101
|
Ibrahim S, Froehlich BC, Aguilar-Mahecha A, Aloyz R, Poetz O, Basik M, Batist G, Zahedi RP, Borchers CH. Using Two Peptide Isotopologues as Internal Standards for the Streamlined Quantification of Low-Abundance Proteins by Immuno-MRM and Immuno-MALDI. Anal Chem 2020; 92:12407-12414. [DOI: 10.1021/acs.analchem.0c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
| | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Raquel Aloyz
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen 72770, Germany
- SIGNATOPE GmbH, Reutlingen 72770, Germany
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - Gerald Batist
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria V8Z 7X8, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montréal, Québec H3T 1E2, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
102
|
Prieto M, Folci A, Martin S. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction. Mol Psychiatry 2020; 25:1688-1703. [PMID: 31822816 DOI: 10.1038/s41380-019-0629-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein essential to the regulation of local translation at synapses. In the mammalian brain, synapses are constantly formed and eliminated throughout development to achieve functional neuronal networks. At the molecular level, thousands of proteins cooperate to accomplish efficient neuronal communication. Therefore, synaptic protein levels and their functional interactions need to be tightly regulated. FMRP generally acts as a translational repressor of its mRNA targets. FMRP is the target of several post-translational modifications (PTMs) that dynamically regulate its function. Here we provide an overview of the PTMs controlling the FMRP function and discuss how their spatiotemporal interplay contributes to the physiological regulation of FMRP. Importantly, FMRP loss-of-function leads to Fragile X syndrome (FXS), a rare genetic developmental condition causing a range of neurological alterations including intellectual disability (ID), learning and memory impairments, autistic-like features and seizures. Here, we also explore the possibility that recently reported missense mutations in the FMR1 gene disrupt the PTM homoeostasis of FMRP, thus participating in the aetiology of FXS. This suggests that the pharmacological targeting of PTMs may be a promising strategy to develop innovative therapies for patients carrying such missense mutations.
Collapse
Affiliation(s)
- Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
| |
Collapse
|
103
|
Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2020; 78:427-445. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.
Collapse
|
104
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
105
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
106
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
107
|
The Power of Three in Cannabis Shotgun Proteomics: Proteases, Databases and Search Engines. Proteomes 2020; 8:proteomes8020013. [PMID: 32549361 PMCID: PMC7356525 DOI: 10.3390/proteomes8020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Cannabis research has taken off since the relaxation of legislation, yet proteomics is still lagging. In 2019, we published three proteomics methods aimed at optimizing protein extraction, protein digestion for bottom-up and middle-down proteomics, as well as the analysis of intact proteins for top-down proteomics. The database of Cannabis sativa proteins used in these studies was retrieved from UniProt, the reference repositories for proteins, which is incomplete and therefore underrepresents the genetic diversity of this non-model species. In this fourth study, we remedy this shortcoming by searching larger databases from various sources. We also compare two search engines, the oldest, SEQUEST, and the most popular, Mascot. This shotgun proteomics experiment also utilizes the power of parallel digestions with orthogonal proteases of increasing selectivity, namely chymotrypsin, trypsin/Lys-C and Asp-N. Our results show that the larger the database the greater the list of accessions identified but the longer the duration of the search. Using orthogonal proteases and different search algorithms increases the total number of proteins identified, most of them common despite differing proteases and algorithms, but many of them unique as well.
Collapse
|
108
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
109
|
Hoogerheide DP, Gurnev PA, Rostovtseva TK, Bezrukov SM. Effect of a post-translational modification mimic on protein translocation through a nanopore. NANOSCALE 2020; 12:11070-11078. [PMID: 32400834 PMCID: PMC7350168 DOI: 10.1039/d0nr01577f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) of proteins are recognized as crucial components of cell signaling pathways through modulating folding, altering stability, changing interactions with ligands, and, therefore, serving multiple regulatory functions. PTMs occur as covalent modifications of the protein's amino acid side chains or the length and composition of their termini. Here we study the functional consequences of PTMs for α-synuclein (αSyn) interactions with the nanopore of the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. PTMs were mimicked by a divalent Alexa Fluor 488 sidechain attached separately at two positions on the αSyn C-terminus. Using single-channel reconstitution into planar lipid membranes, we find that such modifications change interactions drastically in both efficiency of VDAC inhibition by αSyn and its translocation through the VDAC nanopore. Analysis of the on/off kinetics in terms of an interaction "quasipotential" allows the positions of the C-terminal modifications to be determined with an accuracy of about three residues. Moreover, our results uncover a previously unobserved mechanism by which cytosolic proteins control β-barrel channels and thus a new regulatory function for PTMs.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Philip A Gurnev
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
110
|
Huang KY, Lee TY, Kao HJ, Ma CT, Lee CC, Lin TH, Chang WC, Huang HD. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res 2020; 47:D298-D308. [PMID: 30418626 PMCID: PMC6323979 DOI: 10.1093/nar/gky1074] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022] Open
Abstract
The dbPTM (http://dbPTM.mbc.nctu.edu.tw/) has been maintained for over 10 years with the aim to provide functional and structural analyses for post-translational modifications (PTMs). In this update, dbPTM not only integrates more experimentally validated PTMs from available databases and through manual curation of literature but also provides PTM-disease associations based on non-synonymous single nucleotide polymorphisms (nsSNPs). The high-throughput deep sequencing technology has led to a surge in the data generated through analysis of association between SNPs and diseases, both in terms of growth amount and scope. This update thus integrated disease-associated nsSNPs from dbSNP based on genome-wide association studies. The PTM substrate sites located at a specified distance in terms of the amino acids encoded from nsSNPs were deemed to have an association with the involved diseases. In recent years, increasing evidence for crosstalk between PTMs has been reported. Although mass spectrometry-based proteomics has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that the crosstalk of combinatorial PTMs may act in concert with the regulation of protein function and activity is neglected. Because of the relatively limited information about concurrent frequency and functional relevance of PTM crosstalk, in this update, the PTM sites neighboring other PTM sites in a specified window length were subjected to motif discovery and functional enrichment analysis. This update highlights the current challenges in PTM crosstalk investigation and breaks the bottleneck of how proteomics may contribute to understanding PTM codes, revealing the next level of data complexity and proteomic limitation in prospective PTM research.
Collapse
Affiliation(s)
- Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hui-Ju Kao
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chen-Tse Ma
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chao-Chun Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tsai-Hsuan Lin
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
111
|
Aggarwal S, Banerjee SK, Talukdar NC, Yadav AK. Post-translational Modification Crosstalk and Hotspots in Sirtuin Interactors Implicated in Cardiovascular Diseases. Front Genet 2020; 11:356. [PMID: 32425973 PMCID: PMC7204943 DOI: 10.3389/fgene.2020.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 01/07/2023] Open
Abstract
Sirtuins are protein deacetylases that play a protective role in cardiovascular diseases (CVDs), as well as many other diseases. Absence of sirtuins can lead to hyperacetylation of both nuclear and mitochondrial proteins leading to metabolic dysregulation. The protein post-translational modifications (PTMs) are known to crosstalk among each other to bring about complex phenotypic outcomes. Various PTM types such as acetylation, ubiquitination, and phosphorylation, and so on, drive transcriptional regulation and metabolism, but such crosstalks are poorly understood. We integrated protein–protein interactions (PPI) and PTMs from several databases to integrate information on 1,251 sirtuin-interacting proteins, of which 544 are associated with cardiac diseases. Based on the ∼100,000 PTM sites obtained for sirtuin interactors, we observed that the frequency of PTM sites (83 per protein), as well as PTM types (five per protein), is higher than the global average for human proteome. We found that ∼60–70% PTM sites fall into ordered regions. Approximately 83% of the sirtuin interactors contained at least one competitive crosstalk (in situ) site, with half of the sites occurring in CVD-associated proteins. A large proportion of identified crosstalk sites were observed for acetylation and ubiquitination competition. We identified 614 proteins containing PTM hotspots (≥5 PTM sites) and 133 proteins containing crosstalk hotspots (≥3 crosstalk sites). We observed that a large proportion of disease-associated sequence variants were found in PTM motifs of CVD proteins. We identified seven proteins (TP53, LMNA, MAPT, ATP2A2, NCL, APEX1, and HIST1H3A) containing disease-associated variants in PTM and crosstalk hotspots. This is the first comprehensive bioinformatics analysis on sirtuin interactors with respect to PTMs and their crosstalks. This study forms a platform for generating interesting hypotheses that can be tested for a deeper mechanistic understanding gained or derived from big-data analytics.
Collapse
Affiliation(s)
- Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.,Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Sanjay K Banerjee
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Narayan Chandra Talukdar
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
112
|
Rinfret Robert C, McManus FP, Lamoliatte F, Thibault P. Interplay of Ubiquitin-Like Modifiers Following Arsenic Trioxide Treatment. J Proteome Res 2020; 19:1999-2010. [PMID: 32223133 DOI: 10.1021/acs.jproteome.9b00807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arsenic trioxide (ATO) is a therapeutic agent used to treat acute promyelocytic leukemia (APL), a disease caused by a chromosomal translocation of the retinoic acid receptor α (RARα) gene that can occur reciprocally with the promyelocytic leukemia (PML) gene. The mechanisms through which ATO exerts its effects on cells are not fully characterized though they involve the SUMOylation, the ubiquitylation, and the degradation of the PML/RARα oncoprotein through the PML moiety. To better understand the mechanisms that underlie the cytotoxicity induced with increasing ATO levels, we profiled the changes in protein SUMOylation, phosphorylation, and ubiquitylation on HEK293 cells following exposure to low (1 μM) or elevated (10 μM) ATO for 4 h. Our analyses revealed that a low dose of ATO resulted in the differential modification of selected substrates including the SUMOylation (K380, K394, K490, and K497) and ubiquitylation (K337, K401) of PML. These experiments also highlighted a number of unexpected SUMOylated substrates involved in DNA damage response (e.g., PCNA, YY1, and poly[ADP-ribose] polymerase 1 (PARP1)) and messenger RNA (mRNA) splicing (e.g., ACIN1, USP39, and SART1) that were regulated at higher ATO concentrations. Interestingly, additional enzymatic assays revealed that SUMOylation of PARP1 impeded its proteolytic cleavage by caspase-3, suggesting that SUMOylation could have a protective role in delaying cell apoptosis.
Collapse
Affiliation(s)
- Clémence Rinfret Robert
- Institute for Research in Immunology and Cancer, Montreal, Québec H3T 1J4, Canada.,Department of Biochemistry, University of Montréal, Montreal, Québec H3T 1J4, Canada
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Montreal, Québec H3T 1J4, Canada
| | - Frédéric Lamoliatte
- Institute for Research in Immunology and Cancer, Montreal, Québec H3T 1J4, Canada.,Department of Chemistry, University of Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, Québec H3T 1J4, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montreal, Québec H3T 1J4, Canada.,Department of Biochemistry, University of Montréal, Montreal, Québec H3T 1J4, Canada.,Department of Chemistry, University of Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, Québec H3T 1J4, Canada
| |
Collapse
|
113
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
114
|
Cheng YM, Peng Z, Chen HY, Pan TT, Hu XN, Wang F, Luo T. Posttranslational lysine 2-hydroxyisobutyrylation of human sperm tail proteins affects motility. Hum Reprod 2020; 35:494-503. [PMID: 32142584 DOI: 10.1093/humrep/dez296] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Does lysine 2-hydroxyisobutyrylation, a newly identified protein posttranslational modification (PTM), occur in human sperm and affect human sperm function? SUMMARY ANSWER Lysine 2-hydroxyisobutyrylation mainly occurs in human sperm tail proteins, and excessive lysine 2-hydroxyisobutyrylation affects human sperm motility. WHAT IS KNOWN ALREADY PTM is regarded as an important pathway in regulating sperm function since mature sperm are almost transcriptionally silent. However, only phosphorylation was extensively studied in mature sperm to date. Lysine 2-hydroxyisobutyrylation, a newly characterised PTM, is broadly conserved in both eukaryotic and prokaryotic cells. Although histone lysine 2-hydroxyisobutyrylation has been shown to be associated with active gene expression in spermatogenic cells, the presence, regulatory elements and function of lysine 2-hydroxyisobutyrylation have not been characterised in mature sperm. STUDY DESIGN, SIZE, DURATION Sperm samples were obtained from normozoospermic men and asthenozoospermic men who visited the reproductive medical centre at Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China, between May 2017 and November 2018. In total, 58 normozoospermic men and 65 asthenozoospermic men were recruited to participate in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Lysine 2-hydroxyisobutyrylation was examined using immunoblotting and immunofluorescence assays using a previously qualified pan anti-lysine 2-hydroxyisobutyrylation antibody. The immunofluorescence assay was imaged using super-resolution structured illumination microscopy. Sperm viability was examined by using the eosin staining method, and sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm penetration ability was determined by evaluating the ability of the sperm to penetrate a 1% (w/v) methylcellulose solution. The level of intracellular adenosine triphosphate (ATP) was detected using a rapid bioluminescent ATP assay kit. MAIN RESULTS AND THE ROLE OF CHANCE Lysine 2-hydroxyisobutyrylation was present in several proteins (20-100 kDa) mainly located in the tail of human sperm. Sperm lysine 2-hydroxyisobutyrylation was derived from 2-hydroxyisobutyrate (2-Hib) and was regulated by acyltransferase P300 and nicotinamide adenine dinucleotide-dependent lysine deacylase sirtuins. Elevation of sperm lysine 2-hydroxyisobutyrylation by 2-Hib decreased total motility, progressive motility, penetration ability and ATP level of human sperm. Interestingly, the level of sperm lysine 2-hydroxyisobutyrylation was higher in asthenozoospermic men than that in normozoospermic men and was negatively correlated with the progressive motility of human sperm. Furthermore, high levels of lysine 2-hydroxyisobutyrylation in asthenozoospermic men accompanied decreased ATP levels. LIMITATIONS, REASONS FOR CAUTION Although the present study indicated the involvement of sperm lysine 2-hydroxyisobutyrylation in regulating human sperm motility, the underlying mechanism needs to be further illustrated. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study provide insight into the novel role of lysine 2-hydroxyisobutyrylation in human sperm and suggest that abnormality of sperm lysine 2-hydroxyisobutyrylation may be one of the causes for asthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) National Natural Science Foundation of China (81771644 to T.L. and 81871207 to H.C.); Natural Science Foundation of Jiangxi province (20171ACB21006). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.,Department of Pharmacy, the First People's Hospital of Yichun City in Jiangxi Province, Yichun 336000, China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, PR China
| | - Ting-Ting Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xiao-Nian Hu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
115
|
Chen D, Wang L, Lee TH. Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1. Front Cell Dev Biol 2020; 8:129. [PMID: 32195254 PMCID: PMC7064559 DOI: 10.3389/fcell.2020.00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) Pin1 is a unique enzyme that only binds to Ser/Thr-Pro peptide motifs after phosphorylation and regulates the conformational changes of the bond. The Pin1-catalyzed isomerization upon phosphorylation can have profound effects on substrate biological functions, including their activity, stability, assembly, and subcellular localization, affecting its role in intracellular signaling, transcription, and cell cycle progression. The functions of Pin1 are regulated by post-translational modifications (PTMs) in many biological processes, which include phosphorylation, ubiquitination, SUMOylation and oxidation. Phosphorylation of different Pin1 sites regulates Pin1 enzymatic activity, binding ability, localization, and ubiquitination by different kinases under various cellular contexts. Moreover, SUMOylation and oxidation have been shown to downregulate Pin1 activity. Although Pin1 is tightly regulated under physiological conditions, deregulation of Pin1 PTMs contributes to the development of human diseases including cancer and Alzheimer's disease (AD). Therefore, manipulating the PTMs of Pin1 may be a promising therapeutic option for treating various human diseases. In this review, we focus on the molecular mechanisms of Pin1 regulation by PTMs and the major impact of Pin1 PTMs on the progression of cancer and AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
116
|
Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. SUMO conjugation regulates immune signalling. Fly (Austin) 2020; 14:62-79. [PMID: 32777975 PMCID: PMC7714519 DOI: 10.1080/19336934.2020.1808402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) are critical drivers and attenuators for proteins that regulate immune signalling cascades in host defence. In this review, we explore functional roles for one such PTM, the small ubiquitin-like modifier (SUMO). Very few of the SUMO conjugation targets identified by proteomic studies have been validated in terms of their roles in host defence. Here, we compare and contrast potential SUMO substrate proteins in immune signalling for flies and mammals, with an emphasis on NFκB pathways. We discuss, using the few mechanistic studies that exist for validated targets, the effect of SUMO conjugation on signalling and also explore current molecular models that explain regulation by SUMO. We also discuss in detail roles of evolutionary conservation of mechanisms, SUMO interaction motifs, crosstalk of SUMO with other PTMs, emerging concepts such as group SUMOylation and finally, the potentially transforming roles for genome-editing technologies in studying the effect of PTMs.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amarendranath Soory
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | | | | |
Collapse
|
117
|
Xie X, Shah S, Holtz A, Rose J, Basisty N, Schilling B. Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization. J Vis Exp 2020:10.3791/60780. [PMID: 32176209 PMCID: PMC7275731 DOI: 10.3791/60780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Studying multiple post-translational modifications (PTMs) of proteins is a crucial step to understand PTM crosstalk and gain more holistic insights into protein function. Despite the importance of multi-PTM enrichment studies, few studies investigate more than one PTM at a time, due partially to the expenses, time, and large protein quantities required to perform multiple global proteomic analysis of PTMs. The "one-pot" affinity enrichment detailed in this protocol overcomes these barriers by permitting the simultaneous identification and quantification of peptides with lysine residues containing acetylation and succinylation PTMs with low amounts of sample input. The protocol involves preparation of protein lysate from mouse livers of SIRT5 knockout mice, performance of trypsin digestion, enrichment for PTMs, and performance of mass spectrometric analysis using a data-independent acquisition (DIA) workflow. Because this workflow allows for the enrichment of two PTMs from the same sample simultaneously, it provides a practical tool to study PTM crosstalk without requiring large amounts of samples, and it greatly reduces the time required for sample preparation, data acquisition, and analysis. The DIA component of the workflow provides comprehensive PTM-specific information. This is particularly important when studying PTM site localization, as DIA provides comprehensive sets of fragment ions that can be computationally deciphered to differentiate between different PTM localization isoforms.
Collapse
|
118
|
Golkowski M, Vidadala VN, Lau HT, Shoemaker A, Shimizu-Albergine M, Beavo J, Maly DJ, Ong SE. Kinobead/LC-MS Phosphokinome Profiling Enables Rapid Analyses of Kinase-Dependent Cell Signaling Networks. J Proteome Res 2020; 19:1235-1247. [PMID: 32037842 DOI: 10.1021/acs.jproteome.9b00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kinase-catalyzed protein phosphorylation is fundamental to eukaryotic signal transduction, regulating most cellular processes. Kinases are frequently dysregulated in cancer, inflammation, and degenerative diseases, and because they can be inhibited with small molecules, they became important drug targets. Accordingly, analytical approaches that determine kinase activation states are critically important to understand kinase-dependent signal transduction and to identify novel drug targets and predictive biomarkers. Multiplexed inhibitor beads (MIBs or kinobeads) efficiently enrich kinases from cell lysates for liquid chromatography-mass spectrometry (LC-MS) analysis. When combined with phosphopeptide enrichment, kinobead/LC-MS can also quantify the phosphorylation state of kinases, which determines their activation state. However, an efficient kinobead/LC-MS kinase phospho-profiling protocol that allows routine analyses of cell lines and tissues has not yet been developed. Here, we present a facile workflow that quantifies the global phosphorylation state of kinases with unprecedented sensitivity. We also found that our kinobead/LC-MS protocol can measure changes in kinase complex composition and show how these changes can indicate kinase activity. We demonstrate the utility of our approach in specifying kinase signaling pathways that control the acute steroidogenic response in Leydig cells; this analysis establishes the first comprehensive framework for the post-translational control of steroid biosynthesis.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | | | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Anna Shoemaker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Masami Shimizu-Albergine
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington 98109, United States
| | - Joseph Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
119
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
120
|
Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol 2020; 145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|
121
|
Fornelli L, Srzentić K, Toby TK, Doubleday PF, Huguet R, Mullen C, Melani RD, Dos Santos Seckler H, DeHart CJ, Weisbrod CR, Durbin KR, Greer JB, Early BP, Fellers RT, Zabrouskov V, Thomas PM, Compton PD, Kelleher NL. Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics. Mol Cell Proteomics 2020; 19:405-420. [PMID: 31888965 PMCID: PMC7000117 DOI: 10.1074/mcp.tir119.001638] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.
Collapse
Affiliation(s)
- Luca Fornelli
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Kristina Srzentić
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Timothy K Toby
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Peter F Doubleday
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134
| | | | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Caroline J DeHart
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208; Proteinaceous Inc., Evanston, Illinois 60201
| | - Joseph B Greer
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | | | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208.
| |
Collapse
|
122
|
Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH. Targeted and Untargeted Proteomics Approaches in Biomarker Development. Proteomics 2020; 20:e1900029. [DOI: 10.1002/pmic.201900029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vanessa Gaspar
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Georgia Mitsa
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent Lacasse
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - René P. Zahedi
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Gerald Batist
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
- Department of Data Intensive Science and EngineeringSkolkovo Institute of Science and TechnologySkolkovo Innovation Center Moscow 143026 Russia
| |
Collapse
|
123
|
Astl L, Verkhivker GM. Dynamic View of Allosteric Regulation in the Hsp70 Chaperones by J-Domain Cochaperone and Post-Translational Modifications: Computational Analysis of Hsp70 Mechanisms by Exploring Conformational Landscapes and Residue Interaction Networks. J Chem Inf Model 2020; 60:1614-1631. [DOI: 10.1021/acs.jcim.9b01045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
124
|
den Ridder M, Daran-Lapujade P, Pabst M. Shot-gun proteomics: why thousands of unidentified signals matter. FEMS Yeast Res 2019; 20:5682490. [DOI: 10.1093/femsyr/foz088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Mass spectrometry-based proteomics has become a constitutional part of the multi-omics toolbox in yeast research, advancing fundamental knowledge of molecular processes and guiding decisions in strain and product developmental pipelines. Nevertheless, post-translational protein modifications (PTMs) continue to challenge the field of proteomics. PTMs are not directly encoded in the genome; therefore, they require a sensitive analysis of the proteome itself. In yeast, the relevance of post-translational regulators has already been established, such as for phosphorylation, which can directly affect the reaction rates of metabolic enzymes. Whereas, the selective analysis of single modifications has become a broadly employed technique, the sensitive analysis of a comprehensive set of modifications still remains a challenge. At the same time, a large number of fragmentation spectra in a typical shot-gun proteomics experiment remain unidentified. It has been estimated that a good proportion of those unidentified spectra originates from unexpected modifications or natural peptide variants. In this review, recent advancements in microbial proteomics for unrestricted protein modification discovery are reviewed, and recent research integrating this additional layer of information to elucidate protein interaction and regulation in yeast is briefly discussed.
Collapse
Affiliation(s)
- Maxime den Ridder
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Martin Pabst
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
125
|
Waterhouse MP, Ugur R, Khaled WT. Therapeutic and Mechanistic Perspectives of Protein Complexes in Breast Cancer. Front Cell Dev Biol 2019; 7:335. [PMID: 31921847 PMCID: PMC6932950 DOI: 10.3389/fcell.2019.00335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer affects one in eight women making it the most common cancer in the United Kingdom, accounting for 15% of all new cancer cases. One of the main challenges in treating breast cancer is the heterogeneous nature of the disease. At present, targeted therapies are available for hormone receptor- and HER2-positive tumors. However, no targeted therapies are currently available for patients with triple negative breast cancer (TNBC). This likely contributes to the poor prognostic outcome for TNBC patients. Consequently, there is a clear clinical need for the development of novel drugs that efficiently target TNBC. Extensive genomic and transcriptomic characterization of TNBC has in recent years identified a plethora of putative oncogenes. However, these driver oncogenes are often critical in other cell types and/or transcription factors making them very difficult to target directly. Therefore, other approaches may be required for developing novel therapeutics that fully exploit the specific functions of TNBC oncogenes in tumor cells. Here, we will argue that more research is needed to identify the protein-protein interactions of TNBC oncogenes as a means for (a) mechanistically understanding the biological function of these oncogenes in TNBC and (b) providing novel therapeutic targets that can be exploited for selectively inhibiting the oncogenic roles of TNBC oncogenes in cancer cells, whilst sparing normal healthy cells.
Collapse
Affiliation(s)
| | | | - Walid T. Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
126
|
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni ME, Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem Rev 2019; 120:3261-3295. [PMID: 31809038 DOI: 10.1021/acs.chemrev.9b00395] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy allows for the derivation of the vibrational fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions. It provides insight into the nature and localization of posttranslational modifications (PTMs) affecting single amino acids and peptides. IRMPD spectroscopy, which takes advantage of the high sensitivity and resolution of MS/MS, relies on a wavelength specific fragmentation process occurring on resonance with an IR active vibrational mode of the sampled species and is well suited to reveal the presence of a PTM and its impact in the molecular environment. IRMPD spectroscopy is clearly not a proteomics tool. It is rather a valuable source of information for fixed wavelength IRMPD exploited in dissociation protocols of peptides and proteins. Indeed, from the large variety of model PTM containing amino acids and peptides which have been characterized by IRMPD spectroscopy, specific signatures of PTMs such as phosphorylation or sulfonation can be derived. High throughput workflows relying on the selective fragmentation of modified peptides within a complex mixture have thus been proposed. Sequential fragmentations can be observed upon IR activation, which do not only give rise to rich fragmentation patterns but also overcome low mass cutoff limitations in ion trap mass analyzers. Laser-based vibrational spectroscopy of mass-selected ions holding various PTMs is an increasingly expanding field both in the variety of chemical issues coped with and in the technological advancements and implementations.
Collapse
Affiliation(s)
- Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
127
|
Wang X, Li C, Li F, Sharma VS, Song J, Webb GI. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models. BMC Bioinformatics 2019; 20:602. [PMID: 31752668 PMCID: PMC6868744 DOI: 10.1186/s12859-019-3178-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND S-sulphenylation is a ubiquitous protein post-translational modification (PTM) where an S-hydroxyl (-SOH) bond is formed via the reversible oxidation on the Sulfhydryl group of cysteine (C). Recent experimental studies have revealed that S-sulphenylation plays critical roles in many biological functions, such as protein regulation and cell signaling. State-of-the-art bioinformatic advances have facilitated high-throughput in silico screening of protein S-sulphenylation sites, thereby significantly reducing the time and labour costs traditionally required for the experimental investigation of S-sulphenylation. RESULTS In this study, we have proposed a novel hybrid computational framework, termed SIMLIN, for accurate prediction of protein S-sulphenylation sites using a multi-stage neural-network based ensemble-learning model integrating both protein sequence derived and protein structural features. Benchmarking experiments against the current state-of-the-art predictors for S-sulphenylation demonstrated that SIMLIN delivered competitive prediction performance. The empirical studies on the independent testing dataset demonstrated that SIMLIN achieved 88.0% prediction accuracy and an AUC score of 0.82, which outperforms currently existing methods. CONCLUSIONS In summary, SIMLIN predicts human S-sulphenylation sites with high accuracy thereby facilitating biological hypothesis generation and experimental validation. The web server, datasets, and online instructions are freely available at http://simlin.erc.monash.edu/ for academic purposes.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
- Division of Cancer Epidemiology, Cancer Council Victoria, Melbourne, VIC 3004 Australia
| | - Chen Li
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Fuyi Li
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
| | - Varun S. Sharma
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jiangning Song
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800 Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800 Australia
| | - Geoffrey I. Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
128
|
Wu JR, Wang TY, Weng CP, Duong NKT, Wu SJ. AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. PLANTA 2019; 250:1449-1460. [PMID: 31309322 DOI: 10.1007/s00425-019-03239-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Despite AtJ3 and AtJ2 sharing a high protein-sequence identity and both being substrates of protein farnesyltransferase (PFT), AtJ3 but not AtJ2 mediates in Arabidopsis the heat-dependent phenotypes derived from farnesylation modification. Arabidopsis HEAT-INTOERANT 5 (HIT5)/ENHANCED RESPONSE TO ABA 1 (ERA1) encodes the β-subunit of the protein farnesyltransferase (PFT), and the hit5/era1 mutant is better able to tolerate heat-shock stress than the wild type. Given that Arabidopsis AtJ2 (J2) and AtJ3 (J3) are heat-shock protein 40 (HSP40) homologs, sharing 90% protein-sequence identity, and each contains a CaaX box for farnesylation; atj2 (j2) and atj3 (j3) mutants were subjected to heat-shock treatment. Results showed that j3 but not j2 manifested the heat-shock tolerant phenotype. In addition, transgenic j3 plants that expressed a CaaX- abolishing J3C417S construct maintained the same capacity to tolerate heat shock as j3. The basal transcript levels of HEAT-SHOCK PROTEIN 101 (HSP101) in hit5/era1 and j3 were higher than those in the wild type. Although the capacities of j3/hsp101 and hit5/hsp101 double mutants to tolerate heat-shock stress declined compared to those of j3 and hit5/era1, they were still greater than that of the wild type. These results show that a lack of farnesylated J3 contributes to the heat-dependent phenotypes of hit5/era1, in part by the modulation of HSP101 activity, and also indicates that (a) mediator(s) other than J3 is (are) involved in the PFT-regulated heat-stress response. In addition, because HSP40s are known to function in dimer formation, bimolecular fluorescence complementation experiments were performed, and results show that J3 could dimerize regardless of farnesylation. In sum, in this study, a specific PFT substrate was identified, and its roles in the farnesylation-regulated heat-stress responses were clarified, which could be of use in future agricultural applications.
Collapse
Affiliation(s)
- Jia-Rong Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Tzu-Yun Wang
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Chi-Pei Weng
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Ngoc Kieu Thi Duong
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, 300 Jhong-Da Road, Jhong-Li District, Taoyuan City, 32001, Taiwan.
| |
Collapse
|
129
|
Kordyukova LV, Serebryakova MV, Khrustalev VV, Veit M. Differential S-Acylation of Enveloped Viruses. Protein Pept Lett 2019; 26:588-600. [PMID: 31161979 DOI: 10.2174/0929866526666190603082521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, Minsk 220116, Belarus
| | - Michael Veit
- Institut für Virologie, Vet.-Med. Faculty, Free University Berlin, Berlin 14163, Germany
| |
Collapse
|
130
|
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens 2019; 4:2571-2587. [PMID: 31475522 DOI: 10.1021/acssensors.9b01114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic thin-film transistors (OTFTs) have attracted intense attention as promising electronic devices owing to their various applications such as rollable active-matrix displays, flexible nonvolatile memories, and radiofrequency identification (RFID) tags. To further broaden the scope of the application of OTFTs, we focus on the host-guest chemistry combined with the electronic devices. Extended-gate types of OTFTs functionalized with artificial receptors were fabricated to achieve chemical sensing of targets in complete aqueous media. Organic and inorganic ions (cations and anions), neutral molecules, and proteins, which are regarded as target analytes in the field of host-guest chemistry, were electrically detected by artificial receptors. Molecular recognition phenomena on the extended-gate electrode were evaluated by several analytical methods such as photoemission yield spectroscopy in the air, contact angle goniometry, and X-ray photoelectron spectroscopy. Interestingly, the electrical responses of the OTFTs were highly sensitive to the chemical structures of the guests. Thus, the OTFTs will facilitate the selective sensing of target analytes and the understanding of chemical conversions in biological and environmental systems. Furthermore, such cross-reactive responses observed in our studies will provide some important insights into next-generation sensing systems such as OTFT arrays. We strongly believe that our approach will enable the development of new intriguing sensor platforms in the field of host-guest chemistry, analytical chemistry, and organic electronics.
Collapse
Affiliation(s)
- Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| |
Collapse
|
131
|
Wu Z, Huang R, Yuan L. Crosstalk of intracellular post-translational modifications in cancer. Arch Biochem Biophys 2019; 676:108138. [PMID: 31606391 DOI: 10.1016/j.abb.2019.108138] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Post-translational modifications (PTMs) have been reported to play pivotal roles in numerous cellular biochemical and physiological processes. Multiple PTMs can influence the actions of each other positively or negatively, termed as PTM crosstalk or PTM code. During recent years, development of identification strategies for PTMs co-occurrence has revealed abundant information of interplay between PTMs. Increasing evidence demonstrates that deregulation of PTMs crosstalk is involved in the genesis and development of various diseases. Insight into the complexity of PTMs crosstalk will help us better understand etiology and provide novel targets for drug therapy. In the present review, we will discuss the important functional roles of PTMs crosstalk in proteins associated with cancer diseases.
Collapse
Affiliation(s)
- Zheng Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Rongting Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liang Yuan
- Peking University International Hospital, Beijing, 102200, China
| |
Collapse
|
132
|
Eskonen V, Tong-Ochoa N, Valtonen S, Kopra K, Härmä H. Thermal Dissociation Assay for Time-Resolved Fluorescence Detection of Protein Post-Translational Modifications. ACS OMEGA 2019; 4:16501-16507. [PMID: 31616828 PMCID: PMC6787904 DOI: 10.1021/acsomega.9b02134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Post-translational modifications (PTMs) of proteins provide an important mechanism for cell signal transduction control. Impaired PTM control is a key feature in multiple different disease states, and thus the enzyme-controlling PTMs have drawn attention as highly promising drug targets. Due to the importance of PTMs, various methods to monitor PTM enzyme activity have been developed, but universal high-throughput screening (HTS), a compatible method for different PTMs, remains elusive. Here, we present a homogeneous single-label thermal dissociation assay for the detection of enzymatic PTM removal. The developed method allows the use of micromolar concentration of substrate peptide, which is expected to be beneficial when monitoring enzymes with low activity and peptide binding affinity. We prove the thermal dissociation concept functionality using peptides for dephosphorylation, deacetylation, and demethylation and demonstrate the HTS-compatible flash isothermal method for PTM enzyme activity monitoring. Using specific inhibitors, we detected literature-comparable IC50 values and Z' factors from 0.61 to 0.72, proving the HTS compatibility of the thermal peptide-break technology.
Collapse
Affiliation(s)
- Ville Eskonen
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Natalia Tong-Ochoa
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Salla Valtonen
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Kari Kopra
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Harri Härmä
- Materials Chemistry and Chemical
Analysis, Department of Chemistry, University
of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| |
Collapse
|
133
|
Li R, Wei X, Jiang DS. Protein methylation functions as the posttranslational modification switch to regulate autophagy. Cell Mol Life Sci 2019; 76:3711-3722. [PMID: 31222372 PMCID: PMC11105718 DOI: 10.1007/s00018-019-03161-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Studies over the past decades have elucidated the critical role of autophagy in human health and diseases. Although the processes of autophagy in the cytoplasm have been well studied, the posttranscriptional and epigenetic regulation mechanisms of autophagy are still poorly understood. Protein methylation, including histone methylation and non-histone protein methylation, is the most important type of posttranscriptional and epigenetic modification. Recent studies have shown that protein methylation is associated with effects on autophagosome formation, autophagy-related protein expression, and signaling pathway activation, but the details are still unclear. Thus, it is important to summarize the current status and discuss the future directions of research on protein methylation in the context of autophagy.
Collapse
Affiliation(s)
- Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
134
|
Protective Effects of Oridonin on Acute Liver Injury via Impeding Posttranslational Modifications of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) in the Toll-Like Receptor 4 (TLR4) Signaling Pathway. Mediators Inflamm 2019; 2019:7634761. [PMID: 31611735 PMCID: PMC6757283 DOI: 10.1155/2019/7634761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Objective Recent researches have demonstrated that inflammation-related diseases are effectively regulated by posttranslational modifications (PTMs) including phosphorylation and acetylation. Our previous study found a new acetyltransferase inhibitor, oridonin, which had a protective effect on acute liver injury (ALI). In the present study, we further investigated its protective mechanism against D-galactosamine (D-Gal) combined with lipopolysaccharide- (LPS-) induced ALI in mice. Methods Intraperitoneal injections of LPS (40 μg/mouse)/D-Gal (5 mg/mouse) were given to the mice, and the experimental group was pretreated with intraperitoneal injection of oridonin (0.2 mg/mouse). To elucidate the protective mechanism of oridonin, we collected liver specimens and used RNA-sequencing (RNA-Seq) analysis. We focused on the genes that were upregulated by LPS/D-Gal and downregulated after pretreatment with oridonin. The downregulated genes examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were further verified by real-time polymerase chain reaction (PCR) and western blot. Results GO analysis showed that genes that were downregulated after pretreatment with oridonin were extremely concentrated in immune response, chemotaxis, and inflammatory response. Real-time PCR confirmed that the expression of these genes was upregulated by LPS/D-Gal induction and reduced after treatment with oridonin, which was consistent with RNA-Seq results. KEGG pathway analysis showed a significantly enriched downregulated gene that was present in the Toll-like receptor (TLR) 4 signaling cascade. Our results manifested that phosphorylation levels of upstream signaling molecules in the TLR4 signaling cascade, including extracellular signal-regulated kinase (ERK), P38, and IκB, were significantly inhibited by oridonin. Furthermore, LPS/D-Gal stimulation triggered posttranslational modifications of related gene loci in the TLR4 signaling pathway, including phosphorylation of IL-1 receptor-associated kinase 4 (IRAK4 T345/S346) and acetylation of IRAK4 (K34). However, after treatment with oridonin, the modification pattern of IRAK4 expression stimulated by LPS/D-Gal was suggestively attenuated. Conclusion Our study revealed that the protective effects of oridonin on LPS/D-Gal-induced ALI mediated by inhibition of the PTMs of IRAK4, including phosphorylation of T345/S346 and acetylation of K34.
Collapse
|
135
|
Fert-Bober J, Murray CI, Parker SJ, Van Eyk JE. Precision Profiling of the Cardiovascular Post-Translationally Modified Proteome: Where There Is a Will, There Is a Way. Circ Res 2019; 122:1221-1237. [PMID: 29700069 DOI: 10.1161/circresaha.118.310966] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an exponential increase in biological complexity as initial gene transcripts are spliced, translated into amino acid sequence, and post-translationally modified. Each protein can exist as multiple chemical or sequence-specific proteoforms, and each has the potential to be a critical mediator of a physiological or pathophysiological signaling cascade. Here, we provide an overview of how different proteoforms come about in biological systems and how they are most commonly measured using mass spectrometry-based proteomics and bioinformatics. Our goal is to present this information at a level accessible to every scientist interested in mass spectrometry and its application to proteome profiling. We will specifically discuss recent data linking various protein post-translational modifications to cardiovascular disease and conclude with a discussion for enablement and democratization of proteomics across the cardiovascular and scientific community. The aim is to inform and inspire the readership to explore a larger breadth of proteoform, particularity post-translational modifications, related to their particular areas of expertise in cardiovascular physiology.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Christopher I Murray
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Sarah J Parker
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| | - Jennifer E Van Eyk
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
136
|
Naryzhny SN, Legina OK. [Structural-functional diversity of p53 proteoforms]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:263-276. [PMID: 31436168 DOI: 10.18097/pbmc20196504263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein p53 is one of the most studied proteins. This attention is primarily due to its key role in the cellular mechanisms associated with carcinogenesis. Protein p53 is a transcription factor involved in a wide variety of processes: cell cycle regulation and apoptosis, signaling inside the cell, DNA repair, coordination of metabolic processes, regulation of cell interactions, etc. This multifunctionality is apparently determined by the fact that p53 is a vivid example of how the same protein can be represented by numerous proteoforms bearing completely different functional loads. By alternative splicing, using different promoters and translation initiation sites, the TP53 gene gives rise to at least 12 isoforms, which can additionally undergo numerous (>200) post-translational modifications. Proteoforms generated due to numerous point mutations in the TP53 gene are adding more complexity to this picture. The proteoforms produced are involved in various processes, such as the regulation of p53 transcriptional activity in response to various factors. This review is devoted to the description of the currently known p53 proteoforms, as well as their possible functionality.
Collapse
Affiliation(s)
- S N Naryzhny
- Petersburg Nuclear Physics Institute NRC Kurchatov Institute, Leningrad region, Gatchina, Russia
| | - O K Legina
- Petersburg Nuclear Physics Institute NRC Kurchatov Institute, Leningrad region, Gatchina, Russia
| |
Collapse
|
137
|
Chen P, Wei F, Li R, Li ZQ, Kashif MH, Zhou RY. Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. PHYSIOLOGIA PLANTARUM 2019; 166:960-978. [PMID: 30353937 DOI: 10.1111/ppl.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Cytoplasmic male sterility (CMS) is widely used in plant breeding and represents a perfect model to understand cyto-nuclear interactions and pollen development research. Lysine acetylation in proteins is a dynamic and reversible posttranslational modification (PTM) that plays an important roles in diverse cell processes and signaling. However, studies addressing acetylation PTM regarding to anther and pollen development in CMS background are largely lacking. To reveal the possible mechanism of kenaf (Hibiscus cannabinus L.) CMS and pollen development, we performed a label-free-based comparative acetylome analysis in kenaf anther of a CMS line and wild-type (Wt). Using whole transcriptome unigenes of kenaf as the reference genome, we identified a total of 1204 Kac (lysin acetylation) sites on 1110 peptides corresponding to 672 unique proteins. Futher analysis showed 56 out of 672 proteins were differentially acetylated between CMS and Wt line, with 13 and 43 of those characterized up- and downregulated, respectively. Thirty-eight and 82 proteins were detected distinctively acetylated in CMS and Wt lines, respectively. And evaluation of the acetylomic and proteomic results indicated that the most significantly acetylated proteins were not associated with abundant changes at the protein level. Bioinformatics analysis demonstrated that many of these proteins were involved in various biological processes which may play key roles in pollen development, inculding tricarboxylic acid (TCA) cycle and energy metabolism, protein folding, protein metabolism, cell signaling, gene expression regulation. Taken together, our results provide insight into the CMS molecular mechanism and pollen development in kenaf from a protein acetylation perspective.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Fan Wei
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning, China
| | - Zeng-Qiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad H Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Rui-Yang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
138
|
Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019; 26:5317-5337. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Rebecca Wangen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, N-5021 Bergen, Norway
| | - Frode S Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Astrid Guldbrandsen
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Computational Biology Unit, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlensgt 55, N-5008 Bergen, Norway
| |
Collapse
|
139
|
Casanovas A, Gallardo Ó, Carrascal M, Abian J. TCellXTalk facilitates the detection of co-modified peptides for the study of protein post-translational modification cross-talk in T cells. Bioinformatics 2019; 35:1404-1413. [PMID: 30219844 DOI: 10.1093/bioinformatics/bty805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023] Open
Abstract
MOTIVATION Protein function is regulated by post-translational modifications (PTMs) that may act individually or interact with others in a phenomenon termed PTM cross-talk. Multiple databases have been dedicated to PTMs, including recent initiatives oriented towards the in silico prediction of PTM interactions. The study of PTM cross-talk ultimately requires experimental evidence about whether certain PTMs coexist in a single protein molecule. However, available resources do not assist researchers in the experimental detection of co-modified peptides. RESULTS Herein, we present TCellXTalk, a comprehensive database of phosphorylation, ubiquitination and acetylation sites in human T cells that supports the experimental detection of co-modified peptides using targeted or directed mass spectrometry. We demonstrate the efficacy of TCellXTalk and the strategy presented here in a proof of concept experiment that enabled the identification and quantification of 15 co-modified (phosphorylated and ubiquitinated) peptides from CD3 proteins of the T-cell receptor complex. To our knowledge, these are the first co-modified peptide sequences described in this widely studied cell type. Furthermore, quantitative data showed distinct dynamics for co-modified peptides upon T cell activation, demonstrating differential regulation of co-occurring PTMs in this biological context. Overall, TCellXTalk facilitates the experimental detection of co-modified peptides in human T cells and puts forward a novel and generic strategy for the study of PTM cross-talk. AVAILABILITY AND IMPLEMENTATION TCellXTalk is available at https://www.tcellxtalk.org. Source Code is available at https://bitbucket.org/lp-csic-uab/tcellxtalk. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Albert Casanovas
- Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Barcelona, Spain.,Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Óscar Gallardo
- Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - Montserrat Carrascal
- Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - Joaquin Abian
- Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Barcelona, Spain.,Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
140
|
Mnatsakanyan R, Shema G, Basik M, Batist G, Borchers CH, Sickmann A, Zahedi RP. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev Proteomics 2019; 15:515-535. [PMID: 29893147 DOI: 10.1080/14789450.2018.1483340] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Numerous diseases are caused by changes in post-translational modifications (PTMs). Therefore, the number of clinical proteomics studies that include the analysis of PTMs is increasing. Combining complementary information-for example changes in protein abundance, PTM levels, with the genome and transcriptome (proteogenomics)-holds great promise for discovering important drivers and markers of disease, as variations in copy number, expression levels, or mutations without spatial/functional/isoform information is often insufficient or even misleading. Areas covered: We discuss general considerations, requirements, pitfalls, and future perspectives in applying PTM-centric proteomics to clinical samples. This includes samples obtained from a human subject, for instance (i) bodily fluids such as plasma, urine, or cerebrospinal fluid, (ii) primary cells such as reproductive cells, blood cells, and (iii) tissue samples/biopsies. Expert commentary: PTM-centric discovery proteomics can substantially contribute to the understanding of disease mechanisms by identifying signatures with potential diagnostic or even therapeutic relevance but may require coordinated efforts of interdisciplinary and eventually multi-national consortia, such as initiated in the cancer moonshot program. Additionally, robust and standardized mass spectrometry (MS) assays-particularly targeted MS, MALDI imaging, and immuno-MALDI-may be transferred to the clinic to improve patient stratification for precision medicine, and guide therapies.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany
| | - Gerta Shema
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany
| | - Mark Basik
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada
| | - Gerald Batist
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada
| | - Christoph H Borchers
- b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada.,c University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria , Victoria , British Columbia V8Z 7X8 , Canada.,d Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia , V8P 5C2 , Canada.,e Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , Quebec H3T 1E2 , Canada
| | - Albert Sickmann
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany.,f Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum , 44801 Bochum , Germany.,g Department of Chemistry , College of Physical Sciences, University of Aberdeen , Aberdeen AB24 3FX , Scotland , United Kingdom
| | - René P Zahedi
- a Protein Dynamics , Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V , Dortmund , 44227 , Germany.,b Gerald Bronfman Department of Oncology , Jewish General Hospital, McGill University , Montreal , Quebec H4A 3T2 , Canada.,e Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University , Montreal , Quebec H3T 1E2 , Canada
| |
Collapse
|
141
|
PTMselect: optimization of protein modifications discovery by mass spectrometry. Sci Rep 2019; 9:4181. [PMID: 30862887 PMCID: PMC6414543 DOI: 10.1038/s41598-019-40873-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/22/2019] [Indexed: 01/27/2023] Open
Abstract
Discovery of protein modification sites relies on protein digestion by proteases and mass spectrometry (MS) identification of the modified peptides. Depending on proteases used and target protein sequence, this method yields highly variable coverage of modification sites. We introduce PTMselect, a digestion-simulating software which tailors the optimal set of proteases for discovery of global or targeted modification from any single or multiple proteins.
Collapse
|
142
|
Kaur S, Baldi B, Vuong J, O'Donoghue SI. Visualization and Analysis of Epiproteome Dynamics. J Mol Biol 2019; 431:1519-1539. [PMID: 30769119 DOI: 10.1016/j.jmb.2019.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022]
Abstract
The epiproteome describes the set of all post-translational modifications (PTMs) made to the proteins comprising a cell or organism. The extent of the epiproteome is still largely unknown; however, advances in experimental techniques are beginning to produce a deluge of data, tracking dynamic changes to the epiproteome in response to cellular stimuli. These data have potential to revolutionize our understanding of biology and disease. This review covers a range of recent visualization methods and tools developed specifically for dynamic epiproteome data sets. These methods have been designed primarily for data sets on phosphorylation, as this the most studied PTM; however, most of these methods are also applicable to other types of PTMs. Unfortunately, the currently available methods are often inadequate for existing data sets; thus, realizing the potential buried in epiproteome data sets will require new, tailored bioinformatics methods that will help researchers analyze, visualize, and interactively explore these complex data sets.
Collapse
Affiliation(s)
- Sandeep Kaur
- University of New South Wales (UNSW), Kensington, NSW 2052, Australia; Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| | - Benedetta Baldi
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Data 61, CSIRO, Eveleigh, NSW 2015, Australia.
| | - Jenny Vuong
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Data 61, CSIRO, Eveleigh, NSW 2015, Australia.
| | - Seán I O'Donoghue
- University of New South Wales (UNSW), Kensington, NSW 2052, Australia; Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; Data 61, CSIRO, Eveleigh, NSW 2015, Australia.
| |
Collapse
|
143
|
Sharif S, Shi J, Ruijtenbeek R, Pieters RJ. Study of cross talk between phosphatases and OGA on a ZO-3-derived peptide. Amino Acids 2019; 51:739-743. [PMID: 30725225 DOI: 10.1007/s00726-019-02699-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 02/04/2023]
Abstract
O-GlcNAcylation, like phosphorylation, is a dynamic and rapid posttranslational modification which regulates many cellular processes. Phosphorylation on tyrosine and O-GlcNAcylation on nearby serine or threonine residues may modulate each other. Indeed, by using a microarray with a peptide model system based on the ZO-3 protein, extensive cross talk between O-GlcNAcylation by OGT and phosphorylation by kinases was observed. However, studying the effects of kinases and OGT without the reverse processes catalyzed by phosphatases and O-GlcNAcase (OGA) does not provide a complete picture of the cross talk. The study of the missing part showed that nearby phosphorylation affects the de-O-GlcNAcylation by OGA, but not to the same extent as it affects the O-GlcNAcylation by OGT. Both the phosphorylation and de-phosphorylation processes were only slightly affected by the presence of an O-GlcNAc residue on a nearby serine.
Collapse
Affiliation(s)
- Suhela Sharif
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands.,PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
144
|
Tay AP, Liang A, Wilkins MR, Pang CNI. Visualizing Post-Translational Modifications in Protein Interaction Networks Using PTMOracle. ACTA ACUST UNITED AC 2019; 66:e71. [PMID: 30653846 DOI: 10.1002/cpbi.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Post-translational modifications (PTMs) of proteins act as key regulators of protein activity, including the regulation of protein-protein interactions (PPIs). However, exploring functional links between PTMs and PPIs can be difficult. PTMOracle is a Cytoscape app that facilitates the co-visualization and co-analysis of PTMs in the context of PPI networks. PTMOracle also allows extensive data to be integrated and co-analyzed, allowing the role of domains, motifs, and disordered regions to be considered. Here, we describe several PTMOracle protocols investigating complex PTM-associated relationships and their role in PPIs. This is assisted by OraclePainter for coloring proteins by the modifications present and visualizing these in the context of networks, by OracleTools for cross-matching PTMs with sequence feature for all nodes in the network, and by OracleResults for exploring specific proteins and visualizing their PTMs in the context of protein sequences. This unit aims to demonstrate how PTMOracle can be used to systematically explore network visualizations and generate testable hypotheses regarding the functional role of PTMs in PPIs, and how the results can be analyzed to better understand the regulatory role of PTMs in PPIs. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Aidan P Tay
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Angelita Liang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Chi Nam Ignatius Pang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
145
|
Alocci D, Mariethoz J, Gastaldello A, Gasteiger E, Karlsson NG, Kolarich D, Packer NH, Lisacek F. GlyConnect: Glycoproteomics Goes Visual, Interactive, and Analytical. J Proteome Res 2018; 18:664-677. [DOI: 10.1021/acs.jproteome.8b00766] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Davide Alocci
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Alessandra Gastaldello
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Elisabeth Gasteiger
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Southport, Queensland 4215, Australia
- ARC Centre for Nanoscale BioPhotonics, Macquarie University and Griffith University, Sydney, New South Wales 2109, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
146
|
Pascovici D, Wu JX, McKay MJ, Joseph C, Noor Z, Kamath K, Wu Y, Ranganathan S, Gupta V, Mirzaei M. Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. Int J Mol Sci 2018; 20:E16. [PMID: 30577541 PMCID: PMC6337699 DOI: 10.3390/ijms20010016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023] Open
Abstract
Post-translational modifications (PTMs) can occur soon after translation or at any stage in the lifecycle of a given protein, and they may help regulate protein folding, stability, cellular localisation, activity, or the interactions proteins have with other proteins or biomolecular species. PTMs are crucial to our functional understanding of biology, and new quantitative mass spectrometry (MS) and bioinformatics workflows are maturing both in labelled multiplexed and label-free techniques, offering increasing coverage and new opportunities to study human health and disease. Techniques such as Data Independent Acquisition (DIA) are emerging as promising approaches due to their re-mining capability. Many bioinformatics tools have been developed to support the analysis of PTMs by mass spectrometry, from prediction and identifying PTM site assignment, open searches enabling better mining of unassigned mass spectra-many of which likely harbour PTMs-through to understanding PTM associations and interactions. The remaining challenge lies in extracting functional information from clinically relevant PTM studies. This review focuses on canvassing the options and progress of PTM analysis for large quantitative studies, from choosing the platform, through to data analysis, with an emphasis on clinically relevant samples such as plasma and other body fluids, and well-established tools and options for data interpretation.
Collapse
Affiliation(s)
- Dana Pascovici
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Jemma X Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Chitra Joseph
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| | - Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Karthik Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yunqi Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia.
- Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
147
|
Claridge B, Kastaniegaard K, Stensballe A, Greening DW. Post-translational and transcriptional dynamics - regulating extracellular vesicle biology. Expert Rev Proteomics 2018; 16:17-31. [PMID: 30457403 DOI: 10.1080/14789450.2019.1551135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Extracellular vesicles (EVs) are secreted into their extracellular environment, contain a specific repertoire of cellular cargo, and represent a novel vehicle for cell-cell communication. Protein post-translational modifications (PTMs) are emerging as major effectors of EV biology and function, and in turn, regulate cellular signaling. Areas covered: Discovery and investigation of PTMs such as methylation, glycosylation, acetylation, phosphorylation, sumoylation, and many others has established fundamental roles for PTMs within EVs and associated EV function. The application of enrichment strategies for modifications, high-resolution quantitative mass spectrometry-based proteomics, and improved technological approaches have provided key insights into identification and characterization of EV-based PTMs. Recently, an overwhelming appreciation for the diversity of modifications, including post-transcriptional modifications, dynamic roles of these modifications, and their emerging interplay, including protein-protein, protein-lipid, protein-RNA, and variable RNA modifications, is emerging. At a cellular level, such interplay is essential for gene expression/genome organization, protein function and localization, RNA metabolism, cell division, and cell signaling. Expert commentary: The understanding of these modifications and interactions will provide strategies toward how distinct cargo is localized, sorted, and delivered through EVs to mediate intercellular function, with further understanding of such modifications and intermolecular interactions will provide advances in EV-based therapeutic strategies.
Collapse
Affiliation(s)
- Bethany Claridge
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - Kenneth Kastaniegaard
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - Allan Stensballe
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - David W Greening
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
148
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 2018; 42:398-414. [DOI: 10.1002/jssc.201801090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| |
Collapse
|
149
|
Oparija L, Rajendran A, Poncet N, Verrey F. Anticipation of food intake induces phosphorylation switch to regulate basolateral amino acid transporter LAT4 (SLC43A2) function. J Physiol 2018; 597:521-542. [PMID: 30379325 DOI: 10.1113/jp276714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Amino acid absorption requires luminal uptake into and subsequent basolateral efflux out of epithelial cells, with the latter step being critical to regulate the intracellular concentration of the amino acids. The basolateral essential neutral amino acid uniporter LAT4 (SLC43A2) has been suggested to drive the net efflux of non-essential and cationic amino acids via parallel amino acid antiporters by recycling some of their substrates; its deletion has been shown to cause defective postnatal growth and death in mice. Here we test the regulatory function of LAT4 phosphorylation sites by mimicking their phosphorylated and dephosphorylated states in Xenopus laevis oocytes and show that dephosphorylation of S274 and phosphorylation of S297 increase LAT4 membrane localization and function. Using new phosphorylation site-specific antibodies, we observe changes in LAT4 phosphorylation in mouse small intestine that correspond to its upregulation at the expected feeding time. These results strongly suggest that LAT4 phosphorylation participates in the regulation of transepithelial amino acid absorption. ABSTRACT The essential amino acid uniporters LAT4 and TAT1 are located at the basolateral side of intestinal and kidney epithelial cells and their transport function has been suggested to control the transepithelial (re)absorption of neutral and possibly also cationic amino acids. Uniporter LAT4 selectively transports the branched chain amino acids leucine, isoleucine and valine, and additionally methionine and phenylalanine. Its deletion leads to a postnatal growth failure and early death in mice. Since LAT4 has been reported to be phosphorylated in vivo, we hypothesized that phosphorylation regulates its function. Using Xenopus laevis oocytes, we tested the impact of LAT4 phosphorylation at Ser274 and Ser297 by expressing mutant constructs mimicking phosphorylated and dephosphorylated states. We then investigated the in vivo regulation of LAT4 in mouse small intestine using new phosphorylation site-specific antibodies and a time-restricted diet. In Xenopus oocytes, mimicking non-phosphorylation of Ser274 led to an increase in affinity and apparent surface membrane localization of LAT4, stimulating its transport activity, while the same mutation of Ser297 decreased LAT4's apparent surface expression and transport rate. In wild-type mice, LAT4 phosphorylation on Ser274 was uniform at the beginning of the inactive phase (ZT0). In contrast, at the beginning of the active phase (ZT12), corresponding to the anticipated feeding time, Ser274 phosphorylation was decreased and restricted to relatively large patches of cells, while Ser297 phosphorylation was increased. We conclude that phosphorylation of small intestinal LAT4 is under food-entrained circadian control, leading presumably to an upregulation of LAT4 function at the anticipated feeding time.
Collapse
Affiliation(s)
- Lalita Oparija
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Anuradha Rajendran
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nadège Poncet
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,NCCR Kidney.CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
150
|
Challenges in the Structural-Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Methods Enzymol 2018; 611:607-675. [PMID: 30471702 DOI: 10.1016/bs.mie.2018.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and functional characterization of large multidomain signaling proteins containing long disordered linker regions represents special methodological and conceptual challenges. These proteins show extreme structural heterogeneity and have complex posttranslational modification patterns, due to which traditional structural biology techniques provide results that are often difficult to interpret. As demonstrated through the example of two such multidomain proteins, CREB-binding protein (CBP) and its paralogue, p300, even the expression and purification of such proteins are compromised by their extreme proteolytic sensitivity and structural heterogeneity. In this chapter, we describe the effective expression of CBP and p300 in a eukaryotic host, Sf9 insect cells, followed by their tandem affinity purification based on two terminal tags to ensure their structural integrity. The major focus of this chapter is on the development of novel accessory tools, single-domain camelid antibodies (nanobodies), for structural-functional characterization. Specific nanobodies against full-length CBP and p300 can specifically target their different regions and can be used for their marking, labeling, and structural stabilization in a broad range of in vitro and in vivo studies. Here, we describe four high-affinity nanobodies binding to the KIX and the HAT domains, either mimicking known interacting partners or revealing new functionally relevant conformations. As immunization of llamas results in nanobody libraries with a great sequence variation, deep sequencing and interaction analysis with different regions of the proteins provide a novel approach toward developing a panel of specific nanobodies.
Collapse
|