101
|
Thomsen LE, Olsen JE, Foster JW, Ingmer H. ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2727-2733. [PMID: 12213919 DOI: 10.1099/00221287-148-9-2727] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Components of the ATP-dependent Clp protease complex are found in a wide range of prokaryotic cells and they are often expressed as part of the cellular stress response. To investigate the physiological role of the proteolytic subunit, ClpP, in Salmonella enterica serovar Typhimurium (S. typhimurium) an in-frame deletion of the clpP gene was constructed. Growth experiments revealed that clpP is important for the ability of S. typhimurium to grow under various stressful conditions, such as low pH, elevated temperature and high salt concentrations. Since the stationary-phase sigma factor, RpoS, is a target of the Clp proteolytic complex, the effect of the clpP deletion in the absence of RpoS was examined; it was observed that growth of the S. typhimurium clpP mutant is affected in both an RpoS-dependent and an RpoS-independent manner. Analysis of the degradation of abnormal puromycyl-containing polypeptides showed that ClpP participates in the proteolysis of such proteins in S. typhimurium. These findings prompted an investigation of the growth of an Escherichia coli clpP mutant under various stress conditions. The growth of this E. coli mutant was affected by heat, salt and low pH, although not to the same extent as observed for the S. typhimurium clpP mutant. The results of this study indicate that the S. typhimurium clpP mutant is generally more sensitive to environmental stress than the E. coli clpP mutant and it is proposed that this is due to a reduced ability to degrade misfolded proteins generated under these conditions.
Collapse
Affiliation(s)
- L E Thomsen
- Department of Veterinary Microbiology, Stigboejlen 4, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark1
| | - J E Olsen
- Department of Veterinary Microbiology, Stigboejlen 4, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark1
| | - J W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, USA2
| | - H Ingmer
- Department of Veterinary Microbiology, Stigboejlen 4, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg C, Denmark1
| |
Collapse
|
102
|
Hoskins JR, Sharma S, Sathyanarayana BK, Wickner S. Clp ATPases and their role in protein unfolding and degradation. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:413-29. [PMID: 11868279 DOI: 10.1016/s0065-3233(01)59013-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although much has been learned about the structure and function of Clp chaperones and their role in proteolysis, the mechanism of protein unfolding catalyzed by Clp ATPases and the mechanism of translocation of the unfolded proteins from Clp ATPases to partner proteases remain unsolved puzzles. However, models in which mechanical force is used to destabilize the structure of the substrate in a processive and directional manner are probable. It also seems likely that when ClpA ATPases are associated with proteases, unfolding is coupled to extrusion of the unfolded protein into the proteolytic cavity. In summary, it is anticipated that the large family of Clp ATPases will accomplish their many important cellular functions by similar mechanisms and what has been learned by studying the prokaryotic members reviewed here will shed a great deal of light on all members of the family.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
103
|
Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci U S A 2002; 99:11037-42. [PMID: 12177439 PMCID: PMC123206 DOI: 10.1073/pnas.172378899] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clp/Hsp100 ATPases comprise a large family of ATP-dependent chaperones, some of which are regulatory components of two-component proteases. Substrate specificity resides in the Clp protein and the current thinking is that Clp proteins recognize motifs located near one or the other end of the substrate. We tested whether or not ClpA and ClpX can recognize tags when they are located in the interior of the primary sequence of the substrate. A protein with an NH2-terminal ClpA recognition tag, plasmid P1 RepA, was fused to the COOH terminus of green fluorescent protein (GFP). GFP is not recognized by ClpA or ClpX and is not degraded by ClpAP or ClpXP. We found that ClpA binds and unfolds the fusion protein and ClpAP degrades the protein. Both the GFP and RepA portions of the fusion protein are degraded. A protein with a COOH-terminal ClpX tag, MuA, was fused to the NH2 terminus of GFP. ClpXP degrades MuA-GFP, however, the rate is 10-fold slower than that of GFP-MuA. The MuA portion but not the GFP portion of MuA-GFP is degraded. Thus, a substrate with an internal ClpA recognition motif can be unfolded by ClpA and degraded by ClpAP. Similarly, although less efficiently, ClpXP degrades a substrate with an internal ClpX recognition motif. We also found that ClpA recognizes the NH2-terminal 15 aa RepA tag, when it is fused to the COOH terminus of GFP. Moreover, ClpA recognizes the RepA tag in either the authentic or inverse orientation.
Collapse
Affiliation(s)
- Joel R Hoskins
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
104
|
Liu Z, Tek V, Akoev V, Zolkiewski M. Conserved amino acid residues within the amino-terminal domain of ClpB are essential for the chaperone activity. J Mol Biol 2002; 321:111-20. [PMID: 12139937 DOI: 10.1016/s0022-2836(02)00591-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan 66506, USA
| | | | | | | |
Collapse
|
105
|
Zakalskiy A, Högenauer G, Ishikawa T, Wehrschütz-Sigl E, Wendler F, Teis D, Zisser G, Steven AC, Bergler H. Structural and enzymatic properties of the AAA protein Drg1p from Saccharomyces cerevisiae. Decoupling of intracellular function from ATPase activity and hexamerization. J Biol Chem 2002; 277:26788-95. [PMID: 12006565 DOI: 10.1074/jbc.m201515200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA protein Drg1 from yeast was affinity-purified, and its ATPase activity and hexamerization properties were analyzed. The same parameters were also determined for several mutant proteins and compared in light of the growth characteristics of the corresponding cells. The protein from a thermosensitive mutant exhibited reduced ATPase activity and hexamerization. These defects were not reversed by an intragenic suppressor mutation, although this allele supported growth at the nonpermissive temperature. A different set of mutants was generated by site-specific mutagenesis intended to adjust the Walker A box of the D2 domain of Drg1p to that of the D1 domain. A S562G exchange in D2 produced a nonfunctional protein that did not hexamerize but showed above-normal ATPase activity. The C561T mutant protein, on the other hand, was functional but hexamerized less readily and had reduced ATPase activity. In contrast, the C561T/S562G protein hexamerized less than wild type but had much higher ATPase activity. We distinguished strong and weak ATP-binding sites in the wild type protein but two weak sites in the C561T/S562G protein, indicating that the stronger site resides in D2. These observations are discussed in terms of the inter-relationship of ATPase activity per se, oligomeric status, and intracellular function for AAA proteins.
Collapse
Affiliation(s)
- Andriy Zakalskiy
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Fukui T, Eguchi T, Atomi H, Imanaka T. A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J Bacteriol 2002; 184:3689-98. [PMID: 12057965 PMCID: PMC135145 DOI: 10.1128/jb.184.13.3689-3698.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa protein with an N-terminal ATPase domain belonging to the AAA(+) superfamily and a C-terminal protease domain including a putative catalytic triad. Interestingly, a secondary structure prediction suggested the presence of two transmembrane helices within the ATPase domain and Western blot analysis using specific antiserum against the recombinant protein clearly indicated that Lon(Tk) was actually a membrane-bound protein. The recombinant Lon(Tk) possessed thermostable ATPase activity and peptide cleavage activity toward fluorogenic peptides with optimum temperatures of 95 and 70 degrees C, respectively. Unlike the enzyme from Escherichia coli, we found that Lon(Tk) showed higher peptide cleavage activity in the absence of ATP than it did in the presence of ATP. When three kinds of proteins with different thermostabilities were examined as substrates, it was found that Lon(Tk) required ATP for degradation of folded proteins, probably due to a chaperone-like function of the ATPase domain, along with ATP hydrolysis. In contrast, Lon(Tk) degraded unfolded proteins in an ATP-independent manner, suggesting a mode of action in Lon(Tk) different from that of its bacterial counterpart.
Collapse
Affiliation(s)
- Toshiaki Fukui
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
107
|
Ramachandran R, Hartmann C, Song HK, Huber R, Bochtler M. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc Natl Acad Sci U S A 2002; 99:7396-401. [PMID: 12032294 PMCID: PMC124242 DOI: 10.1073/pnas.102188799] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2002] [Indexed: 11/18/2022] Open
Abstract
HslVU is a bacterial homolog of the proteasome, where HslV is the protease that is activated by HslU, an ATPase and chaperone. Structures of singly and doubly capped HslVU particles have been reported, and different binding modes have been observed. Even among HslVU structures with I-domains distal to HslV, no consensus mode of activation has emerged. A feature in the Haemophilus influenzae HslVU structure, insertion of the C termini of HslU into pockets in HslV, was not seen in all other structures of the enzyme. Here we report site-directed mutagenesis, peptide activation, and fluorescence experiments that strongly support the functional relevance of the C terminus insertion mechanism: we find that mutations in HslV that disrupt the interaction with the C termini of HslU invariably lead to inactive enzyme. Conversely, synthetic peptides derived from the C terminus of HslU bind to HslV with 10(-5) M affinity and can functionally replace full HslU particles for both peptide and casein degradation but fail to support degradation of a folded substrate. Thus, the data can be taken as evidence for separate substrate unfoldase and protease stimulation activities in HslU. Enhanced HslV proteolysis could be due to the opening of a gated channel or allosteric activation of the active sites. To distinguish between these possibilities, we have mutated a series of residues that line the entrance channel into the HslV particle. Our mutational and fluorescence experiments demonstrate that allosteric activation of the catalytic sites is required in HslV, but they do not exclude the possibility of channel opening taking place as well. The present data support the conclusion that the H. influenzae structure with I-domains distal to HslV captures the active species and point to significant differences in the activation mechanism of HslV, ClpP, and the proteasome.
Collapse
Affiliation(s)
- Ravishankar Ramachandran
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
108
|
Tek V, Zolkiewski M. Stability and interactions of the amino-terminal domain of ClpB from Escherichia coli. Protein Sci 2002; 11:1192-8. [PMID: 11967375 PMCID: PMC1819561 DOI: 10.1110/ps.4860102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates aggregated proteins. The sequence of ClpB contains two ATP-binding regions that are enclosed between the N- and C-terminal extensions. Whereas it has been found that the N-terminal region of ClpB is essential for the chaperone activity, the structure of this region is not known, and its biochemical properties have not been studied. We expressed and purified the N-terminal fragment of ClpB (residues 1-147). Circular dichroism of the isolated N-terminal region showed a high content of alpha-helical structure. Differential scanning calorimetry showed that the N-terminal region of ClpB is thermodynamically stable and contains a single folding domain. The N-terminal domain is monomeric, as determined by gel-filtration chromatography, and the elution profile of the N-terminal domain does not change in the presence of the N-terminally truncated ClpB (ClpBDeltaN). This indicates that the N-terminal domain does not form strong contacts with ClpBDeltaN. Consistently, addition of the separated N-terminal domain does not reverse an inhibition of ATPase activity of ClpBDeltaN in the presence of casein. As shown by ELISA measurements, full-length ClpB and ClpBDeltaN bind protein substrates (casein, inactivated luciferase) with similar affinity. We also found that the isolated N-terminal domain of ClpB interacts with heat-inactivated luciferase. Taken together, our results indicate that the N-terminal fragment of ClpB forms a distinct domain that is not strongly associated with the ClpB core and is not required for ClpB interactions with other proteins, but may be involved in recognition of protein substrates.
Collapse
Affiliation(s)
- Vekalet Tek
- Department of Biochemistry, 104 Willard Hall, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
109
|
Viala J, Mazodier P. ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans. Mol Microbiol 2002; 44:633-43. [PMID: 11994147 DOI: 10.1046/j.1365-2958.2002.02907.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Five clpP genes have been identified in Streptomyces coelicolor. The clpP1 and clpP2 genes form one operon, the clpP3 and clpP4 genes form another, and clpP5 is monocistronic. Previous studies in Streptomyces lividans have shown that the first operon (clpP1 clpP2) is required for a normal cell cycle. Expression of the second operon (clpP3 clpP4) is activated by PopR if the first operon is nonfunctional. We show here that PopR degradation is primarily dependent on ClpP1 and ClpP2, but can also be achieved by ClpP3 and ClpP4. The carboxy-terminus of PopR plays an essential part in the degradation process. Indeed, replacement of the last two alanine residues by aspartate residues greatly increased PopR stability. These substitutions did not impair PopR activity and, as expected, accumulation of the mutant form of PopR led to very strong expression of the clpP3 clpP4 operon. Increased PopR levels led to delayed sporulation. The results obtained in this study support the notion of cross-processing between ClpP1 and ClpP2.
Collapse
Affiliation(s)
- Julie Viala
- Unité de Biochimie Microbienne, CNRS URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
110
|
Fischer B, Rummel G, Aldridge P, Jenal U. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol Microbiol 2002; 44:461-78. [PMID: 11972783 DOI: 10.1046/j.1365-2958.2002.02887.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ftsH gene of Caulobacter crescentus has been isolated and identified as a component of the general stress response of this organism. In C. crescentus, ftsH expression is transiently induced after temperature upshift and in stationary phase. Consistent with this, mutants deprived of the FtsH protease are viable at normal growth conditions, but are highly sensitive to elevated temperature, increased salt concentration or the presence of antibiotics. Overexpression of ftsH resulted in an increased salt but not thermotolerance, emphasizing the importance of the FtsH protease in stress response. Mutants lacking FtsH were unable to undergo morphological and physiological adaptation in stationary phase and, upon starvation, experienced a more pronounced loss of viability than cells containing FtsH. In addition, cells lacking FtsH had an increased cellular concentration of the heat shock sigma factor sigma32, indicating that, as in Escherichia coli, the FtsH protease is involved in the control of the C. crescentus heat shock response. In agreement with this, transcription of the heat-induced sigma32-dependent gene dnaK was derepressed at normal temperature when FtsH was absent. In contrast, the groEL gene, which is controlled in response to heat stress by both sigma32 and a HcrA/CIRCE mechanism, was not derepressed in an ftsH mutant. Finally, FtsH is involved in C. crescentus development and cell cycle control. ftsH mutants were unable to synthesize stalks efficiently and had a severe cell division phenotype. In the absence of FtsH, swarmer cells differentiated into stalked cells faster than when FtsH was present, even though the entire cell cycle was longer under these conditions. Thus, directly or indirectly, the FtsH protease is involved in the inherent biological clock mechanism, which controls the timing of cell differentiation in C. crescentus.
Collapse
Affiliation(s)
- B Fischer
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056, Switzerland
| | | | | | | |
Collapse
|
111
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3119] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
112
|
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64-93; table of contents. [PMID: 11875128 PMCID: PMC120782 DOI: 10.1128/mmbr.66.1.64-93.2002] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.
Collapse
Affiliation(s)
- Franz Narberhaus
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| |
Collapse
|
113
|
Watanabe YH, Motohashi K, Yoshida M. Roles of the two ATP binding sites of ClpB from Thermus thermophilus. J Biol Chem 2002; 277:5804-9. [PMID: 11741950 DOI: 10.1074/jbc.m109349200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a member of molecular chaperone Hsp100/Clp family, TClpB from Thermus thermophilus has two nucleotide binding domains, NBD1 and NBD2, in a single polypeptide, each containing WalkerA and WalkerB consensus motifs. To probe their roles, mutations were introduced into the WalkerA or WalkerB motifs of each or both of the NBDs. The results are as follows. 1) For each of the NBDs, the ability of nucleotide binding is lost by mutations in the WalkerA motif but is retained by mutations in the WalkerB motif. 2) Each NBD has a casein-stimulatable small basic ATPase activity that is lost when the WalkerB motif is mutated. 3) TClpB assembles into a uniform 580-kDa oligomer when ATP is present at 55 degrees C, and only the mutants in the WalkerA motif in NBD1 fail to assemble, indicating that ATP binding to NBD1 but not hydrolysis is necessary and sufficient for the assembly. 4) Chaperone function of TClpB was lost when the WalkerA motif in each of the NBDs was mutated. Mutants in the WalkerB motifs of each NBD retained some chaperone activity.
Collapse
Affiliation(s)
- Yo-hei Watanabe
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
114
|
Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A, Takaya A, Suzuki M, Sekiya K, Matsui H, Kutsukake K, Yamamoto T. The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 2002; 184:645-53. [PMID: 11790733 PMCID: PMC139528 DOI: 10.1128/jb.184.3.645-653.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ClpXP protease is a member of the ATP-dependent protease family and plays a dynamic role in the control of availability of regulatory proteins and the breakdown of abnormal and misfolded proteins. The proteolytic activity is rendered by the ClpP component, while the substrate specificity is determined by the ClpX component that has ATPase activity. We describe here a new role of the ClpXP protease in Salmonella enterica serovar Typhimurium in which ClpXP is involved in the regulation of flagellum synthesis. Cells deleted for ClpXP show "hyperflagellate phenotype," exhibit overproduction of the flagellar protein, and show a fourfold increase in the rate of transcription of the fliC encoding flagellar filament. The assay for promoter activity of the genes responsible for expression of the fliC showed that the depletion of ClpXP results in dramatic enhancement of the expression of the fliA encoding sigma factor final sigma(28), leaving the expression level of the flhD master operon lying at the top of the transcription hierarchy of flagellar regulon almost normal. These results suggest that the ClpXP may be responsible for repressing the expression of flagellar regulon through the control of the FlhD/FlhC master regulators at the posttranscriptional and/or posttranslational levels. Proteome analysis of proteins secreted from the mutant cells deficient for flhDC and clpXP genes demonstrated that the DeltaflhD mutation abolished the enhanced effect by DeltaclpXP mutation on the production of flagellar proteins, suggesting that the ClpXP possibly defines a regulatory pathway affecting the expression of flagellar regulon that is dependent on FlhD/FlhC master regulators.
Collapse
Affiliation(s)
- Toshifumi Tomoyasu
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Shaw AC, Gevaert K, Demol H, Hoorelbeke B, Vandekerckhove J, Larsen MR, Roepstorff P, Holm A, Christiansen G, Birkelund S. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2002; 2:164-86. [PMID: 11840563 DOI: 10.1002/1615-9861(200202)2:2<164::aid-prot164>3.0.co;2-u] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chlamydia trachomatis represents a group of human pathogenic obligate intracellular and gram-negative bacteria. The genome of C. trachomatis D comprises 894 open reading frames (ORFs). In this study the global expression of genes in C. trachomatis A, D and L2, which are responsible for different chlamydial diseases, was investigated using a proteomics approach. Based on silver stained two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), gels with purified elementary bodies (EB) and auto-radiography of gels with 35S-labeled C. trachomatis proteins up to 700 protein spots were detectable within the range of the immobilized pH gradient (IPG) system used. Using mass spectrometry and N-terminal sequencing followed by database searching we identified 250 C. trachomatis proteins from purified EB of which 144 were derived from different genes representing 16% of the ORFs predicted from the C. trachomatis D genome and the 7.5 kb C. trachomatis plasmid. Important findings include identification of proteins from the type III secretion apparatus, enzymes from the central metabolism and confirmation of expression of 25 hypothetical ORFs and five polymorphic membrane proteins. Comparison of serovars generated novel data on genetic variability as indicated by electrophoretic variation and potentially important examples of serovar specific differences in protein abundance. The availability of the complete genome made it feasible to map and to identify proteins of C. trachomatis on a large scale and the integration of our data in a 2-D PAGE database will create a basis for post genomic research, important for the understanding of chlamydial development and pathogenesis.
Collapse
Affiliation(s)
- Allan C Shaw
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Hattendorf DA, Lindquist SL. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J 2002; 21:12-21. [PMID: 11782421 PMCID: PMC125804 DOI: 10.1093/emboj/21.1.12] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AAA proteins share a conserved active site for ATP hydrolysis and regulate many cellular processes. AAA proteins are oligomeric and often have multiple ATPase domains per monomer, which is suggestive of complex allosteric kinetics of ATP hydrolysis. Here, using wild-type Hsp104 in the hexameric state, we demonstrate that its two AAA modules (NBD1 and NBD2) have very different catalytic activities, but each displays cooperative kinetics of hydrolysis. Using mutations in the AAA sensor-1 motif of NBD1 and NBD2 that reduce the rate of ATP hydrolysis without affecting nucleotide binding, we also examine the consequences of keeping each site in the ATP-bound state. In vitro, reducing k(cat) at NBD2 significantly alters the steady-state kinetic behavior of NBD1. Thus, Hsp104 exhibits allosteric communication between the two sites in addition to homotypic cooperativity at both NBD1 and NBD2. In vivo, each sensor-1 mutation causes a loss-of-function phenotype in two assays of Hsp104 function (thermotolerance and yeast prion propagation), demonstrating the importance of ATP hydrolysis as distinct from ATP binding at each site for Hsp104 function.
Collapse
Affiliation(s)
- Douglas A. Hattendorf
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology and Howard Hughes Medical Institute, the University of Chicago, Chicago, IL 60637, USA Present address: Department of Structural Biology, Stanford University, Stanford, CA 94305, USA Present address: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA Corresponding author e-mail:
| | - Susan L. Lindquist
- Department of Biochemistry and Molecular Biology and Department of Molecular Genetics and Cell Biology and Howard Hughes Medical Institute, the University of Chicago, Chicago, IL 60637, USA Present address: Department of Structural Biology, Stanford University, Stanford, CA 94305, USA Present address: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA Corresponding author e-mail:
| |
Collapse
|
117
|
Abstract
Biochemical characterization of the yeast prions has revealed many similarities with the mammalian amyloidogenic proteins. The ease of generating in vivo mutations in yeast and the developing in vitro models for [PSI+] and [URE3] circumvent many of the difficulties of studying the proteins linked to the mammalian amyloidoses. Future work especially aimed at understanding the molecular role of chaperone proteins in regulating conversion as well as the early steps in de novo formation of the prion state in yeast will likely provide invaluable lessons that may be more broadly applicable to related processes in higher eukaryotes. It is important to remember, however, that there are clear distinctions between disease states associated with amyloidogenesis and the epigenetic modulation of protein function by self-perpetuating conformational conversions. Amyloid formation is detrimental to mammals and is likely selected against, providing a possible explanation for the late onset of these disorders (Lansbury, 1999). In contrast, the known yeast prions are compatible with normal growth and, if beneficial to the organism, may be subject to evolutionary pressures that ultimately maximize transmission. In the prion proteins examined to date, distinct domains are responsible for normal function and for the conformational switches producing a prion conversion of that function. Recent work has demonstrated that the prion domains are both modular and transferable to other proteins on which they can confer a heritable epigenetic alteration of function (Edskes et al., 1999; Li and Lindquist, 2000; Patino et al., 1996; Santoso et al., 2000; Sondheimer and Lindquist, 2000). That is, prion domains need not coevolve with particular functional domains but might be moved from one protein to another during evolution. Such processes may be widely used in biology. Mechanistic studies of [PSI+] and [URE3] replication are sure to lay a foundation of knowledge for understanding a host of nonconventional genetic elements that currently remain elusive.
Collapse
Affiliation(s)
- T R Serio
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
118
|
Abstract
Protein folding in the cell, long thought to be a spontaneous process, in fact often requires the assistance of molecular chaperones. This is thought to be largely because of the danger of incorrect folding and aggregation of proteins, which is a particular problem in the crowded environment of the cell. Molecular chaperones are involved in numerous processes in bacterial cells, including assisting the folding of newly synthesized proteins, both during and after translation; assisting in protein secretion, preventing aggregation of proteins on heat shock, and repairing proteins that have been damaged or misfolded by stresses such as a heat shock. Within the cell, a balance has to be found between refolding of proteins and their proteolytic degradation, and molecular chaperones play a key role in this. In this review, the evidence for the existence and role of the major cytoplasmic molecular chaperones will be discussed, mainly from the physiological point of view but also in relationship to their known structure, function and mechanism of action. The two major chaperone systems in bacterial cells (as typified by Escherichia coli) are the GroE and DnaK chaperones, and the contrasting roles and mechanisms of these chaperones will be presented. The GroE chaperone machine acts by providing a protected environment in which protein folding of individual protein molecules can proceed, whereas the DnaK chaperones act by binding and protecting exposed regions on unfolded or partially folded protein chains. DnaK chaperones interact with trigger factor in protein translation and with ClpB in reactivating proteins which have become aggregated after heat shock. The nature of the other cytoplasmic chaperones in the cell will also be reviewed, including those for which a clear function has not yet been determined, and those where an in vivo chaperone function has still to be proven, such as the small heat shock proteins IbpA and IbpB. The regulation of expression of the genes of the heat shock response will also be discussed, particularly in the light of the signals that are needed to induce the response. The major signals for induction of the heat shock response are elevated temperature and the presence of unfolded protein within the cell, but these are sensed and transduced differently by different bacteria. The best characterized example is the sigma 32 subunit of RNA polymerase from E. coli, which is both more efficiently translated and also transiently stabilized following heat shock. The DnaK chaperones modulate this effect. However, a more widely conserved system appears to be typified by the HrcA repressor in Bacillus subtilis, the activity of which is modulated by the GroE chaperone machine. Other examples of regulation of molecular chaperones will also be discussed. Finally, the likely future research directions for molecular chaperone biology in the post-genomic era will be briefly evaluated.
Collapse
Affiliation(s)
- P A Lund
- School of BioSciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
119
|
Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J Biol Chem 2001; 276:29420-9. [PMID: 11346657 DOI: 10.1074/jbc.m103489200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli ClpA and ClpX are ATP-dependent protein unfoldases that each interact with the protease, ClpP, to promote specific protein degradation. We have used limited proteolysis and deletion analysis to probe the conformations of ClpA and ClpX and their interactions with ClpP and substrates. ATP gamma S binding stabilized ClpA and ClpX such that that cleavage by lysylendopeptidase C occurred at only two sites. Both proteins were cleaved within in a loop preceding an alpha-helix-rich C-terminal domain. Although the loop varies in size and composition in Clp ATPases, cleavage occurred within and around a conserved triad, IG(F/L). Binding of ClpP blocked this cleavage, and prior cleavage at this site rendered both ClpA and ClpX defective in binding and activating ClpP, suggesting that this site is involved in interactions with ClpP. ClpA was also cut at a site near the junction of the two ATPase domains, whereas the second cleavage site in ClpX lay between its N-terminal and ATPase domains. ClpP did not block cleavage at these other sites. The N-terminal domain of ClpX dissociated upon cleavage, and the remaining ClpXDeltaN remained as a hexamer, associated with ClpP, and expressed ATPase, chaperone, and proteolytic activity. A truncated mutant of ClpA lacking its N-terminal 153 amino acids also formed a hexamer, associated with ClpP, and expressed these activities. We propose that the N-terminal domains of ClpX and ClpA lie on the outside ring surface of the holoenzyme complexes where they contribute to substrate binding or perform a gating function affecting substrate access to other binding sites and that a loop on the opposite face of the ATPase rings stabilizes interactions with ClpP and is involved in promoting ClpP proteolytic activity.
Collapse
Affiliation(s)
- S K Singh
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
The AAA+ superfamily of ATPases, which contain a homologous ATPase module, are found in all kingdoms of living organisms where they participate in diverse cellular processes including membrane fusion, proteolysis and DNA replication. Recent structural studies have revealed that they usually form ring-shaped oligomers, which are crucial for their ATPase activities and mechanisms of action. These ring-shaped oligomeric complexes are versatile in their mode of action, which collectively seem to involve some form of disruption of molecular or macromolecular structure; unfolding of proteins, disassembly of protein complexes, unwinding of DNA, or alteration of the state of DNA-protein complexes. Thus, the AAA+ proteins represent a novel type of molecular chaperone. Comparative analyses have also revealed significant similarities and differences in structure and molecular mechanism between AAA+ ATPases and other ring-shaped ATPases.
Collapse
Affiliation(s)
- T Ogura
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan.
| | | |
Collapse
|
121
|
Banecki B, Wawrzynow A, Puzewicz J, Georgopoulos C, Zylicz M. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone. J Biol Chem 2001; 276:18843-8. [PMID: 11278349 DOI: 10.1074/jbc.m007507200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ClpX heat shock protein of Escherichia coli is a member of the universally conserved Hsp100 family of proteins, and possesses a putative zinc finger motif of the C(4) type. The ClpX is an ATPase which functions both as a substrate specificity component of the ClpXP protease and as a molecular chaperone. Using an improved purification procedure we show that the ClpX protein is a metalloprotein complexed with Zn(II) cations. Contrary to other Hsp100 family members, ClpXZn(II) exists in an oligomeric form even in the absence of ATP. We show that the single ATP-binding site of ClpX is required for a variety of tasks, namely, the stabilization of the ClpXZn(II) oligomeric structure, binding to ClpP, and the ClpXP-dependent proteolysis of the lambdaO replication protein. Release of Zn(II) from ClpX protein affects the ability of ClpX to bind ATP. ClpX, free of Zn(II), cannot oligomerize, bind to ClpP, or participate in ClpXP-dependent proteolysis. We also show that ClpXDeltaCys, a mutant protein whose four cysteine residues at the putative zinc finger motif have been replaced by serine, behaves in similar fashion as wild type ClpX protein whose Zn(II) has been released either by denaturation and renaturation, or chemically by p-hydroxymercuriphenylsulfonic acid.
Collapse
Affiliation(s)
- B Banecki
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | | | |
Collapse
|
122
|
Yamamoto T, Sashinami H, Takaya A, Tomoyasu T, Matsui H, Kikuchi Y, Hanawa T, Kamiya S, Nakane A. Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect Immun 2001; 69:3164-74. [PMID: 11292737 PMCID: PMC98273 DOI: 10.1128/iai.69.5.3164-3174.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enteric pathogen Salmonella enterica serovar Typhimurium, similar to other facultative intracellular pathogens, has been shown to respond to the hostile conditions inside macrophages of the host organism by producing a set of stress proteins that are also induced by various environmental stresses. The stress-induced ClpXP protease is a member of the ATP-dependent proteases, which are known to be responsible for more than 90% of all proteolysis in Escherichia coli. To investigate the contribution of the ClpXP protease to the virulence of serovar Typhimurium we initially cloned the clpP and clpX operon from the pathogenic strain serovar Typhimurium chi3306 and then created insertional mutations in the clpP and/or clpX gene. The Delta clpP and Delta clpX mutants were used to inoculate BALB/c mice by either the intraperitoneal or the oral route and found to be limited in their ability to colonize organs of the lymphatic system and to cause systemic disease in the host. A variety of experiments were performed to determine the possible reasons for the loss of virulence. An oxygen-dependent killing assay using hydrogen peroxide and paraquat (a superoxide anion generator) and a serum killing assay using murine serum demonstrated that all of the serovar Typhimurium Delta clpP and Delta clpX mutants were as resistant to these killing mechanisms as the wild-type strain. On the other hand, the macrophage survival assay revealed that all these mutants were more sensitive to the intracellular environment than the wild-type strain and were unable to grow or survive within peritoneal macrophages of BALB/c mice. In addition, it was revealed that the serovar Typhimurium ClpXP-depleted mutant was not completely cleared but found to persist at low levels within spleens and livers of mice. Interferon gamma-deficient mice and tumor necrosis factor alpha-deficient mice failed to survive the attenuated serovar Typhimurium infections, suggesting that both endogenous cytokines are essential for regulation of persistent infection with serovar Typhimurium.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC. Translocation pathway of protein substrates in ClpAP protease. Proc Natl Acad Sci U S A 2001; 98:4328-33. [PMID: 11287666 PMCID: PMC31834 DOI: 10.1073/pnas.081543698] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular protein degradation, which must be tightly controlled to protect normal proteins, is carried out by ATP-dependent proteases. These multicomponent enzymes have chaperone-like ATPases that recognize and unfold protein substrates and deliver them to the proteinase components for digestion. In ClpAP, hexameric rings of the ClpA ATPase stack axially on either face of the ClpP proteinase, which consists of two apposed heptameric rings. We have used cryoelectron microscopy to characterize interactions of ClpAP with the model substrate, bacteriophage P1 protein, RepA. In complexes stabilized by ATPgammaS, which bind but do not process substrate, RepA dimers are seen at near-axial sites on the distal surface of ClpA. On ATP addition, RepA is translocated through approximately 150 A into the digestion chamber inside ClpP. Little change is observed in ClpAP, implying that translocation proceeds without major reorganization of the ClpA hexamer. When translocation is observed in complexes containing a ClpP mutant whose digestion chamber is already occupied by unprocessed propeptides, a small increase in density is observed within ClpP, and RepA-associated density is also seen at other axial sites. These sites appear to represent intermediate points on the translocation pathway, at which segments of unfolded RepA subunits transiently accumulate en route to the digestion chamber.
Collapse
Affiliation(s)
- T Ishikawa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, and Laboratories of Cell Biology and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
124
|
Vandahl BB, Birkelund S, Demol H, Hoorelbeke B, Christiansen G, Vandekerckhove J, Gevaert K. Proteome analysis of theChlamydia pneumoniaeelementary body. Electrophoresis 2001; 22:1204-23. [PMID: 11358148 DOI: 10.1002/1522-2683()22:6<1204::aid-elps1204>3.0.co;2-m] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chlamydia pneumoniae is an obligate intracellular human pathogen that causes acute and chronic respiratory tract diseases and that has been implicated as a possible risk factor in the development of atherosclerotic heart disease. C. pneumoniae cultivated in Hep-2 cells were 35S-labeled and infectious elementary bodies (EB) were purified. The EB proteins were separated by two-dimensional gel electrophoresis. Excised protein spots were in-gel digested with trypsin and peptides were concentrated on reverse-phase chromatographic beads for identification analysis by matrix-assisted laser desorption/ionization-mass spectrometry. In the pH range from 3-11, 263 C. pneumoniae protein spots encoded from 167 genes were identified. These genes constitute 15% of the genome. The identified proteins include 31 hypothetical proteins. It has recently been suggested that EB should be able to synthesize ATP. This view may be strengthened by the identification of several proteins involved in energy metabolism. Furthermore, proteins have been found which are involved in the type III secretion apparatus important for pathogenesis of intracellular bacteria. Proteome maps and a table of all identified proteins have been made available on the world wide web at www.gram.au.dk.
Collapse
Affiliation(s)
- B B Vandahl
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
125
|
Reid BG, Fenton WA, Horwich AL, Weber-Ban EU. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci U S A 2001; 98:3768-72. [PMID: 11259663 PMCID: PMC31127 DOI: 10.1073/pnas.071043698] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular degradation of many proteins is mediated in an ATP-dependent manner by large assemblies comprising a chaperone ring complex associated coaxially with a proteolytic cylinder, e.g., ClpAP, ClpXP, and HslUV in prokaryotes, and the 26S proteasome in eukaryotes. Recent studies of the chaperone ClpA indicate that it mediates ATP-dependent unfolding of substrate proteins and directs their ATP-dependent translocation into the ClpP protease. Because the axial passageway into the proteolytic chamber is narrow, it seems likely that unfolded substrate proteins are threaded from the chaperone into the protease, suggesting that translocation could be directional. We have investigated directionality in the ClpA/ClpP-mediated reaction by using two substrate proteins bearing the COOH-terminal ssrA recognition element, each labeled near the NH(2) or COOH terminus with fluorescent probes. Time-dependent changes in both fluorescence anisotropy and fluorescence resonance energy transfer between donor fluorophores in the ClpP cavity and the substrate probes as acceptors were measured to monitor translocation of the substrates from ClpA into ClpP. We observed for both substrates that energy transfer occurs 2--4 s sooner with the COOH-terminally labeled molecules than with the NH(2)-terminally labeled ones, indicating that translocation is indeed directional, with the COOH terminus of the substrate protein entering ClpP first.
Collapse
Affiliation(s)
- B G Reid
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
126
|
Cooper KW, Baneyx F. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions. Protein Expr Purif 2001; 21:323-32. [PMID: 11237695 DOI: 10.1006/prep.2000.1378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site.
Collapse
Affiliation(s)
- K W Cooper
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
127
|
Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T. The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. PLANT & CELL PHYSIOLOGY 2001; 42:264-73. [PMID: 11266577 DOI: 10.1093/pcp/pce031] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ClpP is a proteolytic subunit of the ATP-dependent Clp protease, which is found in chloroplasts in higher plants. Proteolytic subunits are encoded both by the chloroplast gene, clpP, and a nuclear multi gene family. We insertionally disrupted clpP by chloroplast transformation in tobacco. However, complete segregation was impossible, indicating that the chloroplast-encoded clpP gene has an indispensable function for cell survival. In the heteroplasmic clpP disruptant, the leaf surface was rough by clumping, and the lateral leaf expansion was irregularly arrested, which led to an asymmetric, slender leaf shape. Chloroplasts consisted of two populations: chloroplasts that were similar to the wild type, and small chloroplasts that emitted high chl fluorescence. Ultrastructural analysis of chloroplast development suggested that clpP disruption also induced swelling of the thylakoid lumen in the meristem plastids and inhibition of etioplast development in the dark. In mature leaves, thylakoid membranes of the smaller chloroplast population consisted exclusively of large stacks of tightly appressed membranes. These results indicate that chloroplast-encoded ClpP is involved in multiple processes of chloroplast development, including a housekeeping function that is indispensable for cell survival.
Collapse
Affiliation(s)
- T Shikanai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0101 Japan.
| | | | | | | | | | | |
Collapse
|
128
|
Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci U S A 2001. [PMID: 11158570 PMCID: PMC14684 DOI: 10.1073/pnas.031568098] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing V(max) with little effect on K(m). In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering V(max) with little effect on K(m). ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo.
Collapse
|
129
|
Schirmer EC, Ware DM, Queitsch C, Kowal AS, Lindquist SL. Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci U S A 2001; 98:914-9. [PMID: 11158570 PMCID: PMC14684 DOI: 10.1073/pnas.98.3.914] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing V(max) with little effect on K(m). In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering V(max) with little effect on K(m). ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo.
Collapse
Affiliation(s)
- E C Schirmer
- Department of Molecular Genetics and Cell Biology and Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
130
|
|
131
|
Metzler DE, Metzler CM, Sauke DJ. Transferring Groups by Displacement Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
132
|
Ortega J, Singh SK, Ishikawa T, Maurizi MR, Steven AC. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol Cell 2000; 6:1515-21. [PMID: 11163224 DOI: 10.1016/s1097-2765(00)00148-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Binding and internalization of a protein substrate by E. coli ClpXP was investigated by electron microscopy. In sideviews of ATP gamma S-stabilized ClpXP complexes, a narrow axial channel was visible in ClpX, surrounded by protrusions on its distal surface. When substrate lambda O protein was added, extra density attached to this surface. Upon addition of ATP, this density disappeared as lambda O was degraded. When ATP was added to proteolytically inactive ClpXP-lambda O complexes, the extra density transferred to the center of ClpP and remained inside ClpP after separation from ClpX. We propose that substrates of ATP-dependent proteases bind to specific sites on the distal surface of the ATPase, and are subsequently unfolded and translocated into the internal chamber of the protease.
Collapse
Affiliation(s)
- J Ortega
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
133
|
Hoskins JR, Kim SY, Wickner S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem 2000; 275:35361-7. [PMID: 10952988 DOI: 10.1074/jbc.m006288200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 ATPase family, is a molecular chaperone and regulatory component of ClpAP protease. We explored the mechanism of protein recognition by ClpA using a high affinity substrate, RepA, which is activated for DNA binding by ClpA and degraded by ClpAP. By characterizing RepA derivatives with N- or C-terminal deletions, we found that the N-terminal portion of RepA is required for recognition. More precisely, RepA derivatives lacking the N-terminal 5 or 10 amino acids are degraded by ClpAP at a rate similar to full-length RepA, whereas RepA derivatives lacking 15 or 20 amino acids are degraded much more slowly. Thus, ClpA recognizes an N-terminal signal in RepA beginning in the vicinity of amino acids 10-15. Moreover, peptides corresponding to RepA amino acids 4-13 and 1-15 inhibit interactions between ClpA and RepA. We constructed fusions of RepA and green fluorescent protein, a protein not recognized by ClpA, and found that the N-terminal 15 amino acids of RepA are sufficient to target the fusion protein for degradation by ClpAP. However, fusion proteins containing 46 or 70 N-terminal amino acids of RepA are degraded more efficiently in vitro and are noticeably stabilized in vivo in clpADelta and clpPDelta strains compared with wild type.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
134
|
Kim KI, Cheong GW, Park SC, Ha JS, Woo KM, Choi SJ, Chung CH. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. J Mol Biol 2000; 303:655-66. [PMID: 11061966 DOI: 10.1006/jmbi.2000.4165] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heat-shock protein ClpB is a protein-activated ATPase that is essential for survival of Escherichia coli at high temperatures. ClpB has also recently been suggested to function as a chaperone in reactivation of aggregated proteins. In addition, the clpB gene has been shown to contain two translational initiation sites and therefore encode two polypeptides of different size. To determine the structural organization of ClpB, the ClpB proteins were subjected to chemical cross-linking analysis and electron microscopy. The average images of the ClpB proteins with end-on orientation revealed a seven-membered, ring-shaped structure with a central cavity. Their side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since the ClpB subunit has two large regions containing consensus sequences for nucleotide binding, each layer of the ClpB heptamer appears to represent the side projection of one of the major domains arranged on a ring. In the absence of salt and ATP, the ClpB proteins showed a high tendency to form a heptamer. However, they dissociated into various species of oligomers with smaller sizes, depending on salt concentration. Above 0.2 M NaCl, the ClpB proteins behaved most likely as a monomer in the absence of ATP, but assembled into a heptamer in its presence. Furthermore, mutations of the first ATP-binding site, but not the second site, prevented the ATP-dependent oligomerization of the ClpB proteins in the presence of 0.3 M NaCl. These results indicate that ClpB has a heptameric ring-shaped structure with a central cavity and this structural organization requires ATP binding to the first nucleotide-binding site localized to the N-terminal half of the ATPase.
Collapse
Affiliation(s)
- K I Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
135
|
Viala J, Rapoport G, Mazodier P. The clpP multigenic family in Streptomyces lividans: conditional expression of the clpP3 clpP4 operon is controlled by PopR, a novel transcriptional activator. Mol Microbiol 2000; 38:602-12. [PMID: 11069683 DOI: 10.1046/j.1365-2958.2000.02155.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The clpP genes are widespread among living organisms and encode the proteolytic subunit of the Clp ATP-dependent protease. These genes are present in a single copy in most eubacteria. However, five clpP genes were identified in Streptomyces coelicolor. The clpP1 clpP2 operon was studied: mutations affected the growth cycle in various Streptomyces. Here, we report studies of the expression of the clpP3 clpP4 operon in Streptomyces lividans. The clpP3 operon was induced in a clpP1 mutant strain, and the regulation of expression was investigated in detail. The product of the putative regulator gene, downstream from clpP4, was purified. Gel migration shift assays and DNase I footprinting showed that this protein binds to the clpP3 promoter and recognizes a tandem 6 bp palindromic repeat (TCTGCC-3N-GGCAGA). In vivo, this DNA-binding protein, named PopR, acts as an activator of the clpP3 operon. Studies of popR expression indicate that the regulator is probably controlled at the post-transcriptional level.
Collapse
Affiliation(s)
- J Viala
- Unité de Biochimie Microbienne, CNRS URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
136
|
Abstract
Events that stall bacterial protein synthesis activate the ssrA-tagging machinery, resulting in resumption of translation and addition of an 11-residue peptide to the carboxyl terminus of the nascent chain. This ssrA-encoded peptide tag marks the incomplete protein for degradation by the energy-dependent ClpXP protease. Here, a ribosome-associated protein, SspB, was found to bind specifically to ssrA-tagged proteins and to enhance recognition of these proteins by ClpXP. Cells with an sspB mutation are defective in degrading ssrA-tagged proteins, demonstrating that SspB is a specificity-enhancing factor for ClpXP that controls substrate choice.
Collapse
Affiliation(s)
- I Levchenko
- Department of Biology and Howard Hughes Medical Institute, Building 68, Room 523, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
137
|
Hoskins JR, Singh SK, Maurizi MR, Wickner S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc Natl Acad Sci U S A 2000; 97:8892-7. [PMID: 10922051 PMCID: PMC16792 DOI: 10.1073/pnas.97.16.8892] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpA, a bacterial member of the Clp/Hsp100 chaperone family, is an ATP-dependent molecular chaperone and the regulatory component of the ATP-dependent ClpAP protease. To study the mechanism of binding and unfolding of proteins by ClpA and translocation to ClpP, we used as a model substrate a fusion protein that joined the ClpA recognition signal from RepA to green fluorescent protein (GFP). ClpAP degrades the fusion protein in vivo and in vitro. The substrate binds specifically to ClpA in a reaction requiring ATP binding but not hydrolysis. Binding alone is not sufficient to destabilize the native structure of the GFP portion of the fusion protein. Upon ATP hydrolysis the GFP fusion protein is unfolded, and the unfolded intermediate can be sequestered by ClpA if a nonhydrolyzable analog is added to displace ATP. ATP is required for release. We found that although ClpA is unable to recognize native proteins lacking recognition signals, including GFP and rhodanese, it interacts with those same proteins when they are unfolded. Unfolded GFP is held in a nonnative conformation while associated with ClpA and its release requires ATP hydrolysis. Degradation of unfolded untagged proteins by ClpAP requires ATP even though the initial ATP-dependent unfolding reaction is bypassed. These results suggest that there are two ATP-requiring steps: an initial protein unfolding step followed by translocation of the unfolded protein to ClpP or in some cases release from the complex.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
138
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1396] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
139
|
Schumann W. Function and regulation of temperature-inducible bacterial proteins on the cellular metabolism. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2000; 67:1-33. [PMID: 10857220 DOI: 10.1007/3-540-47865-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Temperature is an important environmental factor which, when altered, requires adaptive responses from bacterial cells. While a sudden increase in the growth temperature induces a heat shock response, a decrease results in a cold shock response. Both responses involve a transient increase in a set of genes called heat and cold shock genes, respectively, and the transient enhanced synthesis of their proteins allows the stressed cells to adapt to the new situation. A sudden increase in the growth temperature results in the unfolding of proteins, and hydrophobic amino acid residues normally buried within the interior of the proteins become exposed on their surface. Via these hydrophobic residues which often form hydrophobic surfaces proteins can interact and form aggregates which may become life-threatening. Here, molecular chaperones bind to these exposed hydrophobic surfaces to prevent the formation of protein aggregates. Some chaperones, the foldases, allow refolding of these denatured proteins into their native conformation, while ATP-dependent proteases degrade these non-native proteins which fail to fold. Most chaperones and energy-dependent proteases are heat shock proteins, and their genes are either regulated by alternate sigma factors or by repressors. The cold shock response evokes two major threats to the cells, namely a drastic reduction in membrane fluidity and a transient complete stop of translation at least in E. coli. Membrane fluidity is restored by increasing the amount of unsaturated fatty acids and translation resumes after adaptation of the ribosomes to cold. Neither an alternative sigma factor nor a repressor seems to be involved in the regulation of the cold shock genes in E. coli, the only species studied so far in this respect.
Collapse
Affiliation(s)
- W Schumann
- Institute of Genetics, University of Bayreuth, Germany.
| |
Collapse
|
140
|
Karzai AW, Roche ED, Sauer RT. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. NATURE STRUCTURAL BIOLOGY 2000; 7:449-55. [PMID: 10881189 DOI: 10.1038/75843] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria contain a remarkable RNA molecule - known alternatively as SsrA RNA, tmRNA, or 10Sa RNA - that acts both as a tRNA and as an mRNA to direct the modification of proteins whose biosynthesis has stalled or has been interrupted. These incomplete proteins are marked for degradation by cotranslational addition of peptide tags to their C-termini in a reaction that is mediated by ribosome-bound SsrA RNA and an associated protein factor, SmpB. This system plays a key role in intracellular protein quality control and also provides a mechanism to clear jammed or obstructed ribosomes. Here the structural, functional and phylogenetic properties of this unique RNA and its associated factors are reviewed, and the intracellular proteases that act to degrade the proteins tagged by this system are also discussed.
Collapse
Affiliation(s)
- A W Karzai
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
141
|
Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 2000; 182:3259-65. [PMID: 10809708 PMCID: PMC94515 DOI: 10.1128/jb.182.11.3259-3265.2000] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of the heat stress response-related ATPases ClpC and ClpX or the peptidase ClpP in the cell is crucial for tolerance of many forms of stress in Bacillus subtilis. Assays for detection of defects in protein degradation suggest that ClpC, ClpP, and ClpX participate directly in overall proteolysis of misfolded proteins. Turnover rates for abnormal puromycyl peptides are significantly decreased in clpC, clpP, and clpX mutant cells. Electron-dense aggregates, most likely due to the accumulation of misfolded proteins, were noticed in studies of ultrathin cryosections in clpC and clpP mutant cells even under nonstress conditions. In contrast, in the wild type or clpX mutants such aggregates could only be observed after heat shock. This phenomenon supports the assumption that clpC and clpP mutants are deficient in the ability to solubilize or degrade damaged and aggregated proteins, the accumulation of which is toxic for the cell. By using immunogold labeling with antibodies raised against ClpC, ClpP, and ClpX, the Clp proteins were localized in these aggregates, showing that the Clp proteins act at this level in vivo.
Collapse
Affiliation(s)
- E Krüger
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
142
|
Abstract
A wide range of proteolytic processes in the chloroplast are well recognized. These include processing of precursor proteins, removal of oxidatively damaged proteins, degradation of proteins missing their prosthetic groups or their partner subunit in a protein complex, and adjustment of the quantity of certain chloroplast proteins in response to changing environmental conditions. To date, several chloroplast proteases have been identified and cloned. The chloroplast processing enzyme is responsible for removing the transit peptides of newly imported proteins. The thylakoid processing peptidase removes the thylakoid-transfer domain from proteins translocated into the thylakoid lumen. Within the lumen, Tsp removes the carboxy-terminal tail of the precursor of the PSII D1 protein. In contrast to these processing peptidases which perform a single endo-proteolytic cut, processive proteases that can completely degrade substrate proteins also exist in chloroplasts. The serine ATP-dependent Clp protease, composed of the proteolytic subunit ClpP and the regulatory subunit ClpC, is located in the stroma, and is involved in the degradation of abnormal soluble and membrane-bound proteins. The ATP-dependent metalloprotease FtsH is bound to the thylakoid membrane, facing the stroma. It degrades unassembled proteins and is involved in the degradation of the D1 protein of PSII following photoinhibition. DegP is a serine protease bound to the lumenal side of the thylakoid membrane that might be involved in the chloroplast response to heat. All these peptidases and proteases are homologues of known bacterial enzymes. Since ATP-dependent bacterial proteases and their mitochondrial homologues are also involved in the regulation of gene expression, via their determining the levels of key regulatory proteins, chloroplast proteases are expected to play a similar role.
Collapse
Affiliation(s)
- Z Adam
- Department of Agricultural Botany, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
143
|
Kim YI, Burton RE, Burton BM, Sauer RT, Baker TA. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol Cell 2000; 5:639-48. [PMID: 10882100 DOI: 10.1016/s1097-2765(00)80243-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ClpXP is a protein machine composed of the ClpX ATPase, a member of the Clp/Hsp100 family of remodeling enzymes, and the ClpP peptidase. Here, ClpX and ClpXP are shown to catalyze denaturation of GFP modified with an ssrA degradation tag. ClpX translocates this denatured protein into the proteolytic chamber of ClpP and, when proteolysis is blocked, also catalyzes release of denatured GFP-ssrA from ClpP in a reaction that requires ATP and additional substrate. Kinetic experiments reveal that multiple reaction steps require collaboration between ClpX and ClpP and that denaturation is the rate-determining step in degradation. These insights into the mechanism of ClpXP explain how it executes efficient degradation in a manner that is highly specific for tagged proteins, irrespective of their intrinsic stabilities.
Collapse
Affiliation(s)
- Y I Kim
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
144
|
Gaillot O, Pellegrini E, Bregenholt S, Nair S, Berche P. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol 2000; 35:1286-94. [PMID: 10760131 DOI: 10.1046/j.1365-2958.2000.01773.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We identified the stress-induced ClpP of Listeria monocytogenes and demonstrated its crucial role in intracellular survival of this pathogen. ClpP is a 21.6 kDa protein belonging to a family of proteases highly conserved in prokaryotes and eukaryotes. A clpP-deleted mutant enabled us to demonstrate that ClpP is involved in proteolysis and is required for growth under stress conditions. Intramacrophage survival of this mutant was strongly restricted, thus resulting in loss of virulence for the mouse. The activity of listeriolysin O, a major virulence factor implicated in bacterial escape from phagosomes of macrophages, was much reduced in the clpP mutant under stress conditions. Direct evidence for the role of ClpP in the intracellular parasitism was obtained by showing that virulence and haemolytic activity were fully restored by complementation of the mutant. These results suggest that ClpP is involved in the rapid adaptive response of intracellular pathogens during the infectious process.
Collapse
Affiliation(s)
- O Gaillot
- INSERM U411, Centre Hospitalo-Universitaire Necker-Enfants Malades, 156, rue de Vaugirard, 75730 PARIS Cedex 15, France
| | | | | | | | | |
Collapse
|
145
|
Yang DH, Paulsen H, Andersson B. The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS Lett 2000; 466:385-8. [PMID: 10682866 DOI: 10.1016/s0014-5793(00)01107-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Variations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation [Yang, D.-H. et al. (1998) Plant Physiol. 118, 827-834]. In this study, the substrate specificity and recognition site towards the protease were examined using reconstituted wild-type and mutant recombinant LHCII. The results show that the LHCII apoprotein and the monomeric form of the holoprotein are targeted for proteolysis while the trimeric form is not. The N-terminal domain of LHCII was found to be essential for recognition by the regulatory protease and the involvement of the N-end rule pathway is discussed.
Collapse
Affiliation(s)
- D H Yang
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | |
Collapse
|
146
|
Abstract
The ubiquitin-proteasome pathway is responsible for the major portion of specific cellular protein degradation. Ubiquitin-mediated degradation is involved in physiological regulation of many cellular processes, including cell cycle progression, differentiation, and signal transduction. Here, we review the basic mechanisms of the ubiquitin system and the various ways in which ubiquitin-mediated degradation can be modulated by physiological signals.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
147
|
Kim KI, Park SC, Kang SH, Cheong GW, Chung CH. Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J Mol Biol 1999; 294:1363-74. [PMID: 10600391 DOI: 10.1006/jmbi.1999.3320] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HtrA, which has a high molecular mass of about 500 kDa, is a periplasmic heat shock protein whose proteolytic activity is essential for the survival of Escherichia coli at high temperatures. To determine the structural organization of HtrA, we have used electron microscopy and chemical cross-linking analysis. The averaged image of HtrA with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity, and its side-on view showed a two-layered structure. Thus, HtrA behaves as a dodecamer consisting of two stacks of hexameric ring. HtrA can degrade thermally unfolded citrate synthase and malate dehydrogenase but cannot when in their native form. HtrA degraded partially unfolded casein more rapidly upon increasing the incubation temperature. However, it hydrolyzed oxidized insulin B-chain, which is fully unfolded, at nearly the same rate at all of the temperatures tested. HtrA also rapidly degraded reduced insulin B-chain generated by treatment of insulin with dithiothreitol but not A-chain or intact insulin. Moreover, HtrA degraded fully unfolded alpha-lactalbumin, of which all four disulfide bonds were reduced, but not the native alpha-lactalbumin and its unfolded intermediates containing two or three disulfide bonds. These results indicate that unfolding of the protein substrates, such as by exposure to high temperatures or reduction of disulfide bonds, is essential for their access into the inner chamber of the double ring-shaped HtrA, where cleavage of peptide bonds may occur. Thus, HtrA with a self-compartmentalizing structure may play an important role in elimination of unfolded proteins in the periplasm of Escherichia coli.
Collapse
Affiliation(s)
- K I Kim
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
148
|
Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999; 286:1888-93. [PMID: 10583944 DOI: 10.1126/science.286.5446.1888] [Citation(s) in RCA: 779] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polypeptides emerging from the ribosome must fold into stable three-dimensional structures and maintain that structure throughout their functional lifetimes. Maintaining quality control over protein structure and function depends on molecular chaperones and proteases, both of which can recognize hydrophobic regions exposed on unfolded polypeptides. Molecular chaperones promote proper protein folding and prevent aggregation, and energy-dependent proteases eliminate irreversibly damaged proteins. The kinetics of partitioning between chaperones and proteases determines whether a protein will be destroyed before it folds properly. When both quality control options fail, damaged proteins accumulate as aggregates, a process associated with amyloid diseases.
Collapse
Affiliation(s)
- S Wickner
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
149
|
Watanabe S, Muramatsu T, Ao H, Hirayama Y, Takahashi K, Tanokura M, Kuchino Y. Molecular cloning of the Lon protease gene from Thermus thermophilus HB8 and characterization of its gene product. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:811-9. [PMID: 10583374 DOI: 10.1046/j.1432-1327.1999.00907.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding Lon protease was isolated from an extreme thermophile, Thermus thermophilus HB8. Sequence analysis demonstrated that the T. thermophilus Lon protease gene (TT-lon) contains a protein-coding sequence consisting of 2385 bp which is approximately 56% homologous to the Escherichia coli counterpart. As expected, the G/C content of TT-lon was 68%, which is significantly higher than that of the E. coli lon gene (52% G/C). The amino acid sequence of T. thermophilus Lon protease (TT-Lon) predicted from the nucleotide sequence contained several unique sequences conserved in other Lon proteases: (a) a cysteine residue at the position just before the putative ATP-binding domain; (b) motif A and B sequences required for composition of the ATP-binding domain; and (c) a serine residue at the proteolytic active site. Expression of TT-lon under the control of the T7 promoter in E. coli produced an 89-kDa protein with a yield of approximately 5 mg.L-1. Recombinant TT-Lon (rTT-Lon) was purified to homogeneity by sequential column chromatography. The peptidase activity of rTT-Lon was activated by ATP and alpha-casein. rTT-Lon cleaved succinyl-phenylalanyl-leucyl-phenylalanyl-methoxynaphthylamide much more efficiently than succinyl-alanyl-alanyl-phenylalanyl-methoxynaphthylamide, whereas both peptides were cleaved with comparable efficiencies by E. coli Lon. These results suggest that there is a difference between TT-Lon and E. coli Lon in substrate specificity. rTT-Lon most effectively cleaved substrate peptides at 70 degrees C, which was significantly higher than the optimal temperature (37 degrees C) for E. coli Lon. Together, these results indicate that the TT-lon gene isolated from T. thermophilus HB8 actually encodes an ATP-dependent thermostable protease Lon.
Collapse
Affiliation(s)
- S Watanabe
- Biophysics Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
150
|
Singh SK, Guo F, Maurizi MR. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry 1999; 38:14906-15. [PMID: 10555973 DOI: 10.1021/bi991615f] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli ClpA and ClpP proteins form a complex, ClpAP, that catalyzes ATP-dependent degradation of proteins. Formation of stable ClpA hexamers and stable ClpAP complexes requires binding of ATP or nonhydrolyzable ATP analogues to ClpA. To understand the order of events during substrate binding, unfolding, and degradation by ClpAP, it is essential to know the oligomeric state of the enzyme during multiple catalytic cycles. Using inactive forms of ClpA or ClpP as traps for dissociated species, we measured the rates of dissociation of ClpA hexamers or ClpAP complexes. When ATP was saturating, the rate constant for dissociation of ClpA hexamers was 0.032 min(-1) (t(1/2) of 22 min) at 37 degrees C, and dissociation of ClpP from the ClpAP complexes occurred with a rate constant of 0. 092 min(-1) (t(1/2) of 7.5 min). Because the k(cat) for casein degradation is approximately 10 min(-1), these results indicate that tens of molecules of casein can be turned over by the ClpAP complex before significant dissociation occurs. Mutations in the N-terminal ATP binding site led to faster rates of ClpA and ClpAP dissociation, whereas mutations in the C-terminal ATP binding site, which cause significant decreases in ATPase activity, led to lower rates of dissociation of ClpA and ClpAP complexes. Dissociation rates for wild-type and first domain mutants of ClpA were faster at low nucleotide concentrations. The t(1/2) for dissociation of ClpAP complexes in the presence of nonhydrolyzable analogues was >/=30 min. Thus, ATP binding stabilizes the oligomeric state of ClpA, and cycles of ATP hydrolysis affect the dynamics of oligomer interaction. However, since the k(cat) for ATP hydrolysis is approximately 140 min(-1), ClpA and the ClpAP complex remain associated during hundreds of rounds of ATP hydrolysis. Our results indicate that the ClpAP complex is the functional form of the protease and as such engages in multiple rounds of interaction with substrate proteins, degradation, and release of peptide products without dissociation.
Collapse
Affiliation(s)
- S K Singh
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|