabowski P, Hesse S, Hollizeck S, Rohlfs M, Behrends U, Sherkat R, Tamary H, Ünal E, Somech R, Patıroğlu T, Canzar S, van der Werff Ten Bosch J, Klein C, Rappsilber J. Proteome Analysis of Human Neutrophil Granulocytes From Patients With Monogenic Disease Using Data-independent Acquisition. Mol Cell Proteomics 2019; 18:760-772. [PMID: 30630937 PMCID: PMC6442368 DOI: 10.1074/mcp.ra118.001141] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Neutrophil granulocytes are critical mediators of innate immunity and tissue regeneration. Rare diseases of neutrophil granulocytes may affect their differentiation and/or functions. However, there are very few validated diagnostic tests assessing the functions of neutrophil granulocytes in these diseases. Here, we set out to probe omics analysis as a novel diagnostic platform for patients with defective differentiation and function of neutrophil granulocytes. We analyzed highly purified neutrophil granulocytes from 68 healthy individuals and 16 patients with rare monogenic diseases. Cells were isolated from fresh venous blood (purity >99%) and used to create a spectral library covering almost 8000 proteins using strong cation exchange fractionation. Patient neutrophil samples were then analyzed by data-independent acquisition proteomics, quantifying 4154 proteins in each sample. Neutrophils with mutations in the neutrophil elastase gene ELANE showed large proteome changes that suggest these mutations may affect maturation of neutrophil granulocytes and initiate misfolded protein response and cellular stress mechanisms. In contrast, only few proteins changed in patients with leukocyte adhesion deficiency (LAD) and chronic granulomatous disease (CGD). Strikingly, neutrophil transcriptome analysis showed no correlation with its proteome. In case of two patients with undetermined genetic causes, proteome analysis guided the targeted genetic diagnostics and uncovered the underlying genomic mutations. Data-independent acquisition proteomics may help to define novel pathomechanisms in neutrophil diseases and provide a clinically useful diagnostic dimension.
Collapse
Affiliation(s)
- Piotr Grabowski
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Sebastian Hesse
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Sebastian Hollizeck
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Meino Rohlfs
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Uta Behrends
- ‖Children's Hospital, Hematology-Oncology, Technical University Munich, 80804 Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hannah Tamary
- Schneider Children's Medical Center of Israel, Petah Tikva, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Christoph Klein
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany;.
| | - Juri Rappsilber
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany;; ¶Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;.
| |
Collapse
|
120
|
Wang TY, Wang L, Alam SK, Hoeppner LH, Yang R. ScanNeo: identifying indel-derived neoantigens using RNA-Seq data. Bioinformatics 2019; 35:4159-4161. [DOI: 10.1093/bioinformatics/btz193] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Abstract
Summary
Insertion and deletion (indels) have been recognized as an important source generating tumor-specific mutant peptides (neoantigens). The focus of indel-derived neoantigen identification has been on leveraging DNA sequencing such as whole exome sequencing, with the effort of using RNA-seq less well explored. Here we present ScanNeo, a fast-streamlined computational pipeline for analyzing RNA-seq to predict neoepitopes derived from small to large-sized indels. We applied ScanNeo in a prostate cancer cell line and validated our predictions with matched mass spectrometry data. Finally, we demonstrated that indel neoantigens predicted from RNA-seq were associated with checkpoint inhibitor response in a cohort of melanoma patients.
Availability and implementation
ScanNeo is implemented in Python. It is freely accessible at the GitHub repository (https://github.com/ylab-hi/ScanNeo).
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ting-You Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
121
|
Hurrell T, Segeritz CP, Vallier L, Lilley KS, Cromarty AD. A proteomic time course through the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Sci Rep 2019; 9:3270. [PMID: 30824743 PMCID: PMC6397265 DOI: 10.1038/s41598-019-39400-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023] Open
Abstract
Numerous in vitro models endeavour to mimic the characteristics of primary human hepatocytes for applications in regenerative medicine and pharmaceutical science. Mature hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSCs) are one such in vitro model. Due to insufficiencies in transcriptome to proteome correlation, characterising the proteome of HLCs is essential to provide a suitable framework for their continual optimization. Here we interrogated the proteome during stepwise differentiation of hiPSCs into HLCs over 40 days. Whole cell protein lysates were collected and analysed using stabled isotope labelled mass spectrometry based proteomics. Quantitative proteomics identified over 6,000 proteins in duplicate multiplexed labelling experiments across two different time course series. Inductive cues in differentiation promoted sequential acquisition of hepatocyte specific markers. Analysis of proteins classically assigned as hepatic markers demonstrated trends towards maximum relative abundance between differentiation day 30 and 32. Characterisation of abundant proteins in whole cells provided evidence of the time dependent transition towards proteins corresponding with the functional repertoire of the liver. This data highlights how far the proteome of undifferentiated precursors have progressed to acquire a hepatic phenotype and constructs a platform for optimisation and improved maturation of HLC differentiation.
Collapse
Affiliation(s)
- Tracey Hurrell
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa. .,Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom.
| | - Charis-Patricia Segeritz
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK.,University of Cambridge, Robinson Way, Cambridge, CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK.,University of Cambridge, Robinson Way, Cambridge, CB2 0SZ, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Kathryn S Lilley
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom
| | - Allan D Cromarty
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| |
Collapse
|
122
|
Bayram H, Sayadi A, Immonen E, Arnqvist G. Identification of novel ejaculate proteins in a seed beetle and division of labour across male accessory reproductive glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:50-57. [PMID: 30529580 DOI: 10.1016/j.ibmb.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The male ejaculate contains a multitude of seminal fluid proteins (SFPs), many of which are key reproductive molecules, as well as sperm. However, the identification of SFPs is notoriously difficult and a detailed understanding of this complex phenotype has only been achieved in a few model species. We employed a recently developed proteomic method involving whole-organism stable isotope labelling coupled with proteomic and transcriptomic analyses to characterize ejaculate proteins in the seed beetle Callosobruchus maculatus. We identified 317 proteins that were transferred to females at mating, and a great majority of these showed signals of secretion and were highly male-biased in expression in the abdomen. These male-derived proteins were enriched with proteins involved in general metabolic and catabolic processes but also with proteolytic enzymes and proteins involved in protection against oxidative stress. Thirty-seven proteins showed significant homology with SFPs previously identified in other insects. However, no less than 92 C. maculatus ejaculate proteins were entirely novel, receiving no significant blast hits and lacking homologs in extant data bases, consistent with a rapid and divergent evolution of SFPs. We used 3D micro-tomography in conjunction with proteomic methods to identify 5 distinct pairs of male accessory reproductive glands and to show that certain ejaculate proteins were only recovered in certain male glands. Finally, we provide a tentative list of 231 candidate female-derived reproductive proteins, some of which are likely important in ejaculate processing and/or sperm storage.
Collapse
Affiliation(s)
- Helen Bayram
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
123
|
Lansky Z, Mutsafi Y, Houben L, Ilani T, Armony G, Wolf SG, Fass D. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100002. [PMID: 32055794 PMCID: PMC7001979 DOI: 10.1016/j.yjsbx.2018.100002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023]
Abstract
Cells and extracellular matrix (ECM) are mutually interdependent: cells guide self-assembly of ECM precursors, and the resulting ECM architecture supports and instructs cells. Though bidirectional signaling between ECM and cells is fundamental to cell biology, it is challenging to gain high-resolution structural information on cellular responses to the matrix microenvironment. Here we used cryo-scanning transmission electron tomography (CSTET) to reveal the nanometer- to micron-scale organization of major fibroblast ECM components in a native-like context, while simultaneously visualizing internal cell ultrastructure including organelles and cytoskeleton. In addition to extending current models for collagen VI fibril organization, three-dimensional views of thick cell regions and surrounding matrix showed how ECM networks impact the structures and dynamics of intracellular organelles and how cells remodel ECM. Collagen VI and fibronectin were seen to distribute in fundamentally different ways in the cell microenvironment and perform distinct roles in supporting and interacting with cells. This work demonstrates that CSTET provides a new perspective for the study of ECM in cell biology, highlighting labeled extracellular elements against a backdrop of unlabeled but morphologically identifiable cellular features with nanometer resolution detail.
Collapse
Affiliation(s)
- Zipora Lansky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Armony
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author.
| |
Collapse
|
124
|
Abstract
Affinity proteomics (AP-MS) is growing in importance for characterizing protein-protein interactions (PPIs) in the form of protein complexes and signaling networks. The AP-MS approach necessitates several different software tools, integrated into reproducible and accessible workflows. However, if the scientist (e.g., a bench biologist) lacks a computational background, then managing large AP-MS datasets can be challenging, manually formatting AP-MS data for input into analysis software can be error-prone, and data visualization involving dozens of variables can be laborious. One solution to address these issues is Galaxy, an open source and web-based platform for developing and deploying user-friendly computational pipelines or workflows. Here, we describe a Galaxy-based platform enabling AP-MS analysis. This platform enables researchers with no prior computational experience to begin with data from a mass spectrometer (e.g., peaklists in mzML format) and perform peak processing, database searching, assignment of interaction confidence scores, and data visualization with a few clicks of a mouse. We provide sample data and a sample workflow with step-by-step instructions to quickly acquaint users with the process.
Collapse
|
125
|
Ojha A, Bhasym A, Mukherjee S, Annarapu GK, Bhakuni T, Akbar I, Seth T, Vikram NK, Vrati S, Basu A, Bhattacharyya S, Guchhait P. Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis viruses. EBioMedicine 2018; 39:332-347. [PMID: 30527622 PMCID: PMC6354622 DOI: 10.1016/j.ebiom.2018.11.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/11/2018] [Accepted: 11/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background Activated platelets release cytokines/proteins including CXCL4 (PF4), CCL5 and fibrinopeptides, which regulate infection of several pathogenic viruses such as HIV, H1N1 and HCV in human. Since platelet activation is the hallmark of Dengue virus (DV) infection, we investigated the role of platelets in DV replication and also in a closely related Japanese Encephalitis virus (JEV). Methods and findings Microscopy and PCR analysis revealed a 4-fold increase in DV replication in primary monocytes or monocytic THP-1 cells in vitro upon incubation with either DV-activated platelets or supernatant from DV-activated platelets. The mass spectrometry based proteomic data from extra-nuclear fraction of above THP-1 lysate showed the crucial association of PF4 with enhanced DV replication. Our cytokine analysis and immunoblot assay showed significant inhibition of IFN-α production in monocytes via p38MAPK-STAT2-IRF9 axis. Blocking PF4 through antibodies or its receptor CXCR3 through inhibitor i.e. AMG487, significantly rescued production of IFN-α resulting in potent inhibition of DV replication in monocytes. Further, flow cytometry and ELISA data showed the direct correlation between elevated plasma PF4 with increased viral NS1 in circulating monocytes in febrile DV patients at day-3 of fever than day-9. Similarly, PF4 also showed direct effects in promoting the JEV replication in monocytes and microglia cells in vitro. The in vitro results were also validated in mice, where AMG487 treatment significantly improved the survival of JEV infected animals. Interpretation: Our study suggests that PF4-CXCR3-IFN axis is a potential target for developing treatment regimen against viral infections including JEV and DV.
Collapse
Affiliation(s)
- Amrita Ojha
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Angika Bhasym
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | | | - Gowtham K Annarapu
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Teena Bhakuni
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Tulika Seth
- All India Institute of Medical Sciences, New Delhi, India
| | - Naval K Vikram
- All India Institute of Medical Sciences, New Delhi, India
| | - Sudhanshu Vrati
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
126
|
Argentini A, Staes A, Grüning B, Mehta S, Easterly C, Griffin TJ, Jagtap P, Impens F, Martens L. Update on the moFF Algorithm for Label-Free Quantitative Proteomics. J Proteome Res 2018; 18:728-731. [DOI: 10.1021/acs.jproteome.8b00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Argentini
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg 79110, Germany
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Caleb Easterly
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Pratik Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis 55455, United States
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
127
|
Kovalchik KA, Colborne S, Spencer SE, Sorensen PH, Chen DDY, Morin GB, Hughes CS. RawTools: Rapid and Dynamic Interrogation of Orbitrap Data Files for Mass Spectrometer System Management. J Proteome Res 2018; 18:700-708. [PMID: 30462513 DOI: 10.1021/acs.jproteome.8b00721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimizing the quality of proteomics data collected from a mass spectrometer (MS) requires careful selection of acquisition parameters and proper assessment of instrument performance. Software tools capable of extracting a broad set of information from raw files, including meta, scan, quantification, and identification data, are needed to provide guidance for MS system management. In this work, direct extraction and utilization of these data is demonstrated using RawTools, a standalone tool for extracting meta and scan data directly from raw MS files generated on Thermo Orbitrap instruments. RawTools generates summarized and detailed plain text outputs after parsing individual raw files, including scan rates and durations, duty cycle characteristics, precursor and reporter ion quantification, and chromatography performance. RawTools also contains a diagnostic module that includes an optional "preview" database search for facilitating informed decision-making related to optimization of MS performance based on a variety of metrics. RawTools has been developed in C# and utilizes the Thermo RawFileReader library and thus can process raw MS files with high speed and high efficiency on all major operating systems (Windows, MacOS, Linux). To demonstrate the utility of RawTools, the extraction of meta and scan data from both individual and large collections of raw MS files was carried out to identify problematic characteristics of instrument performance. Taken together, the combined rich feature-set of RawTools with the capability for interrogation of MS and experiment performance makes this software a valuable tool for proteomics researchers.
Collapse
Affiliation(s)
- Kevin A Kovalchik
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada.,Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Sandra Elizabeth Spencer
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Poul H Sorensen
- Department of Molecular Oncology , British Columbia Cancer Research Centre , Vancouver , British Columbia V5Z 1L3 , Canada
| | - David D Y Chen
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Christopher S Hughes
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Molecular Oncology , British Columbia Cancer Research Centre , Vancouver , British Columbia V5Z 1L3 , Canada
| |
Collapse
|
128
|
Fedchenko VI, Kopylov AT, Buneeva OA, Kaloshin AA, Zgoda VG, Medvedev AE. Proteomic profiling data of HEK293 proteins bound to human recombinant renalases-1 and -2. Data Brief 2018; 21:1477-1482. [PMID: 30456273 PMCID: PMC6234383 DOI: 10.1016/j.dib.2018.10.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Renalase (RNLS) is a recently discovered protein involved in blood pressure regulation. It exists both as an intracellular catalytically active flavoprotein (EC 1.6.3.5 dihydro-NAD(P):oxygen oxidoreductase) and an extracellular protein that demonstrates various cell protecting effects. Using a twenty-membered peptide corresponding to the residues 220-239 of the renalase sequence (RP-220) and the HK-2 cell line Wang et al. identified a renalase-binding protein, which was considered as a receptor for extracellular renalase crucial for MAPK signaling (Wang et al., 2015) [1]. In this study we have investigated profiles of renalase binding proteins in HEK293 cells by using affinity based proteomic profiling with full-length recombinant human RNLS-1 and human RNLS-2 as affinity ligands followed by analysis of bound proteins by liquid chromatography-mass spectrometry. Both renalases (RNLS-1 and RNLS-2) contain the RP-220 sequence (residues 220-239) but differ in their C-terminal region (residues 293-342 and 293-325, respectively). Profiling of HEK293 proteins resulted in identification of two different sets of proteins specifically bound to RNLS-1 and RNLS-2, respectively. We thus demonstrate that the C-terminal region is crucial for specific binding of renalase to its targets and/or receptors.
Collapse
Affiliation(s)
- Valerii I Fedchenko
- Institute of Biomedical Chemistry, 10 Pogodinskaya street, Moscow 119121, Russia
| | - Arthur T Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya street, Moscow 119121, Russia
| | - Olga A Buneeva
- Institute of Biomedical Chemistry, 10 Pogodinskaya street, Moscow 119121, Russia
| | - Alexei A Kaloshin
- Institute of Biomedical Chemistry, 10 Pogodinskaya street, Moscow 119121, Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, 10 Pogodinskaya street, Moscow 119121, Russia
| | - Alexei E Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya street, Moscow 119121, Russia
| |
Collapse
|
129
|
Ilgisonis EV, Kopylov AT, Ponomarenko EA, Poverennaya EV, Tikhonova OV, Farafonova TE, Novikova S, Lisitsa AV, Zgoda VG, Archakov AI. Increased Sensitivity of Mass Spectrometry by Alkaline Two-Dimensional Liquid Chromatography: Deep Cover of the Human Proteome in Gene-Centric Mode. J Proteome Res 2018; 17:4258-4266. [PMID: 30354151 DOI: 10.1021/acs.jproteome.8b00754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, great interest is paid to the identification of "missing" proteins that have not been detected in any biological material at the protein level (PE1). In this paper, using the Universal Proteomic Standard sets 1 and 2 (UPS1 and UPS2, respectively) as an example, we characterized mass spectrometric approaches from the point of view of sensitivity (Sn), specificity (Sp), and accuracy (Ac). The aim of the paper was to show the utility of a mass spectra approach for protein detection. This sets consists of 48 high-purity human proteins without single aminoacid polymorphism (SAP) or post translational modification (PTM). The UPS1 set consists of the same 48 proteins at 5 pmols each, and in UPS2, proteins were grouped into 5 groups in accordance with their molar concentration, ranging from 10-11 to 10-6 M. Single peptides from the 92% and 96% of all sets of proteins could be detected in a pure solution of UPS2 and UPS1, respectively, by selected reaction monitoring with stable isotope-labeled standards (SRM-SIS). We also found that, in the presence of a biological matrix such as Escherichia coli extract or human blood plasma (HBP), SRM-SIS makes it possible to detect from 63% to 79% of proteins in the UPS2 set (sensitivity) with the highest specificity (∼100%) and an accuracy of 80% by increasing the sensitivity of shotgun and selected reaction monitoring combined with a stable-isotope-labeled peptide standard (SRM-SIS technology) by fractionating samples using reverse-phase liquid chromatography under alkaline conditions (2D-LC_alk). It is shown that this technique of sample fractionation allows the SRM-SIS to detect 98% of the single peptides from the proteins present in the pure solution of UPS2 (47 out of 48 proteins). When the extracts of E. coli or Pichia pastoris are added as biological matrixes to the UPS2, 46, and 45 out of 48 proteins (∼95%) can be detected, respectively, using the SRM-SIS combined with 2D-LC_alk. The combination of the 2D-LC_alk SRM-SIS and shotgun technologies allows us to increase the sensitivity up to 100% in the case of the proteins of the UPS2 set. The usage of that technology can be a solution for identifying the so-called "missing" proteins and, eventually, creating the deep proteome of a particular chromosome of tissue or organs. Experimental data have been deposited in the PeptideAtlas SRM Experiment Library with the dataset identifier PASS01192 and the PRIDE repository with the dataset identifier PXD007643.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Victor G Zgoda
- Institute of Biomedical Chemistry, RAS , Moscow , Russia
| | | |
Collapse
|
130
|
Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M. Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 2018; 8:16425. [PMID: 30401937 PMCID: PMC6219553 DOI: 10.1038/s41598-018-34791-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023] Open
Abstract
Fingermarks are trace evidence of great forensic importance, and their omnipresence makes them pivotal in crime investigation. Police and law enforcement authorities have exploited fingermarks primarily for personal identification, but crucial knowledge on when fingermarks were deposited is often lacking, thereby hindering crime reconstruction. Biomolecular constituents of fingermark residue, such as amino acids, lipids and proteins, may provide excellent means for fingermark age determination, however robust methodologies or detailed knowledge on molecular mechanisms in time are currently not available. Here, we address fingermark age assessment by: (i) drafting a first protein map of fingermark residue, (ii) differential studies of fresh and aged fingermarks and (iii), to mimic real-world scenarios, estimating the effects of donor contact with bodily fluids on the identification of potential age biomarkers. Using a high-resolution mass spectrometry-based proteomics approach, we drafted a characteristic fingermark proteome, of which five proteins were identified as promising candidates for fingermark age estimation. This study additionally demonstrates successful identification of both endogenous and contaminant proteins from donors that have been in contact with various bodily fluids. In summary, we introduce state-of-the-art proteomics as a sensitive tool to monitor fingermark aging on the protein level with sufficient selectivity to differentiate potential age markers from body fluid contaminants.
Collapse
Affiliation(s)
- Stijn Oonk
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Tom Schuurmans
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands
| | - Martin Pabst
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Louis C P M de Smet
- Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Wageningen University & Research, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marcel de Puit
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
131
|
Valberg SJ, Perumbakkam S, McKenzie EC, Finno CJ. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiol Genomics 2018; 50:1036-1050. [PMID: 30289745 PMCID: PMC6337024 DOI: 10.1152/physiolgenomics.00044.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Equine myofibrillar myopathy (MFM) causes exertional muscle pain and is characterized by myofibrillar disarray and ectopic desmin aggregates of unknown origin. To investigate the pathophysiology of MFM, we compared resting and 3 h postexercise transcriptomes of gluteal muscle and the resting skeletal muscle proteome of MFM and control Arabian horses with RNA sequencing and isobaric tags for relative and absolute quantitation analyses. Three hours after exercise, 191 genes were identified as differentially expressed (DE) in MFM vs. control muscle with >1 log2 fold change (FC) in genes involved in sulfur compound/cysteine metabolism such as cystathionine-beta-synthase ( CBS, ↓4.51), a cysteine and neutral amino acid membrane transporter ( SLC7A10, ↓1.80 MFM), and a cationic transporter (SLC24A1, ↓1.11 MFM). In MFM vs. control at rest, 284 genes were DE with >1 log2 FC in pathways for structure morphogenesis, fiber organization, tissue development, and cell differentiation including > 1 log2 FC in cardiac alpha actin ( ACTC1 ↑2.5 MFM), cytoskeletal desmoplakin ( DSP ↑2.4 MFM), and basement membrane usherin ( USH2A ↓2.9 MFM). Proteome analysis revealed significantly lower antioxidant peroxiredoxin 6 content (PRDX6, ↓4.14 log2 FC MFM), higher fatty acid transport enzyme carnitine palmitoyl transferase (CPT1B, ↑3.49 MFM), and lower sarcomere protein tropomyosin (TPM2, ↓3.24 MFM) in MFM vs. control muscle at rest. We propose that in MFM horses, altered cysteine metabolism and a deficiency of cysteine-containing antioxidants combined with a high capacity to oxidize fatty acids and generate ROS during aerobic exercise causes chronic oxidation and aggregation of key proteins such as desmin.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan.,Department of Population Sciences, University of Minnesota , St. Paul, Minnesota
| | - Sudeep Perumbakkam
- Department of Large Animal Clinical Sciences, Michigan State University , East Lansing, Michigan
| | - Erica C McKenzie
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University , Corvallis, Oregon
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California Davis , Davis, California
| |
Collapse
|
132
|
Naryzhny SN, Zorina ES, Kopylov AT, Zgoda VG, Kleyst OA, Archakov AI. Next Steps on in Silico 2DE Analyses of Chromosome 18 Proteoforms. J Proteome Res 2018; 17:4085-4096. [PMID: 30238754 DOI: 10.1021/acs.jproteome.8b00386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the boundaries of the chromosome-centric Human Proteome Project (c-HPP) to obtain information about proteoforms coded by chromosome 18, several cell lines (HepG2, glioblastoma, LEH), normal liver, and plasma were analyzed. In our study, we have been using proteoform separation by two-dimensional electrophoresis (2DE) (a sectional analysis) and a semivirtual 2DE with following shotgun mass spectrometry using LC-ESI-MS/MS. Previously, we published a first draft of this research, where only HepG2 cells were tested. Here, we present the next step using more detailed analysis and more samples. Altogether, confident (2 significant sequences minimum) information about proteoforms of 117 isoforms coded by 104 genes of chromosome 18 was obtained. The 3D-graphs showing distribution of different proteoforms from the same gene in the 2D map were generated. Additionally, a semivirtual 2DE approach has allowed for detecting more proteoforms and estimating their pI more precisely. Data are available via ProteomeXchange with identifier PXD010142.
Collapse
Affiliation(s)
- Stanislav N Naryzhny
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia.,Petersburg Nuclear Physics Institute , National Research Center "Kurchatov Institute" , Leningrad Region , Gatchina 188300 , Russia
| | - Elena S Zorina
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| | - Arthur T Kopylov
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| | - Olga A Kleyst
- Petersburg Nuclear Physics Institute , National Research Center "Kurchatov Institute" , Leningrad Region , Gatchina 188300 , Russia
| | - Alexander I Archakov
- Institute of Biomedical Chemistry of Russian Academy of Medical Sciences , Pogodinskaya 10 , Moscow 119121 , Russia
| |
Collapse
|
133
|
moFF: a robust and automated approach to extract peptide ion intensities. Nat Methods 2018; 13:964-966. [PMID: 27898063 DOI: 10.1038/nmeth.4075] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
134
|
Kumari N, Grimbs A, D'Souza RN, Verma SK, Corno M, Kuhnert N, Ullrich MS. Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Res Int 2018; 111:137-147. [DOI: 10.1016/j.foodres.2018.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
|
135
|
González Coraspe JA, Weis J, Anderson ME, Münchberg U, Lorenz K, Buchkremer S, Carr S, Zahedi RP, Brauers E, Michels H, Sunada Y, Lochmüller H, Campbell KP, Freier E, Hathazi D, Roos A. Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skelet Muscle 2018; 8:28. [PMID: 30153853 PMCID: PMC6114045 DOI: 10.1186/s13395-018-0173-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. Methods We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. Results Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. Conclusions Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity. Electronic supplementary material The online version of this article (10.1186/s13395-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mary E Anderson
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ute Münchberg
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kristina Lorenz
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephanie Carr
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - René Peiman Zahedi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H4A 3T2, Canada.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Hannah Michels
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hanns Lochmüller
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK.,Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erik Freier
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Denisa Hathazi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|
136
|
Buneeva O, Kopylov A, Kapitsa I, Ivanova E, Zgoda V, Medvedev A. The Effect of Neurotoxin MPTP and Neuroprotector Isatin on the Profile of Ubiquitinated Brain Mitochondrial Proteins. Cells 2018; 7:E91. [PMID: 30065189 PMCID: PMC6115780 DOI: 10.3390/cells7080091] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are a crucial target for the actions of neurotoxins, causing symptoms of Parkinson's disease in various experimental animal models, and also neuroprotectors. There is evidence that mitochondrial dysfunction induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) influences functioning of the ubiquitin-proteasomal system (UPS) responsible for selective proteolytic degradation of proteins from various intracellular compartments (including mitochondria) and neuroprotective effects of certain anti-Parkisonian agents (monoamine oxidase inhibitors) may be associated with their effects on the UPS. In this study, we have investigated the effect of the neurotoxin MPTP and neuroprotector isatin, and their combination on the profile of ubiquitinated brain mitochondrial proteins. The development of movement disorders induced by MPTP administration caused dramatic changes in the profile of ubiquitinated proteins associated with mitochondria. Pretreatment with the neuroprotector isatin decreased manifestations of MPTP-induced Parkinsonism, and had a significant impact on the profile of ubiquitinated mitochondrial proteins (including oxidative modified proteins). Administration of isatin alone to intact mice also influenced the profile of ubiquitinated mitochondrial proteins, and increased the proportion of oxidized proteins carrying the ubiquitination signature. These alterations in the ubiquitination of mitochondrial proteins observed within 2 h after administration of MPTP and isatin obviously reflect immediate short-term biological responses to these treatments.
Collapse
Affiliation(s)
- Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Arthur Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Inga Kapitsa
- Zakusov Institute of Pharmacology, 8 Baltiskaya Street, Moscow 124315, Russia.
| | - Elena Ivanova
- Zakusov Institute of Pharmacology, 8 Baltiskaya Street, Moscow 124315, Russia.
| | - Victor Zgoda
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| |
Collapse
|
137
|
Sinitcyn P, Rudolph JD, Cox J. Computational Methods for Understanding Mass Spectrometry–Based Shotgun Proteomics Data. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013516] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computational proteomics is the data science concerned with the identification and quantification of proteins from high-throughput data and the biological interpretation of their concentration changes, posttranslational modifications, interactions, and subcellular localizations. Today, these data most often originate from mass spectrometry–based shotgun proteomics experiments. In this review, we survey computational methods for the analysis of such proteomics data, focusing on the explanation of the key concepts. Starting with mass spectrometric feature detection, we then cover methods for the identification of peptides. Subsequently, protein inference and the control of false discovery rates are highly important topics covered. We then discuss methods for the quantification of peptides and proteins. A section on downstream data analysis covers exploratory statistics, network analysis, machine learning, and multiomics data integration. Finally, we discuss current developments and provide an outlook on what the near future of computational proteomics might bear.
Collapse
Affiliation(s)
- Pavel Sinitcyn
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jan Daniel Rudolph
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
138
|
Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Res Int 2018; 109:506-516. [DOI: 10.1016/j.foodres.2018.04.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
|
139
|
Levitsky LI, Ivanov MV, Lobas AA, Bubis JA, Tarasova IA, Solovyeva EM, Pridatchenko ML, Gorshkov MV. IdentiPy: An Extensible Search Engine for Protein Identification in Shotgun Proteomics. J Proteome Res 2018; 17:2249-2255. [PMID: 29682971 DOI: 10.1021/acs.jproteome.7b00640] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present an open-source, extensible search engine for shotgun proteomics. Implemented in Python programming language, IdentiPy shows competitive processing speed and sensitivity compared with the state-of-the-art search engines. It is equipped with a user-friendly web interface, IdentiPy Server, enabling the use of a single server installation accessed from multiple workstations. Using a simplified version of X!Tandem scoring algorithm and its novel "autotune" feature, IdentiPy outperforms the popular alternatives on high-resolution data sets. Autotune adjusts the search parameters for the particular data set, resulting in improved search efficiency and simplifying the user experience. IdentiPy with the autotune feature shows higher sensitivity compared with the evaluated search engines. IdentiPy Server has built-in postprocessing and protein inference procedures and provides graphic visualization of the statistical properties of the data set and the search results. It is open-source and can be freely extended to use third-party scoring functions or processing algorithms and allows customization of the search workflow for specialized applications.
Collapse
Affiliation(s)
- Lev I Levitsky
- Moscow Institute of Physics and Technology , 9 Institutskiy per. , Dolgoprudny , Moscow Region 141700 , Russian Federation.,V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Mark V Ivanov
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Anna A Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Julia A Bubis
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Irina A Tarasova
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Elizaveta M Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Marina L Pridatchenko
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| | - Mikhail V Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics , Russian Academy of Sciences , 38 Leninsky Pr., Bld. 2 , Moscow 119334 , Russia
| |
Collapse
|
140
|
Boczonadi V, Meyer K, Gonczarowska-Jorge H, Griffin H, Roos A, Bartsakoulia M, Bansagi B, Ricci G, Palinkas F, Zahedi RP, Bruni F, Kaspar B, Lochmüller H, Boycott KM, Müller JS, Horvath R. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum Mol Genet 2018; 27:2187-2204. [PMID: 29648643 PMCID: PMC5985729 DOI: 10.1093/hmg/ddy127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Kathrin Meyer
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Humberto Gonczarowska-Jorge
- Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany,CAPES Foundation, Ministry of Education of Brazil, Brazil
| | - Helen Griffin
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Andreas Roos
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Marina Bartsakoulia
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Boglarka Bansagi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Giulia Ricci
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Fanni Palinkas
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Francesco Bruni
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, NE2 4HH Newcastle upon Tyne, UK,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Brian Kaspar
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Neuroscience, Molecular, Cellular, and Developmental Biology Graduate Program and Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Hanns Lochmüller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg 79160, Germany,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Kym M Boycott
- Department of Genetics, CHEO Research Institute, University of Ottawa, K1H 8L1 Ottawa, Canada
| | - Juliane S Müller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,To whom correspondence should be addressed at: Institute of Genetic Medicine, Newcastle University, Central Parkway, NE1 3BZ Newcastle upon Tyne, UK. Tel: +44 1912418855; Fax: +44 1912418666;
| |
Collapse
|
141
|
Barsnes H, Vaudel M. SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines. J Proteome Res 2018; 17:2552-2555. [PMID: 29774740 DOI: 10.1021/acs.jproteome.8b00175] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mass-spectrometry-based proteomics has become the standard approach for identifying and quantifying proteins. A vital step consists of analyzing experimentally generated mass spectra to identify the underlying peptide sequences for later mapping to the originating proteins. We here present the latest developments in SearchGUI, a common open-source interface for the most frequently used freely available proteomics search and de novo engines that has evolved into a central component in numerous bioinformatics workflows.
Collapse
Affiliation(s)
| | - Marc Vaudel
- Center for Medical Genetics and Molecular Medicine , Haukeland University Hospital , 5021 Bergen , Norway
| |
Collapse
|
142
|
Peng X, Xu X, Wang Y, Hawke DH, Yu S, Han L, Zhou Z, Mojumdar K, Jeong KJ, Labrie M, Tsang YH, Zhang M, Lu Y, Hwu P, Scott KL, Liang H, Mills GB. A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. Cancer Cell 2018; 33:817-828.e7. [PMID: 29706454 PMCID: PMC5953833 DOI: 10.1016/j.ccell.2018.03.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 01/30/2023]
Abstract
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels. The edited COPA protein increases proliferation, migration, and invasion of cancer cells in vitro. Our study suggests an important contribution of A-to-I RNA editing to protein diversity in cancer and highlights its translational potential.
Collapse
Affiliation(s)
- Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyan Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - David H Hawke
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marilyne Labrie
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minying Zhang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
143
|
Chen H, Shi P, Fan F, Tu M, Xu Z, Xu X, Du M. Complementation of UPLC-Q-TOF-MS and CESI-Q-TOF-MS on identification and determination of peptides from bovine lactoferrin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:150-157. [DOI: 10.1016/j.jchromb.2018.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
|
144
|
Eichenberger RM, Ryan S, Jones L, Buitrago G, Polster R, Montes de Oca M, Zuvelek J, Giacomin PR, Dent LA, Engwerda CR, Field MA, Sotillo J, Loukas A. Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice. Front Immunol 2018; 9:850. [PMID: 29760697 PMCID: PMC5936971 DOI: 10.3389/fimmu.2018.00850] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite–host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1β, IFNγ, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD.
Collapse
Affiliation(s)
- Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Stephanie Ryan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Linda Jones
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Geraldine Buitrago
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Ramona Polster
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Marcela Montes de Oca
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jennifer Zuvelek
- Pathology Queensland Cairns Laboratory, Queensland Health, Cairns, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Lindsay A Dent
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew A Field
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
145
|
Kovalchik KA, Moggridge S, Chen DDY, Morin GB, Hughes CS. Parsing and Quantification of Raw Orbitrap Mass Spectrometer Data Using RawQuant. J Proteome Res 2018; 17:2237-2247. [DOI: 10.1021/acs.jproteome.8b00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin A. Kovalchik
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sophie Moggridge
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1G1, Canada
| | - David D. Y. Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1G1, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Christopher S. Hughes
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1G1, Canada
| |
Collapse
|
146
|
Intrinsically-disordered N-termini in human parechovirus 1 capsid proteins bind encapsidated RNA. Sci Rep 2018; 8:5820. [PMID: 29643409 PMCID: PMC5895611 DOI: 10.1038/s41598-018-23552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
Human parechoviruses (HPeV) are picornaviruses with a highly-ordered RNA genome contained within icosahedrally-symmetric capsids. Ordered RNA structures have recently been shown to interact with capsid proteins VP1 and VP3 and facilitate virus assembly in HPeV1. Using an assay that combines reversible cross-linking, RNA affinity purification and peptide mass fingerprinting (RCAP), we mapped the RNA-interacting regions of the capsid proteins from the whole HPeV1 virion in solution. The intrinsically-disordered N-termini of capsid proteins VP1 and VP3, and unexpectedly, VP0, were identified to interact with RNA. Comparing these results to those obtained using recombinantly-expressed VP0 and VP1 confirmed the virion binding regions, and revealed unique RNA binding regions in the isolated VP0 not previously observed in the crystal structure of HPeV1. We used RNA fluorescence anisotropy to confirm the RNA-binding competency of each of the capsid proteins’ N-termini. These findings suggests that dynamic interactions between the viral RNA and the capsid proteins modulate virus assembly, and suggest a novel role for VP0.
Collapse
|
147
|
Feng J, Ding C, Qiu N, Ni X, Zhan D, Liu W, Xia X, Li P, Lu B, Zhao Q, Nie P, Song L, Zhou Q, Lai M, Guo G, Zhu W, Ren J, Shi T, Qin J. Firmiana: towards a one-stop proteomic cloud platform for data processing and analysis. Nat Biotechnol 2018; 35:409-412. [PMID: 28486446 DOI: 10.1038/nbt.3825] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinwen Feng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China.,The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China.,State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Naiqi Qiu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China.,The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China.,The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China.,The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wanlin Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Peng Li
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bingxin Lu
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Mi Lai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Gaigai Guo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Weimin Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, China.,State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
148
|
Moggridge S, Sorensen PH, Morin GB, Hughes CS. Extending the Compatibility of the SP3 Paramagnetic Bead Processing Approach for Proteomics. J Proteome Res 2018; 17:1730-1740. [PMID: 29565595 DOI: 10.1021/acs.jproteome.7b00913] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The diversity in protein and peptide biochemistry necessitates robust protocols and reagents for efficiently handling and enriching these molecules prior to analysis with mass spectrometry (MS) or other techniques. Further exploration of the paramagnetic bead-based approach, single-pot solid-phase-enhanced sample preparation (SP3), is carried out toward updating and extending previously described conditions and experimental workflows. The SP3 approach was tested in a wide range of experimental scenarios, including (1) binding solvents (acetonitrile, ethanol, isopropanol, acetone), (2) binding pH (acidic vs neutral), (3) solvent/lysate ratios (50-200%, v/v), (4) mixing and rinsing conditions (on-rack vs off-rack rinsing), (5) Enrichment of nondenatured proteins, and (6) capture of individual proteins from noncomplex mixtures. These results highlight the robust handling of proteins in a broad set of scenarios while also enabling the development of a modified SP3 workflow that offers extended compatibility. The modified SP3 approach is used in quantitative in-depth proteome analyses to compare it with commercial paramagnetic bead-based HILIC methods (MagReSyn) and across multiple binding conditions (e.g., pH and solvent during binding). Together, these data reveal the extensive quantitative coverage of the proteome possible with SP3 independent of the binding approach utilized. The results further establish the utility of SP3 for the unbiased handling of peptides and proteins for proteomic applications.
Collapse
Affiliation(s)
- Sophie Moggridge
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia V8P 3E6 , Canada
| | - Poul H Sorensen
- Department of Molecular Oncology , British Columbia Cancer Research Centre , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia V6H 3N1 , Canada
| | - Christopher S Hughes
- Canada's Michael Smith Genome Sciences Centre , British Columbia Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| |
Collapse
|
149
|
Joyce B, Lee D, Rubio A, Ogurtsov A, Alves G, Yu YK. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics. BMC Res Notes 2018; 11:182. [PMID: 29544540 PMCID: PMC5856202 DOI: 10.1186/s13104-018-3289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/09/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. RESULTS We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .
Collapse
Affiliation(s)
- Brendan Joyce
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Danny Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Alex Rubio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Aleksey Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Gelio Alves
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Yi-Kuo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| |
Collapse
|
150
|
Relative Abundance of Proteins in Blood Plasma Samples from Patients with Chronic Cerebral Ischemia. J Mol Neurosci 2018; 64:440-448. [PMID: 29508191 DOI: 10.1007/s12031-018-1040-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022]
Abstract
A comparative protein profile analysis of 17 blood plasma samples from patients with ischemia and 20 samples from healthy volunteers was carried out using ultra-high resolution mass spectrometry. The analysis of measurements was performed using the proteomics search engine OMSSA. Normalized spectrum abundance factor (NSAF) in the biological samples was assessed using SearchGUI. The findings of mass spectrometry analysis of the protein composition of blood plasma samples demonstrate that the depleted samples are quite similar in protein composition and relative abundance of proteins. By comparing them with the control samples, we have found a small group of 44 proteins characteristic of the blood plasma samples from patients with chronic cerebral ischemia. These proteins contribute to the processes of homeostasis maintenance, including innate immune response unfolding, the response of a body to stress, and contribution to the blood clotting cascade.
Collapse
|