101
|
Vuori HT, Rautiainen JM, Kolehmainen ET, Tuononen HM. Benson group additivity values of phosphines and phosphine oxides: Fast and accurate computational thermochemistry of organophosphorus species. J Comput Chem 2019; 40:572-580. [PMID: 30575086 DOI: 10.1002/jcc.25740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/22/2018] [Accepted: 10/04/2018] [Indexed: 11/10/2022]
Abstract
Composite quantum chemical methods W1X-1 and CBS-QB3 are used to calculate the gas phase standard enthalpy of formation, entropy, and heat capacity of 38 phosphines and phosphine oxides for which reliable experimental thermochemical information is limited or simply nonexistent. For alkyl phosphines and phosphine oxides, the W1X-1, and CBS-QB3 results are mutually consistent and in excellent agreement with available G3X values and empirical data. In the case of aryl-substituted species, different computational methods show more variation, with G3X enthalpies being furthest from experimental values. The calculated thermochemical data are subsequently used to determine Benson group additivity contributions for 24 Benson groups and group pairs involving phosphorus, thereby allowing fast and accurate estimations of thermochemical data of many organophosphorus compounds of any complexity. Such data are indispensable, for example, in chemical process design or estimating potential hazards of new chemical compounds. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannu T Vuori
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - J Mikko Rautiainen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Erkki T Kolehmainen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Heikki M Tuononen
- Department of Chemistry, Nanoscience Centre, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
102
|
Karton A. Thermochemistry of Guanine Tautomers Re-Examined by Means of High-Level CCSD(T) Composite Ab Initio Methods. Aust J Chem 2019. [DOI: 10.1071/ch19276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We obtained accurate gas-phase tautomerization energies for a set of 14 guanine tautomers by means of high-level thermochemical procedures approximating the CCSD(T) energy at the complete basis set (CBS) limit. For the five low-lying tautomers, we use the computationally demanding W1-F12 composite method for obtaining the tautomerization energies. The relative W1-F12 tautomerization enthalpies at 298K are: 0.00 (1), 2.37 (2), 2.63 (3), 4.03 (3′), and 14.31 (4) kJmol−1. Thus, as many as four tautomers are found within a small energy window of less than 1.0kcalmol−1 (1kcalmol−1=4.184kJmol−1). We use these highly accurate W1-F12 tautomerization energies to evaluate the performance of a wide range of lower-level composite ab initio procedures. The Gn composite procedures (G4, G4(MP2), G4(MP2)-6X, G3, G3B3, G3(MP2), and G3(MP2)B3) predict that the enol tautomer (3) is more stable than the keto tautomer (2) by amounts ranging from 0.36 (G4) to 1.28 (G3(MP2)) kJmol−1. We also find that an approximated CCSD(T)/CBS energy calculated as HF/jul-cc-pV{D,T}Z+CCSD/jul-cc-pVTZ+(T)/jul-cc-pVDZ results in a root-mean-square deviation (RMSD) of merely 0.11kJmol−1 relative to the W1-F12 reference values. We use this approximated CCSD(T)/CBS method to obtain the tautomerization energies of 14 guanine tautomers. The relative tautomerization enthalpies at 298K are: 0.00 (1), 2.20 (2), 2.51 (3), 4.06 (3′), 14.30 (4), 25.65 (5), 43.78 (4′), 53.50 (6′), 61.58 (6), 77.37 (7), 82.52 (8′), 86.02 (9), 100.70 (10), and 121.01 (8) kJmol−1. Using these tautomerization enthalpies, we evaluate the performance of standard and composite methods for the entire set of 14 guanine tautomers. The best-performing procedures emerge as (RMSDs are given in parentheses): G4(MP2)-6X (0.51), CCSD(T)+ΔMP2/CBS (0.52), and G4(MP2) (0.64kJmol−1). The worst performers are CCSD(T)/AVDZ (1.05), CBS-QB3 (1.24), and CBS-APNO (1.38kJmol−1).
Collapse
|
103
|
Goerigk L, Mehta N. A Trip to the Density Functional Theory Zoo: Warnings and Recommendations for the User. Aust J Chem 2019. [DOI: 10.1071/ch19023] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This account is written for general users of density functional theory (DFT) methods as well as experimental researchers who are new to the field and would like to conduct such calculations. Its main emphasis lies on how to find a way through the confusing ‘zoo’ of DFT by addressing common misconceptions and highlighting those modern methods that should ideally be used in calculations of energetic properties and geometries. A particular focus is on highly popular methods and the important fact that popularity does not imply accuracy. In this context, we present a new analysis of the openly available data published in Swart and co-workers’ famous annual ‘DFT poll’ (http://www.marcelswart.eu/dft-poll/) to demonstrate the existing communication gap between the DFT user and developer communities. We show that despite considerable methodological advances in the field, the perception of some parts of the user community regarding their favourite approaches has changed little. It is hoped that this account makes a contribution towards changing this status and that users are inspired to adjust their current computational protocols to accommodate strategies that are based on proven robustness, accuracy, and efficiency rather than popularity.
Collapse
|
104
|
Karton A, Waite SL, Page AJ. Performance of DFT for C 60 Isomerization Energies: A Noticeable Exception to Jacob's Ladder. J Phys Chem A 2018; 123:257-266. [PMID: 30521343 DOI: 10.1021/acs.jpca.8b10240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to accurately calculate relative energies of fullerenes is important in many areas of computational nanotechnology. Because of the large size of fullerenes, their relative energies cannot normally be calculated by means of high-level ab initio procedures, and therefore, density functional theory (DFT) represents a cost-effective alternative. In an extensive benchmark study, we calculate the electronic energies of eight C60 isomers by means of the high-level G4(MP2) composite procedure. G4(MP2) isomerization energies span a wide range between 307.5 and 1074.0 kJ mol-1. We use these benchmark data to assess the performance of DFT, double-hybrid DFT (DHDFT), and MP2-based ab initio methods. Surprisingly, functionals from the second and third rungs of Jacob's Ladder (i.e., GGA and meta-GGA functionals) significantly and systematically outperform hybrid and hybrid-meta-GGA functionals, which occupy higher rungs of Jacob's Ladder. In addition, DHDFT functionals do not offer a substantial improvement over meta-GGA functionals, with respect to isomerization energies. Overall, the best performing functionals with mean absolute deviations (MADs) below 15.0 kJ mol-1 are (MADs given in parentheses) the GGA N12 (14.7); meta-GGAs M06-L (10.6), M11-L (10.8), MN15-L (11.9), and TPSS-D3BJ (12.8); and the DHDFT functionals B2T-PLYP (9.3), mPW2-PLYP (9.8), B2K-PLYP (12.1), and B2GP-PLYP (12.3 kJ mol-1). In light of these results, we recommend the use of meta-GGA functionals for the calculation of fullerene isomerization energies. Finally, we show that inclusion of very small percentages of exact Hartree-Fock exchange (3-5%) slightly improves the performance of the GGA and meta-GGA functionals. However, their performance rapidly deteriorates with the inclusion of larger percentages of exact Hartree-Fock exchange.
Collapse
Affiliation(s)
- Amir Karton
- School of Molecular Sciences , The University of Western Australia , Perth , Western Australia 6009 , Australia
| | - Simone L Waite
- School of Environmental and Life Sciences , The University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Alister J Page
- School of Environmental and Life Sciences , The University of Newcastle , Callaghan , New South Wales 2308 , Australia
| |
Collapse
|
105
|
Long B, Bao JL, Truhlar DG. Kinetics of the Strongly Correlated CH3O + O2 Reaction: The Importance of Quadruple Excitations in Atmospheric and Combustion Chemistry. J Am Chem Soc 2018; 141:611-617. [DOI: 10.1021/jacs.8b11766] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
106
|
Zaspel P, Huang B, Harbrecht H, von Lilienfeld OA. Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople Diagrams Revisited. J Chem Theory Comput 2018; 15:1546-1559. [DOI: 10.1021/acs.jctc.8b00832] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Zaspel
- Department of Mathematics and Computer Science, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland
| | - Bing Huang
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Helmut Harbrecht
- Department of Mathematics and Computer Science, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland
| | - O. Anatole von Lilienfeld
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
107
|
|
108
|
Spencer JS, Neufeld VA, Vigor WA, Franklin RST, Thom AJW. Large scale parallelization in stochastic coupled cluster. J Chem Phys 2018; 149:204103. [DOI: 10.1063/1.5047420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. S. Spencer
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - V. A. Neufeld
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W. A. Vigor
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - R. S. T. Franklin
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - A. J. W. Thom
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
109
|
Paulechka E, Kazakov A. Efficient Estimation of Formation Enthalpies for Closed-Shell Organic Compounds with Local Coupled-Cluster Methods. J Chem Theory Comput 2018; 14:5920-5932. [PMID: 30234978 PMCID: PMC7664059 DOI: 10.1021/acs.jctc.8b00593] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient estimation of the enthalpies of formation for closed-shell organic compounds via atom-equivalent-type computational schemes and with the use of different local coupled-cluster with single, double, and perturbative triple excitation (CCSD(T)) approximations was investigated. Detailed analysis of established sources of uncertainty, inclusive of contributions beyond frozen-core CCSD(T) and errors due to local CCSD(T) approximations and zero-point energy anharmonicity, suggests the lower limit of about 2 kJ·mol-1 for the expanded uncertainty of the proposed estimation framework. Among the tested computational schemes, the best-performing cases demonstrate expanded uncertainty of about 2.5 kJ·mol-1, based on the analysis against 44 critically evaluated experimental values. Computational efficiency, accuracy commensurable with that of a typical experiment, and absence of the need for auxiliary reactions and additional experimental data offer unprecedented advantages for practical use, such as prompt validation of existing measurements and estimation of missing values, as well as resolution of experimental conflicts. The utility of the proposed methodology was demonstrated using a representative sample of the most recent experimental measurements.
Collapse
Affiliation(s)
- Eugene Paulechka
- Thermodynamics Research Center, Applied Chemicals and Materials Division , National Institute of Standards and Technology , 325 Broadway , Boulder , Colorado 80305-3337 , United States
| | - Andrei Kazakov
- Thermodynamics Research Center, Applied Chemicals and Materials Division , National Institute of Standards and Technology , 325 Broadway , Boulder , Colorado 80305-3337 , United States
| |
Collapse
|
110
|
DFT study of the dual catalytic role of L-proline in the aldol reaction and the effect of water on it. J Mol Model 2018; 24:334. [DOI: 10.1007/s00894-018-3851-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
|
111
|
|
112
|
Zhang IY, Wu J, Xu X. Accurate heats of formation of polycyclic saturated hydrocarbons predicted by using the XYG3 type of doubly hybrid functionals. J Comput Chem 2018; 40:1113-1122. [PMID: 30379331 DOI: 10.1002/jcc.25726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/06/2022]
Abstract
Polycyclic saturated hydrocarbons (PSHs) are attractive candidates as hydrocarbon propellants. To assess their potential values, one of the key factors is to determine their energy contents, such as to calculate their heats of formation (HOF). In this work, we have calculated HOFs for a set of 36 PSHs including exo-Tricyclo[5.2.1.0(2,6) ] decane, the principal component of the high-energy density hydrocarbon fuel commonly identified as JP-10. The results from B3LYP, B3LYP-D3BJ, M06-2X, B2PLYP, B2PLYP-D3BJ, and the XYG3 type of doubly hybrid (xDH) functionals are presented. It is demonstrated here that the xDH functionals yield accurate HOFs in good agreement with those from experiments or the G4 theory. In particular, XYGJ-OS, a low scaling xDH functional, is shown to hold the promise for accurate prediction of HOFs for PSHs of larger sizes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Igor Ying Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jianming Wu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
113
|
Thirumoorthy K, Karton A, Thimmakondu VS. From High-Energy C7H2 Isomers with A Planar Tetracoordinate Carbon Atom to An Experimentally Known Carbene. J Phys Chem A 2018; 122:9054-9064. [DOI: 10.1021/acs.jpca.8b08809] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Venkatesan S. Thimmakondu
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa 403 726, India
| |
Collapse
|
114
|
Bumpus JA. Gas-Phase Heat of Formation Values for Buckminsterfullerene (C 60), C70 Fullerene (C 70), Corannulene, Coronene, Sumanene, and Other Polycyclic Aromatic Hydrocarbons Calculated Using Density Functional Theory (M06 2X) Coupled with a Versatile Inexpensive Group-Equivalent Approach. J Phys Chem A 2018; 122:6615-6632. [PMID: 30070846 DOI: 10.1021/acs.jpca.8b03321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward procedure using density functional theory (M06 2X) coupled with a group-equivalent approach is described that was used to calculate gas-phase heat of formation (Δf H°g,298) values for buckminsterfullerene (C60), C70 fullerene (C70), corannulene, coronene, and sumanene. This procedure was also used to calculate exceptionally accurate Δf H°g,298 values for a variety of single-ring aromatic and 2-7 ring polycyclic aromatic hydrocarbons (PAHs) as well as a large selection of other hydrocarbons and phenols. The approach described herein is internally consistent, and results for C60, C70, corannulene, coronene, and sumanene are in very close agreement with results reported by others who used higher-level computational theory. Statistical analysis of a test set containing benzene and 18 two to seven ring PAHs demonstrated that by using this approach a mean absolute deviation (MAD) and a root-mean-square deviation (RMSD) of 0.8 and 1.3 kJ/mol, respectively, were achieved for reference/experimental Δf H°g,298 values versus calculated/predicted Δf H°g,298 values. For statistical analysis of a larger test set containing 235 aromatic and aliphatic hydrocarbons and phenols, a MAD and a RMSD of 1.2 and 1.9 kJ/mol, respectively, were achieved for reference/experimental Δf H°g,298 values versus calculated/predicted Δf H°g,298 values.
Collapse
Affiliation(s)
- John A Bumpus
- Department of Chemistry and Biochemistry , University of Northern Iowa , Cedar Falls , Iowa 50614 , United States
| |
Collapse
|
115
|
CCSDT(Q)/CBS thermochemistry for the D5h → D10h isomerization in the C10 carbon cluster: Getting the right answer for the right reason. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
116
|
Karton A. Post-CCSD(T) contributions to total atomization energies in multireference systems. J Chem Phys 2018; 149:034102. [DOI: 10.1063/1.5036795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
117
|
Tanaka W, Arita M. Physicochemical Prediction of Metabolite Fragmentation in Tandem Mass Spectrometry. ACTA ACUST UNITED AC 2018; 7:A0066. [PMID: 29922568 PMCID: PMC6002374 DOI: 10.5702/massspectrometry.a0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Current bottleneck of comprehensive non-target metabolite identification is insufficient spectral library. Many research groups have tried to build a theoretical product ion spectral library independent of measurement condition or settings, but mechanisms of metabolite fragmentation are not fully clarified. To achieve the mechanistic prediction of metabolite fragmentation which covers a wide range of metabolites, we will discuss utilization of physicochemical calculation. We introduce bonding patterns, which include two bound atoms and chemical groups adjacent to the bond. Cleavage of each bonding pattern is simulated and its activation energy is precisely calculated with quantum chemistry and assigned on metabolites. By tracing low-energy bond cleavages, fragmentation of a dipeptide molecule is successfully predicted. Prediction on another metabolite requires some additional features to fully reproduce its experimentally observed product ions. Physicochemical calculation shows its promising ability to predict fragmentation pathways only from metabolite structures, while required improvements suggested by comparison between our prediction and standard spectra stored in database are also discussed. Moreover, to construct a prediction strategy which withstands the vast metabolite space, we have to build a comprehensive list of bonding patterns and their activation energy. As theoretically possible bonding patterns are huge in number, proper simplification of the patterns must be implemented. We will discuss how to achieve it in addition to the prediction results.
Collapse
Affiliation(s)
- Wataru Tanaka
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies)
| | - Masanori Arita
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies).,National Institute of Genetics
| |
Collapse
|
118
|
Klawohn S, Kaupp M, Karton A. MVO-10: A Gas-Phase Oxide Benchmark for Localization/Delocalization in Mixed-Valence Systems. J Chem Theory Comput 2018; 14:3512-3523. [DOI: 10.1021/acs.jctc.8b00289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sascha Klawohn
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Theoretische Chemie/Quantenchemie, Institut für Chemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Australia
| |
Collapse
|
119
|
Re-evaluation of the standard thermochemical properties of the Al 2 cluster on the basis of CBS thermochemistry of isogyric reactions and correlation dependencies. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
120
|
Kuwata KT, Luu L, Weberg AB, Huang K, Parsons AJ, Peebles LA, Rackstraw NB, Kim MJ. Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in trans-2-Butene and 2,3-Dimethyl-2-butene Ozonolysis. J Phys Chem A 2018; 122:2485-2502. [DOI: 10.1021/acs.jpca.8b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keith T. Kuwata
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Lina Luu
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Alexander B. Weberg
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Ke Huang
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Austin J. Parsons
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Liam A. Peebles
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Nathan B. Rackstraw
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| | - Min Ji Kim
- Department of Chemistry, Macalester College, Saint Paul, Minnesota 55105-1899, United States
| |
Collapse
|
121
|
Mathieu D. Atom Pair Contribution Method: Fast and General Procedure To Predict Molecular Formation Enthalpies. J Chem Inf Model 2018; 58:12-26. [DOI: 10.1021/acs.jcim.7b00613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
122
|
Karton A, McKemmish LK. Can Popular DFT Approximations and Truncated Coupled Cluster Theory Describe the Potential Energy Surface of the Beryllium Dimer? Aust J Chem 2018. [DOI: 10.1071/ch18269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The potential energy surface (PES) of the ground state of the beryllium dimer poses a significant challenge for high-level ab initio electronic structure methods. Here, we present a systematic study of basis set effects over the entire PES of Be2 calculated at the full configuration interaction (FCI) level. The reference PES is calculated at the valence FCI/cc-pV{5,6}Z level of theory. We find that the FCI/cc-pV{T,Q}Z basis set extrapolation reproduces the shape of the FCI/cc-pV{5,6}Z PES as well as the binding energy and vibrational transition frequencies to within ~10 cm−1. We also use the FCI/cc-pV{5,6}Z PES to evaluate the performance of truncated coupled cluster methods (CCSD, CCSD(T), CCSDT, and CCSDT(Q)) and contemporary density functional theory methods (DFT) methods for the entire PES of Be2. Of the truncated coupled cluster methods, CCSDT(Q)/cc-pV{5,6}Z provides a good representation of the FCI/cc-pV{5,6}Z PES. The GGA functionals, as well as the HGGA and HMGGA functionals with low percentages of exact exchange tend to severely overbind the Be2 dimer, whereas BH&HLYP and M06-HF tend to underbind it. Range-separated DFT functionals tend to underbind the dimer. Double-hybrid DFT functionals show surprisingly good performance, with DSD-PBEP86 being the best performer. Møller–Plesset perturbation theory converges smoothly up to fourth order; however, fifth-order corrections have practically no effect on the PES.
Collapse
|
123
|
Kesharwani MK, Karton A, Sylvetsky N, Martin JML. The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Aust J Chem 2018. [DOI: 10.1071/ch17588] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The S66 benchmark for non-covalent interactions has been re-evaluated using explicitly correlated methods with basis sets near the one-particle basis set limit. It is found that post-MP2 ‘high-level corrections’ are treated adequately well using a combination of CCSD(F12*) with (aug-)cc-pVTZ-F12 basis sets on the one hand, and (T) extrapolated from conventional CCSD(T)/heavy-aug-cc-pV{D,T}Z on the other hand. Implications for earlier benchmarks on the larger S66×8 problem set in particular, and for accurate calculations on non-covalent interactions in general, are discussed. At a slight cost in accuracy, (T) can be considerably accelerated by using sano-V{D,T}Z+ basis sets, whereas half-counterpoise CCSD(F12*)(T)/cc-pVDZ-F12 offers the best compromise between accuracy and computational cost.
Collapse
|
124
|
Chan B. Use of Low-Cost Quantum Chemistry Procedures for Geometry Optimization and Vibrational Frequency Calculations: Determination of Frequency Scale Factors and Application to Reactions of Large Systems. J Chem Theory Comput 2017; 13:6052-6060. [DOI: 10.1021/acs.jctc.7b00721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
125
|
Wang ZQ, Hu CE, Chen XR, Cheng Y, Chen QF. Ab initio investigation of structure, spectrum, aromaticity and electronic properties of C 10 carbon cluster. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
126
|
Computational design of bio-inspired carnosine-based HOBr antioxidants. J Comput Aided Mol Des 2017; 31:905-913. [DOI: 10.1007/s10822-017-0060-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
|
127
|
Sánchez HR. Revisiting the thermochemistry of chlorine fluorides. J Comput Chem 2017; 38:1930-1940. [PMID: 28608507 DOI: 10.1002/jcc.24838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
Abstract
In this work, accurate calculations of standard enthalpies of formation of chlorine fluorides (ClFn, n = 1-7; Cl2 F and Cl3 F2 ) were performed through the isodesmic reactions scheme. It is argued that, for many chlorine fluorides, the gold standard method of quantum chemistry (CCSD(T)) is not capable to predict enthalpy values nearing chemical accuracy if atomization scheme is used. This is underpinned by a thorough analysis of total atomization energy results and the inspection of multireference features of these compounds. Other thermodynamic quantities were also calculated at different temperatures. To complement the energetic description, elimination curves were studied through density functional theory as a computationally affordable alternative to highly correlated wave function-based methods. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hernán R Sánchez
- Departamento de Química (Universidad Nacional de La Plata), Instituto de Física de Líquidos y Sistemas Biológicos (IFLySIB), Universidad Nacional de La Plata - CONICET, Calle 59 no. 789, La Plata, 1900, Argentina
| |
Collapse
|
128
|
Vamhindi BSDR, Karton A. Can DFT and ab initio methods adequately describe binding energies in strongly interacting C6X6⋯C2X π–π complexes? Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
129
|
Minenkov Y, Wang H, Wang Z, Sarathy SM, Cavallo L. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yury Minenkov
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), KAUST
Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Heng Wang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Clean
Combustion Research Center (CCRC), 23955-6900 Thuwal, Saudi Arabia
| | - Zhandong Wang
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Clean
Combustion Research Center (CCRC), 23955-6900 Thuwal, Saudi Arabia
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Clean
Combustion Research Center (CCRC), 23955-6900 Thuwal, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), KAUST
Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
130
|
Karton A, Sylvetsky N, Martin JML. W4‐17: A diverse and high‐confidence dataset of atomization energies for benchmarking high‐level electronic structure methods. J Comput Chem 2017; 38:2063-2075. [DOI: 10.1002/jcc.24854] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Amir Karton
- School of Molecular SciencesThe University of Western AustraliaPerth Western Australia6009 Australia
| | - Nitai Sylvetsky
- Department of Organic ChemistryWeizmann Institute of ScienceRehovot76100 Israel
| | - Jan M. L. Martin
- Department of Organic ChemistryWeizmann Institute of ScienceRehovot76100 Israel
| |
Collapse
|
131
|
Gas-phase standard enthalpies of formation of urea-derived compounds: A quantum-chemical study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
132
|
Chan B. How to computationally calculate thermochemical properties objectively, accurately, and as economically as possible. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
We have developed the WnX series of quantum chemistry composite protocols for the computation of highly-accurate thermochemical quantities with advanced efficiency and applicability. The W1X-type methods have a general accuracy of ~3–4 kJ mol−1 and they can currently be applied to systems with ~20–30 atoms. Higher-level methods include W2X, W3X and W3X-L, with the most accurate of these being W3X-L. It can be applied to molecules with ~10–20 atoms and is generally accurate to ~1.5 kJ mol−1. The WnX procedures have opened up new possibilities for computational chemists in pursue of accurate thermochemical values in a highly-productive manner.
Collapse
|
133
|
Firouzbakht M, Zhou S, González-Navarrete P, Schlangen M, Kaupp M, Schwarz H. Metal-Dependent Strengthening and Weakening of M−H and M−C Bonds by an Oxo Ligand: Thermal Gas-Phase Activation of Methane by [OMH]+
and [MH]+
(M=Mo, Ti). Chemistry 2017; 23:12346-12352. [PMID: 28548213 DOI: 10.1002/chem.201701615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Marjan Firouzbakht
- Institut für Chemie; Technische Universität Berlin; Straβe des 17. Juni 135 10623 Berlin Germany
| | - Shaodong Zhou
- Institut für Chemie; Technische Universität Berlin; Straβe des 17. Juni 135 10623 Berlin Germany
| | | | - Maria Schlangen
- Institut für Chemie; Technische Universität Berlin; Straβe des 17. Juni 135 10623 Berlin Germany
| | - Martin Kaupp
- Institut für Chemie; Technische Universität Berlin; Straβe des 17. Juni 135 10623 Berlin Germany
| | - Helmut Schwarz
- Institut für Chemie; Technische Universität Berlin; Straβe des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
134
|
Abstract
We have devised the composite procedures WG and WGh to unify the W1X and the (computationally more economical) G4(MP2)-6X protocols. The WG procedure employs a combination of MP2, MP2-F12, CCSD-F12b, and CCSD(T) to approximate the all-electron scalar-relativistic CCSD(T)/CBS energy. In addition, it incorporates features such as the scaling of the energy components and an empirical "higher-level-correction" term. The WGh protocol represents a somewhat more economical variant of WG with partial removal of diffuse functions. Our benchmark shows that, in general, both WG and WGh have similar performance to that for W1X-2, with WGh (predictably) performing somewhat less well for electron affinities. In terms of computational efficiency, WG is approximately an order of magnitude less costly than W1X-2, while WGh gives not only a further slight savings in computer time but also a notably reduced disk requirement.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University , Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
135
|
Paulechka E, Kazakov A. Efficient DLPNO–CCSD(T)-Based Estimation of Formation Enthalpies for C-, H-, O-, and N-Containing Closed-Shell Compounds Validated Against Critically Evaluated Experimental Data. J Phys Chem A 2017; 121:4379-4387. [PMID: 28514153 PMCID: PMC10402538 DOI: 10.1021/acs.jpca.7b03195] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An accurate and cost-efficient methodology for the estimation of the enthalpies of formation for closed-shell compounds composed of C, H, O, and N atoms is presented and validated against critically evaluated experimental data. The computational efficiency is achieved through the use of the resolution-of-identity (RI) and domain-based local pair-natural orbital coupled cluster (DLPNO-CCSD(T)) approximations, which results in a drastic reduction in both the computational cost and the number of necessary steps for a composite quantum chemical method. The expanded uncertainty for the proposed methodology evaluated using a data set of 45 thoroughly vetted experimental values for molecules containing up to 12 heavy atoms is about 3 kJ·mol-1, competitive with those of typical calorimetric measurements. For the compounds within the stated scope, the methodology is shown to be superior to a representative, more general, and widely used composite quantum chemical method, G4.
Collapse
Affiliation(s)
- Eugene Paulechka
- Thermodynamics
Research Center,
Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| | - Andrei Kazakov
- Thermodynamics
Research Center,
Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| |
Collapse
|
136
|
Pidko EA. Toward the Balance between the Reductionist and Systems Approaches in Computational Catalysis: Model versus Method Accuracy for the Description of Catalytic Systems. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00290] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evgeny A. Pidko
- Theoretical Chemistry Group, ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia
- Inorganic Materials
Chemistry Group, Schuit Institute of Catalysis, and Institute for Complex Molecular Systems, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
137
|
Chan B, Moran D, Easton CJ, Radom L. Impact of Hydrogen Bonding on the Susceptibility of Peptides to Oxidation. Chem Asian J 2017; 12:1485-1489. [PMID: 28544486 DOI: 10.1002/asia.201700492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 01/12/2023]
Abstract
The tendency of peptides to be oxidized is intimately connected with their function and even their ability to exist in an oxidative environment. Here we report high-level theoretical studies that show that hydrogen bonding can alter the susceptibility of peptides to oxidation, with complexation to a hydrogen-bond acceptor facilitating oxidation, and vice versa, impacting the feasibility of a diverse range of biological processes. It can even provide an energetically viable mechanistic alternative to direct hydrogen-atom abstraction. We find that hydrogen bonding to representative reactive groups leads to a broad (≈400 kJ mol-1 ) spectrum of ionization energies in the case of model amide, thiol and phenol systems. While some of the oxidative processes at the extreme ends of the spectrum are energetically prohibitive, subtle environmental and solvent effects could potentially mitigate the situation, leading to a balance between hydrogen bonding and oxidative susceptibility.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Damian Moran
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
138
|
|
139
|
Prediction of enthalpies of sublimation of high-nitrogen energetic compounds: Modified Politzer model. J Mol Graph Model 2017; 72:220-228. [DOI: 10.1016/j.jmgm.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/18/2022]
|
140
|
|
141
|
Sarrami F, Yu LJ, Karton A. Thermochemistry of icosahedral closo-dicarboranes: a composite ab initio quantum-chemical perspective. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We obtained accurate thermochemical properties for the ortho-, meta-, and para-dicarborane isomers (C2B10H12) by means of explicitly correlated high-level thermochemical procedures. The thermochemical properties include heats of formation, isomerization energies, C–H and B–H bond dissociation energies (BDEs), and ionization potentials. Of these only the ionization potentials are known experimentally. Our best theoretical ionization potentials, obtained by means of the ab initio W1–F12 thermochemical protocol, was 241.50 kcal mol–1 (para-dicarborane), 238.45 kcal mol–1 (meta-dicarborane), and 236.54 kcal mol–1 (ortho-dicarborane). These values agree with the experimental values adopted by the National Institute of Standards and Technology (NIST) thermochemical tables to within overlapping uncertainties. However, they suggest that the experimental values may represent significant underestimations. For all isomers, the C–H BDEs are systematically higher than the B–H BDEs because of the relative stability of the boron-centred radicals. The C–H BDEs for the three isomers cluster within a narrow energetic interval, namely between 110.8 kcal mol–1 (para-dicarborane) and 111.7 kcal mol–1 (meta-dicarborane). The B–H BDEs cluster within a larger interval ranging between 105.8 and 108.1 kcal mol–1 (both obtained for ortho-dicarborane). We used our benchmark W1–F12 data to assess the performance of a number of lower cost composite ab initio methods. We found that the Gaussian-3 procedures (G3(MP2)B3 and G3B3) result in excellent performance with overall root-mean-square deviations (RMSDs) of 0.3–0.4 kcal mol–1 for the isomerization, ionization, and bond dissociation energies. However, the Gaussian-4 procedures (G4, G4(MP2), and G4(MP2)-6X) showed relatively poor performance with overall RMSDs of 1.3–3.7 kcal mol–1.
Collapse
Affiliation(s)
- Farzaneh Sarrami
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Li-Juan Yu
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
142
|
Karton A. How reliable is DFT in predicting relative energies of polycyclic aromatic hydrocarbon isomers? comparison of functionals from different rungs of jacob's ladder. J Comput Chem 2016; 38:370-382. [DOI: 10.1002/jcc.24669] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Amir Karton
- School of Chemistry and BiochemistryThe University of Western AustraliaPerthWestern Australia 6009 Australia
| |
Collapse
|
143
|
Chan B, Karton A, Raghavachari K, Radom L. Restricted-Open-Shell G4(MP2)-Type Procedures. J Phys Chem A 2016; 120:9299-9304. [DOI: 10.1021/acs.jpca.6b09361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bun Chan
- Graduate
School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Amir Karton
- School
of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Krishnan Raghavachari
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Leo Radom
- School
of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
144
|
Yu LJ, Wan W, Karton A. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
145
|
Oruganti B, Fang C, Durbeej B. Assessment of a composite CC2/DFT procedure for calculating 0–0 excitation energies of organic molecules. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1235736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Baswanth Oruganti
- Division of Theoretical Chemistry, IFM, Linköping University, Linköping, Sweden
| | - Changfeng Fang
- Division of Theoretical Chemistry, IFM, Linköping University, Linköping, Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, Linköping, Sweden
| |
Collapse
|
146
|
Spackman PR, Jayatilaka D, Karton A. Basis set convergence of CCSD(T) equilibrium geometries using a large and diverse set of molecular structures. J Chem Phys 2016; 145:104101. [DOI: 10.1063/1.4962168] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter R. Spackman
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Dylan Jayatilaka
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Amir Karton
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
147
|
Simmie JM, Sheahan JN. Validation of a Database of Formation Enthalpies and of Mid-Level Model Chemistries. J Phys Chem A 2016; 120:7370-84. [DOI: 10.1021/acs.jpca.6b07503] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. M. Simmie
- Combustion Chemistry Centre & School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| | - J. N. Sheahan
- School of Mathematics & Statistics, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
148
|
Lin CR, Yu LJ, Li S, Karton A. To bridge or not to bridge: The role of sulfuric acid in the Beckmann rearrangement. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
149
|
Kaupp M, Karton A, Bischoff FA. [Al2O4](-), a Benchmark Gas-Phase Class II Mixed-Valence Radical Anion for the Evaluation of Quantum-Chemical Methods. J Chem Theory Comput 2016; 12:3796-806. [PMID: 27434425 DOI: 10.1021/acs.jctc.6b00594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radical anion [Al2O4](-) has been identified as a rare example of a small gas-phase mixed-valence system with partially localized, weakly coupled class II character in the Robin/Day classification. It exhibits a low-lying C2v minimum with one terminal oxyl radical ligand and a high-lying D2h minimum at about 70 kJ/mol relative energy with predominantly bridge-localized-hole character. Two identical C2v minima and the D2h minimum are connected by two C2v-symmetrical transition states, which are only ca. 6-10 kJ/mol above the D2h local minimum. The small size of the system and the absence of environmental effects has for the first time enabled the computation of accurate ab initio benchmark energies, at the CCSDT(Q)/CBS level using W3-F12 theory, for a class-II mixed-valence system. These energies have been used to evaluate wave function-based methods [CCSD(T), CCSD, SCS-MP2, MP2, UHF] and density functionals ranging from semilocal (e.g., BLYP, PBE, M06L, M11L, N12) via global hybrids (B3LYP, PBE0, BLYP35, BMK, M06, M062X, M06HF, PW6B95) and range-separated hybrids (CAM-B3LYP, ωB97, ωB97X-D, LC-BLYP, LC-ωPBE, M11, N12SX), the B2PLYP double hybrid, and some local hybrid functionals. Global hybrids with about 35-43% exact-exchange (EXX) admixture (e.g., BLYP35, BMK), several range hybrids (CAM-B3LYP, ωB97X-D, ω-B97), and a local hybrid provide good to excellent agreement with benchmark energetics. In contrast, too low EXX admixture leads to an incorrect delocalized class III picture, while too large EXX overlocalizes and gives too large energy differences. These results provide support for previous method choices for mixed-valence systems in solution and for the treatment of oxyl defect sites in alumosilicates and SiO2. Vibrational gas-phase spectra at various computational levels have been compared directly to experiment and to CCSD(T)/aug-cc-pV(T+d)Z data.
Collapse
Affiliation(s)
- Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie Technische, Sekr. C7, Universität Berlin , Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Amir Karton
- School of Chemistry and Biochemistry, The University of Western Australia , 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Florian A Bischoff
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
150
|
Sylvetsky N, Peterson KA, Karton A, Martin JML. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled? J Chem Phys 2016; 144:214101. [DOI: 10.1063/1.4952410] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Amir Karton
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|