101
|
Liu Z, Li G, Wei S, Niu J, Wang LE, Sturgis EM, Wei Q. Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2010; 31:1977-81. [PMID: 20802237 DOI: 10.1093/carcin/bgq179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) of TERT-rs2736098 (C > T) and CLPTM1L-rs401681(C > T) at the 5p15.33 locus are significantly associated with cancer risk as reported in genome-wide association studies (GWAS), but there are no reported studies for squamous cell carcinoma of the head and neck (SCCHN). In a case-control study of 1079 SCCHN cases and 1115 cancer-free controls of non-Hispanic whites who were frequency matched by age and sex, we genotyped for these two SNPs and assessed their associations with SCCHN risk. Compared with the CC genotypes of each polymorphism, the associations of a slightly reduced risk of SCCHN with the variant genotypes of CT + TT of both polymorphisms were approaching statistical significance [Odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.76-1.08 for TERT-rs2736098 and OR = 0.86, 95% CI = 0.71-1.04 for CLPTM1L-rs401681, respectively]. When the two SNPs were combined, the variant genotypes of the two SNPs were significantly associated a moderately reduced risk of SCCHN (OR = 0.82, 95% CI = 0.67-0.99), and the number of variant genotypes was associated with a significantly reduced risk in a dose-response manner (P = 0.028). Furthermore, the reduced risk was more pronounced in ever smokers, ever drinkers and patients with oropharyngeal cancer. Our results suggested that these two SNPs at the 5p15.33 locus may be associated with a reduced risk of SCCHN, particularly for their combined effect. Although we added additional evidence for the association of the two SNPs with cancer risk as reported in GWAS, additional studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Zhensheng Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Turnbull C, Rapley EA, Seal S, Pernet D, Renwick A, Hughes D, Ricketts M, Linger R, Nsengimana J, Deloukas P, Huddart RA, Bishop DT, Easton DF, Stratton MR, Rahman N. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 2010; 42:604-7. [PMID: 20543847 PMCID: PMC3773909 DOI: 10.1038/ng.607] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/17/2010] [Indexed: 12/13/2022]
Abstract
We conducted a genome-wide association study for testicular germ cell tumor, genotyping 298,782 SNPs in 979 affected individuals and 4,947 controls from the UK and replicating associations in a further 664 cases and 3,456 controls. We identified three new susceptibility loci, two of which include genes that are involved in telomere regulation. We identified two independent signals within the TERT-CLPTM1L locus on chromosome 5, which has previously been associated with multiple other cancers (rs4635969, OR=1.54, P=1.14x10(-23); rs2736100, OR=1.33, P=7.55x10(-15)). We also identified a locus on chromosome 12 (rs2900333, OR=1.27, P=6.16x10(-10)) that contains ATF7IP, a regulator of TERT expression. Finally, we identified a locus on chromosome 9 (rs755383, OR=1.37, P=1.12x10(-23)), containing the sex determination gene DMRT1, which has been linked to teratoma susceptibility in mice.
Collapse
Affiliation(s)
- Clare Turnbull
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions. Fungal Biol 2010; 114:646-60. [PMID: 20943176 DOI: 10.1016/j.funbio.2010.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/14/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022]
Abstract
Trametes versicolor is an important white rot fungus of both industrial and ecological interest. Saprotrophic basidiomycetes are the major decomposition agents in woodland ecosystems, and rarely form monospecific populations, therefore interspecific mycelial interactions continually occur. Interactions have different outcomes including replacement of one species by the other or deadlock. We have made subtractive cDNA libraries to enrich for genes that are expressed when T. versicolor interacts with another saprotrophic basidiomycete, Stereum gausapatum, an interaction that results in the replacement of the latter. Expressed sequence tags (ESTs) (1920) were used for microarray analysis, and their expression compared during interaction with three different fungi: S. gausapatum (replaced by T. versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced T. versicolor). Expression of significantly more probes changed in the interaction between T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare, suggesting a relationship between interaction outcome and changes in gene expression.
Collapse
|
104
|
Abstract
Telomerase and the control of telomere length are intimately linked to the process of tumourigenesis in humans. Here I review the evidence that variation at the 5p15.33 locus, which contains theTERTgene (encoding the catalytic subunit of telomerase), might play a role in the determination of cancer risk. Mutations in the coding regions ofTERTcan affect telomerase activity and telomere length, and create severe clinical phenotypes, including bone marrow failure syndromes and a substantive increase in cancer frequency. Variants within theTERTgene have been associated with increased risk of haematological malignancies, including myelodysplastic syndrome and acute myeloid leukaemia as well as chronic lymphocytic leukaemia. Furthermore, there is good evidence from a number of independent genome-wide association studies to implicate variants at the 5p15.33 locus in cancer risk at several different sites: lung cancer, basal cell carcinoma and pancreatic cancer show strong associations, while bladder, prostate and cervical cancer and glioma also show risk alleles in this region. Thus, multiple independent lines of evidence have implicated variation in theTERTgene as a risk factor for cancer. The mechanistic basis of these risk variants is yet to be established; however, the basic biology suggests that telomere length control is a tantalising candidate mechanism underlying cancer risk.
Collapse
|
105
|
A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 2010; 42:224-8. [PMID: 20101243 DOI: 10.1038/ng.522] [Citation(s) in RCA: 488] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/17/2009] [Indexed: 12/13/2022]
Abstract
We conducted a genome-wide association study of pancreatic cancer in 3,851 affected individuals (cases) and 3,934 unaffected controls drawn from 12 prospective cohort studies and 8 case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P = 3.27 x 10(-11), per-allele odds ratio (OR) 1.26, 95% CI 1.18-1.35) and rs9564966 (P = 5.86 x 10(-8), per-allele OR 1.21, 95% CI 1.13-1.30), map to a nongenic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2, and the strongest signal was at rs3790844 (P = 2.45 x 10(-10), per-allele OR 0.77, 95% CI 0.71-0.84). A single SNP, rs401681 (P = 3.66 x 10(-7), per-allele OR 1.19, 95% CI 1.11-1.27), maps to the CLPTM1L-TERT locus on 5p15.33, which is associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies.
Collapse
|
106
|
Wang Y, Broderick P, Matakidou A, Eisen T, Houlston RS. Role of 5p15.33 (TERT-CLPTM1L), 6p21.33 and 15q25.1 (CHRNA5-CHRNA3) variation and lung cancer risk in never-smokers. Carcinogenesis 2009; 31:234-8. [PMID: 19955392 DOI: 10.1093/carcin/bgp287] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genome-wide association studies have provided evidence that common variation at 5p15.33 (TERT-CLPTM1L), 6p21.33 and 15q25.1 (CHRNA5-CHRNA3) influences lung cancer risk. To examine if variation at any of these loci influences the risk of lung cancer in never-smokers, we compared 5p15.33-TERT (rs2736100), 5p15.33-CLPTM1L (rs4975616), 6p21.33-BAT3 (rs3117582), 15q25.1-CHRNA3 (rs8042374) and 15q25.1-CHRNA3 (rs12914385) genotypes in a series of 239 never-smoker lung cancer cases and 553 never-smoker controls. A statistically significant association between lung cancer risk and 5p15.33 genotypes was found: rs2736100 (odds ratio = 0.78, 95% confidence interval: 0.63-0.97; P = 0.02), rs4975616 (odds ratio = 0.69, 95% confidence interval: 0.55-0.85; P = 7.95 x 10(-4)), primarily for adenocarcinoma. There was no evidence of association between 6p21.33 or 15q25.1 variation and risk of lung cancer. This analysis provides evidence that TERT-CLPTM1L variants may influence the risk of lung cancer outside the context of tobacco smoking.
Collapse
Affiliation(s)
- Yufei Wang
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | |
Collapse
|
107
|
Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, Eisen T, Amos CI, Houlston RS. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res 2009; 69:6633-41. [PMID: 19654303 PMCID: PMC2754318 DOI: 10.1158/0008-5472.can-09-0680] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To explore the impact of common variation on the risk of developing lung cancer, we conducted a two-phase genome-wide association (GWA) study. In phase 1, we compared the genotypes of 511,919 tagging single nucleotide polymorphisms (SNP) in 1,952 cases and 1,438 controls; in phase 2, 30,568 SNPs were genotyped in 2,465 cases and 3,005 controls. SNP selection was based on best supported P values from phase 1 and two other GWA studies of lung cancer. In the combined analysis of phases 1 and 2, the strongest associations identified were defined by SNPs mapping to 15q25.1 (rs12914385; P = 3.19 x 10(-16)), 5p15.33 (rs4975616; P = 6.66 x 10(-7)), and 6p21.33 (rs3117582; P = 9.13 x 10(-7)). Variation at 15q25.1, but not 5p15.33 or 6p21.33, was strongly associated with smoking behavior with risk alleles correlated to higher consumption. Variation at 5p15.33 was shown to significantly influence induction of lung cancer histology. Pooling data from the four series provided 21,620 genotypes for 7,560 cases and 8,205 controls. A meta-analysis provided increased support that variation at 15q25.1 (rs8034191; P = 3.24 x 10(-26)), 5p15.33 (rs4975616; P = 2.99 x 10(-9)), and 6p21.33 (rs3117582; P = 4.46 x 10(-10)) influences lung cancer risk. The next best-supported associations were attained at 15q15.2 (rs748404: P = 1.08 x 10(-6)) and 10q23.31 (rs1926203; P = 1.28 x 10(-6)). These data indicate few common variants account for 1% of the excess familial risk underscoring the necessity of having additional large sample series for gene discovery.
Collapse
Affiliation(s)
- Peter Broderick
- Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Zienolddiny S, Skaug V, Landvik NE, Ryberg D, Phillips DH, Houlston R, Haugen A. The TERT-CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis 2009; 30:1368-71. [PMID: 19465454 DOI: 10.1093/carcin/bgp131] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/secondary
- Case-Control Studies
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 6/genetics
- DNA Adducts/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Genotype
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Membrane Proteins/genetics
- Middle Aged
- Nerve Tissue Proteins/genetics
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- Receptors, Nicotinic/genetics
- Risk Factors
- Telomerase/genetics
Collapse
Affiliation(s)
- Shanbeh Zienolddiny
- Section of Toxicology, Department of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
109
|
Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, Jakobsdottir M, Helgadottir H, Thorlacius S, Aben KKH, Blöndal T, Thorgeirsson TE, Thorleifsson G, Kristjansson K, Thorisdottir K, Ragnarsson R, Sigurgeirsson B, Skuladottir H, Gudbjartsson T, Isaksson HJ, Einarsson GV, Benediktsdottir KR, Agnarsson BA, Olafsson K, Salvarsdottir A, Bjarnason H, Asgeirsdottir M, Kristinsson KT, Matthiasdottir S, Sveinsdottir SG, Polidoro S, Höiom V, Botella-Estrada R, Hemminki K, Rudnai P, Bishop DT, Campagna M, Kellen E, Zeegers MP, de Verdier P, Ferrer A, Isla D, Vidal MJ, Andres R, Saez B, Juberias P, Banzo J, Navarrete S, Tres A, Kan D, Lindblom A, Gurzau E, Koppova K, de Vegt F, Schalken JA, van der Heijden HFM, Smit HJ, Termeer RA, Oosterwijk E, van Hooij O, Nagore E, Porru S, Steineck G, Hansson J, Buntinx F, Catalona WJ, Matullo G, Vineis P, Kiltie AE, Mayordomo JI, Kumar R, Kiemeney LA, Frigge ML, Jonsson T, Saemundsson H, Barkardottir RB, Jonsson E, Jonsson S, Olafsson JH, Gulcher JR, Masson G, Gudbjartsson DF, Kong A, Thorsteinsdottir U, Stefansson K. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 2009; 41:221-7. [PMID: 19151717 DOI: 10.1038/ng.296] [Citation(s) in RCA: 500] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/05/2008] [Indexed: 12/21/2022]
Abstract
The common sequence variants that have recently been associated with cancer risk are particular to a single cancer type or at most two. Following up on our genome-wide scan of basal cell carcinoma, we found that rs401681[C] on chromosome 5p15.33 satisfied our threshold for genome-wide significance (OR = 1.25, P = 3.7 x 10(-12)). We tested rs401681 for association with 16 additional cancer types in over 30,000 cancer cases and 45,000 controls and found association with lung cancer (OR = 1.15, P = 7.2 x 10(-8)) and urinary bladder, prostate and cervix cancer (ORs = 1.07-1.31, all P < 4 x 10(-4)). However, rs401681[C] seems to confer protection against cutaneous melanoma (OR = 0.88, P = 8.0 x 10(-4)). Notably, most of these cancer types have a strong environmental component to their risk. Investigation of the region led us to rs2736098[A], which showed stronger association with some cancer types. However, neither variant could fully account for the association of the other. rs2736098 corresponds to A305A in the telomerase reverse transcriptase (TERT) protein and rs401681 is in an intron of the CLPTM1L gene.
Collapse
|
110
|
McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, McLaughlin J, Shepherd F, Montpetit A, Narod S, Krokan HE, Skorpen F, Elvestad MB, Vatten L, Njølstad I, Axelsson T, Chen C, Goodman G, Barnett M, Loomis MM, Lubiñski J, Matyjasik J, Lener M, Oszutowska D, Field J, Liloglou T, Xinarianos G, Cassidy A, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, González CA, Ramón Quirós J, Martínez C, Navarro C, Ardanaz E, Larrañaga N, Kham KT, Key T, Bueno-de-Mesquita HB, Peeters PH, Trichopoulou A, Linseisen J, Boeing H, Hallmans G, Overvad K, Tjønneland A, Kumle M, Riboli E, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P. Lung cancer susceptibility locus at 5p15.33. Nat Genet 2008; 40:1404-6. [PMID: 18978790 DOI: 10.1038/ng.254] [Citation(s) in RCA: 448] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/10/2008] [Indexed: 01/16/2023]
Abstract
We carried out a genome-wide association study of lung cancer (3,259 cases and 4,159 controls), followed by replication in 2,899 cases and 5,573 controls. Two uncorrelated disease markers at 5p15.33, rs402710 and rs2736100 were detected by the genome-wide data (P = 2 x 10(-7) and P = 4 x 10(-6)) and replicated by the independent study series (P = 7 x 10(-5) and P = 0.016). The susceptibility region contains two genes, TERT and CLPTM1L, suggesting that one or both may have a role in lung cancer etiology.
Collapse
Affiliation(s)
- James D McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008; 40:1407-9. [PMID: 18978787 DOI: 10.1038/ng.273] [Citation(s) in RCA: 447] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/29/2008] [Indexed: 12/14/2022]
Abstract
We conducted a genome-wide association (GWA) study of lung cancer comparing 511,919 SNP genotypes in 1,952 cases and 1,438 controls. The most significant association was attained at 15q25.1 (rs8042374; P = 7.75 x 10(-12)), confirming recent observations. Pooling data with two other GWA studies (5,095 cases, 5,200 controls) and with replication in an additional 2,484 cases and 3,036 controls, we identified two newly associated risk loci mapping to 6p21.33 (rs3117582, BAT3-MSH5; P(combined) = 4.97 x 10(-10)) and 5p15.33 (rs401681, CLPTM1L; P(combined) = 7.90 x 10(-9)).
Collapse
|
112
|
Hwang KT, Han W, Cho J, Lee JW, Ko E, Kim EK, Jung SY, Jeong EM, Bae JY, Kang JJ, Yang SJ, Kim SW, Noh DY. Genomic copy number alterations as predictive markers of systemic recurrence in breast cancer. Int J Cancer 2008; 123:1807-15. [PMID: 18649361 DOI: 10.1002/ijc.23672] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We tried to establish models that predict systemic recurrence in breast cancer by selecting marker clones with DNA copy number alterations (CNAs) using an array comparative genomic hybridization (CGH). Array CGH containing 4,044 human bacterial artificial chromosome clones was used to assess CNAs in 62 primary breast cancer tissues from 31 patients with systemic recurrence within 5 years after surgery and clinicopathologically well matched 31 patients who had no evidence of disease for at least 5years. Fourteen significant clones (11 clones showing gain and 3 showing loss) were identified by systemic recurrence-free survival (SRFS) analysis and 23 significant clones (17 clones showing gain and 6 showing loss) identified by chi(2) test and FDR test were selected as predictive markers of systemic breast cancer recurrence. The significant CNAs were found in the chromosomal regions of 5p15.33, 11q13.3, 15q26.3, 17q25.3, 18q23 and 21q22.3 with gain and 9p12, 11q24.1 and 14q32.33 with loss. We devised 2 prediction models for the systemic recurrence of breast cancer based on the 14 clones and the 23 clones, respectively. The survivals of the patients were significantly separated according to the scores from each model at the optimal cut off values in SRFS and overall survival analysis. We found candidate clones and genes of which CNAs were significantly associated with systemic recurrence of breast cancer. The devised prediction models with these clones were effective at differentiating the recurrence and nonrecurrence.
Collapse
Affiliation(s)
- Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Folgueira MAAK, Carraro DM, Brentani H, Patrão DFDC, Barbosa EM, Netto MM, Caldeira JRF, Katayama MLH, Soares FA, Oliveira CT, Reis LFL, Kaiano JHL, Camargo LP, Vêncio RZN, Snitcovsky IML, Makdissi FBA, e Silva PJDS, Góes JCGS, Brentani MM. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 2006; 11:7434-43. [PMID: 16243817 DOI: 10.1158/1078-0432.ccr-04-0548] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was designed to identify genes that could predict response to doxorubicin-based primary chemotherapy in breast cancer patients. EXPERIMENTAL DESIGN Biopsy samples were obtained before primary treatment with doxorubicin and cyclophosphamide. RNA was extracted and amplified and gene expression was analyzed using cDNA microarrays. RESULTS Response to chemotherapy was evaluated in 51 patients, and based on Response Evaluation Criteria in Solid Tumors guidelines, 42 patients, who presented at least a partial response (> or =30% reduction in tumor dimension), were classified as responsive. Gene profile of samples, divided into training set (n = 38) and independent validation set (n = 13), were at first analyzed against a cDNA microarray platform containing 692 genes. Unsupervised clustering could not separate responders from nonresponders. A classifier was identified comprising EMILIN1, FAM14B, and PBEF, which however could not correctly classify samples included in the validation set. Our next step was to analyze gene profile in a more comprehensive cDNA microarray platform, containing 4,608 open reading frame expressed sequence tags. Seven samples of the initial training set (all responder patients) could not be analyzed. Unsupervised clustering could correctly group all the resistant samples as well as at least 85% of the sensitive samples. Additionally, a classifier, including PRSS11, MTSS1, and CLPTM1, could correctly distinguish 95.4% of the 44 samples analyzed, with only two misclassifications, one sensitive sample and one resistant tumor. The robustness of this classifier is 2.5 greater than the first one. CONCLUSION A trio of genes might potentially distinguish doxorubicin-responsive from nonresponsive tumors, but further validation by a larger number of samples is still needed.
Collapse
|
114
|
Higuchi E, Oridate N, Furuta Y, Suzuki S, Hatakeyama H, Sawa H, Sunayashiki-Kusuzaki K, Yamazaki KI, Inuyama Y, Fukuda S. Differentially expressed genes associated with CIS-diamminedichloroplatinum (II) resistance in head and neck cancer using differential display and CDNA microarray. Head Neck 2003; 25:187-93. [PMID: 12599285 DOI: 10.1002/hed.10204] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The mechanism by which cancer cells become resistant to cis-Diamminedichloroplatinum (II) (cDDP) is not completely understood. To investigate the molecular markers involved in the cDDP resistance, we compared the gene expression profiles between a head and neck squamous cell carcinoma (HNSCC) line sensitive to cDDP and its cDDP-resistant variant. METHODS Both a fluorescent differential display and a cDNA microarray analysis were applied to distinguish the gene profiles between KB, a human HNSCC line, and its cDDP-resistant variant (KB/cDDP). These results were confirmed by Northern blot analysis. RESULTS One up-regulated gene, glycoprotein hormone alpha-subunit, and two down-regulated genes coding membrane proteins, human folate receptor and tumor-associated antigen L6, were identified in KB/cDDP cells. CONCLUSIONS Our findings suggest that development of the cDDP-resistant phenotype is accompanied by alternations of gene expression including a glycoprotein hormone and membrane proteins. These gene products could be new molecular markers for resistance to cDDP.
Collapse
Affiliation(s)
- Eisaku Higuchi
- Department of Otolaryngology-Head & Neck Surgery, Hokkaido University, Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y. Heat shock protein 27 was up-regulated in cisplatin resistant human ovarian tumor cell line and associated with the cisplatin resistance. Cancer Lett 2001; 168:173-81. [PMID: 11403922 DOI: 10.1016/s0304-3835(01)00532-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To understand the molecular basis for failure of cisplatin (CDDP) based chemotherapy, we compared gene expressions between CDDP sensitive and resistant ovarian tumor cell line, 2008 and 2008/C13*5.25, by mRNA differential display. We detected both up-regulated and down-regulated bands in the resistant cell and found some of them to be positive on Northern blotting. DNA sequencing revealed one to be mitochondrial heat shock protein 75. We found that HSP27 and HSP70 were also up-regulated in the resistant cell by Western blotting. Further, transient transfection with the HSP27 sense gene made the sensitive cell more resistant, while transient transfection with the antisense gene made it more sensitive.
Collapse
Affiliation(s)
- K Yamamoto
- Food and Pharmaceutical Research and Development Laboratories, Asahi Breweries, Ltd., 1-1-21 Midori Moriya-machi Kitasoma-gun, 302-0106, Ibaraki, Japan
| | | | | | | | | |
Collapse
|