101
|
Generation by phage display and characterization of drug-target complex-specific antibodies for pharmacokinetic analysis of biotherapeutics. MAbs 2018; 11:178-190. [PMID: 30516449 PMCID: PMC6343800 DOI: 10.1080/19420862.2018.1538723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anti-idiotypic antibodies play an important role in pre-clinical and clinical development of therapeutic antibodies, where they are used for pharmacokinetic studies and for the development of immunogenicity assays. By using an antibody phage display library in combination with guided in vitro selection against various marketed drugs, we generated antibodies that recognize the drug only when bound to its target. We have named such specificities Type 3, to distinguish them from the anti-idiotypic antibodies that specifically detect free antibody drug or total drug. We describe the generation and characterization of such reagents for the development of ligand binding assays for drug quantification. We also show how these Type 3 antibodies can be used to develop very specific and sensitive assays that avoid the bridging format. Abbreviations: BAP: bacterial alkaline phosphatase; CDR: complementarity-determining regions in VH or VL; Fab: antigen-binding fragment of an antibody; HRP: horseradish peroxidase; HuCAL®: Human Combinatorial Antibody Libraries; IgG: immunoglobulin G; LBA: ligand binding assay; LOQ: limit of quantitation; NHS: normal human serum; PK: pharmacokinetics; VH: variable region of the heavy chain of an antibody; VL: variable region of the light chain of an antibody.
Collapse
|
102
|
A Two-Step Approach for the Design and Generation of Nanobodies. Int J Mol Sci 2018; 19:ijms19113444. [PMID: 30400198 PMCID: PMC6274671 DOI: 10.3390/ijms19113444] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.
Collapse
|
103
|
Suchsland R, Appel B, Müller S. Synthesis of Trinucleotide Building Blocks in Solution and on Solid Phase. ACTA ACUST UNITED AC 2018; 75:e60. [PMID: 30375750 DOI: 10.1002/cpnc.60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed two methods, in solution and on solid phase, that give easy access to trinucleotide phosphoramidites capable of undergoing coupling reactions by the solid-phase phosphoramidite approach. The solution protocol is characterized by application of 5'-O-dimethoxytrityl (DMT) and 3'-O-tert-butyldimethylsilyl (TBDMS) as a pair of orthogonal protecting groups and 2-cyanoethyl (CE) for protection of the phosphate. Starting with suitably functionalized monomers, synthesis proceeds in the 3'- to 5'-direction, delivering the fully protected trinucleotide. The 3'-O-protecting group is cleaved followed by phosphitylation of the free 3'-OH group. The solid-phase protocol is based on standard phosphoramidite chemistry in conjunction with a dithiomethyl linkage connecting the 3'-starting nucleoside to the polymer. The disulfide bridge can be cleaved under neutral conditions for release of the trinucleotide from the support preserving all other protecting groups. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ruth Suchsland
- Institute for Biochemistry, University Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institute for Biochemistry, University Greifswald, Greifswald, Germany
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald, Greifswald, Germany
| |
Collapse
|
104
|
Mason DM, Weber CR, Parola C, Meng SM, Greiff V, Kelton WJ, Reddy ST. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Res 2018; 46:7436-7449. [PMID: 29931269 PMCID: PMC6101513 DOI: 10.1093/nar/gky550] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
Antibody engineering is often performed to improve therapeutic properties by directed evolution, usually by high-throughput screening of phage or yeast display libraries. Engineering antibodies in mammalian cells offer advantages associated with expression in their final therapeutic format (full-length glycosylated IgG); however, the inability to express large and diverse libraries severely limits their potential throughput. To address this limitation, we have developed homology-directed mutagenesis (HDM), a novel method which extends the concept of CRISPR/Cas9-mediated homology-directed repair (HDR). HDM leverages oligonucleotides with degenerate codons to generate site-directed mutagenesis libraries in mammalian cells. By improving HDR to a robust efficiency of 15-35% and combining mammalian display screening with next-generation sequencing, we validated this approach can be used for key applications in antibody engineering at high-throughput: rational library construction, novel variant discovery, affinity maturation and deep mutational scanning (DMS). We anticipate that HDM will be a valuable tool for engineering and optimizing antibodies in mammalian cells, and eventually enable directed evolution of other complex proteins and cellular therapeutics.
Collapse
Affiliation(s)
- Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
- Life Science Graduate School, Systems Biology, ETH Zürich, University of Zurich, Zurich 8057, Switzerland
| | - Simon M Meng
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - William J Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| |
Collapse
|
105
|
Computational design of antibodies. Curr Opin Struct Biol 2018; 51:156-162. [DOI: 10.1016/j.sbi.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
|
106
|
Antibody Isolation From a Human Synthetic Combinatorial and Other Libraries of Single-Chain Antibodies. Methods Mol Biol 2018; 1701:349-363. [PMID: 29116515 DOI: 10.1007/978-1-4939-7447-4_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody libraries came into existence 25 years ago when the accumulating sequence data of immunoglobulin genes and the advent of the PCR technology made it possible to clone antibody gene repertoires. Phage display (most common) and additional display and screening technologies were applied to pan out desired binding specificities from antibody libraries. "Synthetic" or "semisynthetic" libraries are from naive-non-immunized source and considered to be a source for many different targets, including self-antigens.As other antibody discovery tools, phage display is not an off-the-shelf technology and not offered as a kit but rather requires experience and expertise for making it indeed very useful. Here we present application notes that expand the usefulness of antibody phage display as a very versatile and robust antibody discovery tool.
Collapse
|
107
|
Rabia LA, Desai AA, Jhajj HS, Tessier PM. Understanding and overcoming trade-offs between antibody affinity, specificity, stability and solubility. Biochem Eng J 2018; 137:365-374. [PMID: 30666176 DOI: 10.1016/j.bej.2018.06.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The widespread use of monoclonal antibodies for therapeutic applications has led to intense interest in optimizing several of their natural properties (affinity, specificity, stability, solubility and effector functions) as well as introducing non-natural activities (bispecificity and cytotoxicity mediated by conjugated drugs). A common challenge during antibody optimization is that improvements in one property (e.g., affinity) can lead to deficits in other properties (e.g., stability). Here we review recent advances in understanding trade-offs between different antibody properties, including affinity, specificity, stability and solubility. We also review new approaches for co-optimizing multiple antibody properties and discuss how these methods can be used to rapidly and systematically generate antibodies for a wide range of applications.
Collapse
Affiliation(s)
- Lilia A Rabia
- Center for Biotechnology & Interdisciplinary Studies, Isermann Dept. of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alec A Desai
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harkamal S Jhajj
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Dept. of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
108
|
Probing the folding pathway of a consensus serpin using single tryptophan mutants. Sci Rep 2018; 8:2121. [PMID: 29391487 PMCID: PMC5794792 DOI: 10.1038/s41598-018-19567-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/25/2023] Open
Abstract
Conserpin is an engineered protein that represents the consensus of a sequence alignment of eukaryotic serpins: protease inhibitors typified by a metastable native state and a structurally well-conserved scaffold. Previously, this protein has been found to adopt a native inhibitory conformation, possess an atypical reversible folding pathway and exhibit pronounced resistance to inactivation. Here we have designed a version of conserpin, cAT, with the inhibitory specificity of α1-antitrypsin, and generated single-tryptophan variants to probe its folding pathway in more detail. cAT exhibited similar thermal stability to the parental protein, an inactivation associated with oligomerisation rather a transition to the latent conformation, and a native state with pronounced kinetic stability. The tryptophan variants reveal the unfolding intermediate ensemble to consist of an intact helix H, a distorted helix F and ‘breach’ region structurally similar to that of a mesophilic serpin intermediate. A combination of intrinsic fluorescence, circular dichroism, and analytical gel filtration provide insight into a highly cooperative folding pathway with concerted changes in secondary and tertiary structure, which minimises the accumulation of two directly-observed aggregation-prone intermediate species. This functional conserpin variant represents a basis for further studies of the relationship between structure and stability in the serpin superfamily.
Collapse
|
109
|
Clark JE, Dudler T, Marber MS, Schwaeble W. Cardioprotection by an anti-MASP-2 antibody in a murine model of myocardial infarction. Open Heart 2018; 5:e000652. [PMID: 29344374 PMCID: PMC5761301 DOI: 10.1136/openhrt-2017-000652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/26/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022] Open
Abstract
Background Myocardial ischaemia-reperfusion injury is a major cause of mortality and morbidity in the developed world. Many approaches have been investigated to counteract the pathological consequences associated with acute myocardial infarction (AMI) and cardiac remodelling. It is accepted that inflammation, and therefore activation of the complement pathway, is a crucial step in the pathogenesis of this injury, and many attempts have been made to ameliorate the infarction and consequent dysfunction using anticomplement therapy, with mixed success. Recently, the lectin complement activation pathway involving the mannose-binding lectin-associated serine protease 2 (MASP-2) has been shown to be an important mediator of the inflammatory response in ischaemia/reperfusion injury in the heart. In this study, therefore, we aimed to investigate the feasibility of using monoclonal antibodies raised against MASP-2 in a murine model of AMI. Methods Mice were injected with anti-MASP-2 antibody or control 18 hours prior to experimental infarction by ligation of the left anterior descending coronary artery for 30 min followed by 120 min reperfusion. The developed infarct was measured, and blood was collected for analysis of lectin pathway functional activity. Results and conclusions We found that mice treated with anti-MASP-2 antibody had smaller infarcts than those treated with control antibody. We believe this may represent a valuable step forward in the protection of the myocardium against ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- James E Clark
- BHF Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Thomas Dudler
- Drug Discovery, Omeros Corporation, Seattle, Washington, USA
| | - Michael S Marber
- BHF Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Wilhelm Schwaeble
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
110
|
Ch'ng ACW, Hamidon NHB, Konthur Z, Lim TS. Magnetic Nanoparticle-Based Semi-Automated Panning for High-Throughput Antibody Selection. Methods Mol Biol 2018; 1701:301-319. [PMID: 29116512 DOI: 10.1007/978-1-4939-7447-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of recombinant human antibodies is growing rapidly mainly in the field of diagnostics and therapeutics. To identify antibodies against a specific antigen, panning selection is carried out using different display technologies. Phage display technology remains the preferred platform due to its robustness and efficiency in biopanning experiments. There are both manual and semi-automated panning selections using polystyrene plastic, magnetic beads, and nitrocellulose as the immobilizing solid surface. Magnetic nanoparticles allow for improved antigen binding due to their large surface area. The Kingfisher Flex magnetic particle processing system was originally designed to aid in RNA, DNA, and protein extraction using magnetic beads. However, the system can be programmed for antibody phage display panning. The automation allows for a reduction in human error and improves reproducibility in between selections with the preprogrammed movements. The system requires minimum human intervention to operate; however, human intervention is needed for post-panning steps like phage rescue. In addition, polyclonal and monoclonal ELISA can be performed using the semi-automated platform to evaluate the selected antibody clones. This chapter will summarize the suggested protocol from the panning stage till the monoclonal ELISA evaluation. Other than this, important notes on the possible optimization and troubleshooting are also included at the end of this chapter.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Analytical Biochemistry Research Centre, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Nurul Hamizah Binti Hamidon
- Analytical Biochemistry Research Centre, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Mühlenberg 1, 14476, Potsdam, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia. .,Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
111
|
Kügler J, Tomszak F, Frenzel A, Hust M. Construction of Human Immune and Naive scFv Libraries. Methods Mol Biol 2018; 1701:3-24. [PMID: 29116497 DOI: 10.1007/978-1-4939-7447-4_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody phage display is the most commonly used in vitro selection technology for the generation of human recombinant antibodies and has yielded thousands of useful antibodies for research, diagnostics, and therapy. The prerequisite for successful generation of antibodies using phage display is the construction of high-quality antibody gene libraries. Here, we give the detailed methods for the construction of human immune and naive scFv gene libraries.
Collapse
Affiliation(s)
- Jonas Kügler
- YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany
| | | | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
112
|
Alam ME, Geng SB, Bender C, Ludwig SD, Linden L, Hoet R, Tessier PM. Biophysical and Sequence-Based Methods for Identifying Monovalent and Bivalent Antibodies with High Colloidal Stability. Mol Pharm 2017; 15:150-163. [PMID: 29154550 DOI: 10.1021/acs.molpharmaceut.7b00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro antibody discovery and/or affinity maturation are often performed using antibody fragments (Fabs), but most monovalent Fabs are reformatted as bivalent IgGs (monoclonal antibodies, mAbs) for therapeutic applications. One problem related to reformatting antibodies is that the bivalency of mAbs can lead to increased antibody self-association and poor biophysical properties (e.g., reduced antibody solubility and increased viscosity). Therefore, it is important to identify monovalent Fabs early in the discovery and/or optimization process that will display favorable biophysical properties when reformatted as bivalent mAbs. Here we demonstrate a facile approach for evaluating Fab self-association in a multivalent assay format that is capable of identifying antibodies with low self-association and favorable colloidal properties when reformatted as bivalent mAbs. Our approach (self-interaction nanoparticle spectroscopy, SINS) involves immobilizing Fabs on gold nanoparticles in a multivalent format (multiple Fabs per nanoparticle) and evaluating their self-association behavior via shifts in the plasmon wavelength or changes in the absorbance values. Importantly, we find that SINS measurements of Fab self-association are correlated with self-interaction measurements of bivalent mAbs and are useful for identifying antibodies with favorable biophysical properties. Moreover, the significant differences in the levels of self-association detected for Fabs and mAbs with similar frameworks can be largely explained by the physicochemical properties of the complementarity-determining regions (CDRs). Comparison of the properties of the CDRs in this study relative to those of approved therapeutic antibodies reveals several key factors (net charge, fraction of charged residues, and presence of self-interaction motifs) that strongly influence antibody self-association behavior. Increased positive charge in the CDRs was observed to correlate with increased risk of high self-association for the mAbs in this study and clinical-stage antibodies. We expect that these findings will be useful for improving the development of therapeutic antibodies that are well suited for high concentration applications.
Collapse
Affiliation(s)
- Magfur E Alam
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Steven B Geng
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Christian Bender
- Pharmaceuticals, Bayer AG , Nattermannallee 1, Cologne 50829, Germany
| | - Seth D Ludwig
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Lars Linden
- Pharmaceuticals, Bayer AG , Aprather Weg 18A, Wuppertal 42117, Germany
| | - Rene Hoet
- Pharmaceuticals, Bayer AG , Nattermannallee 1, Cologne 50829, Germany
| | - Peter M Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
113
|
Kelly RL, Le D, Zhao J, Wittrup KD. Reduction of Nonspecificity Motifs in Synthetic Antibody Libraries. J Mol Biol 2017; 430:119-130. [PMID: 29183788 DOI: 10.1016/j.jmb.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Successful antibody development requires both functional binding and desirable biophysical characteristics. In the current study, we analyze the causes of one hurdle to clinical development, off-target reactivity, or nonspecificity. We used a high-throughput nonspecificity assay to isolate panels of nonspecific antibodies from two synthetic single-chain variable fragment libraries expressed on the surface of yeast, identifying both individual amino acids and motifs within the complementarity-determining regions which contribute to the phenotype. We find enrichment of glycine, valine, and arginine as both individual amino acids and as a part of motifs, and additionally enrichment of motifs containing tryptophan. Insertion of any of these motifs into the complementarity-determining region H3 of a "clean" antibody increased its nonspecificity, with greatest increases in antibodies containing Trp or Val motifs. We next applied these rules to the creation of a synthetic diversity library based on natural frameworks with significantly decreased incorporation of such motifs and demonstrated its ability to isolate binders to a wide panel of antigens. This work both provides a greater understanding of the drivers of nonspecificity and provides design rules to increase efficiency in the isolation of antibodies with drug-like properties.
Collapse
Affiliation(s)
- Ryan L Kelly
- Department of Biological, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA
| | - Doris Le
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA
| | - Jessie Zhao
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA
| | - K Dane Wittrup
- Department of Biological, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA; Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA.
| |
Collapse
|
114
|
Targeting Intracellular Antigens with pMHC-Binding Antibodies: A Phage Display Approach. Methods Mol Biol 2017. [PMID: 29116509 DOI: 10.1007/978-1-4939-7447-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antibodies that bind peptide-MHC (pMHC) complex in a manner akin to T-cell receptor (TCR) have not only helped in understanding the mechanism of TCR-pMHC interactions in the context of T-cell biology, but also spurred considerable interest in recent years as potential cancer therapeutics. Traditional methods to generate such antibodies using hybridoma and B-cell sorting technologies are sometimes inadequate, possibly due to the small contribution of peptide to the overall B-cell epitope space on the surface of the pMHC complex (typical peptide MW = 1 kDa versus MHC MW = 45 kDa), and to the multiple efficiency limiting steps inherent in these methods. In this chapter, we describe a phage display approach for the rapid generation of such antibodies with high specificity and affinity.
Collapse
|
115
|
Parola C, Neumeier D, Reddy ST. Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology 2017; 153:31-41. [PMID: 28898398 DOI: 10.1111/imm.12838] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibody discovery and engineering is a field that has traditionally been dominated by high-throughput screening platforms (e.g. hybridomas and surface display). In recent years the emergence of high-throughput sequencing has made it possible to obtain large-scale information on antibody repertoire diversity. Additionally, it has now become more routine to perform high-throughput sequencing on antibody repertoires to also directly discover antibodies. In this review, we provide an overview of the progress in this field to date and show how high-throughput screening and sequencing are converging to deliver powerful new workflows for monoclonal antibody discovery and engineering.
Collapse
Affiliation(s)
- Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
116
|
Maruthachalam BV, El-Sayed A, Liu J, Sutherland AR, Hill W, Alam MK, Pastushok L, Fonge H, Barreto K, Geyer CR. A Single-Framework Synthetic Antibody Library Containing a Combination of Canonical and Variable Complementarity-Determining Regions. Chembiochem 2017; 18:2247-2259. [DOI: 10.1002/cbic.201700279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ayman El-Sayed
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Jianghai Liu
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Ashley R. Sutherland
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Wayne Hill
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Md Kausar Alam
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Landon Pastushok
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Humphrey Fonge
- Department of Medical Imaging; University of Saskatchewan; Saskatoon SK S7N 0W8 Canada
| | - Kris Barreto
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - C. Ronald Geyer
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| |
Collapse
|
117
|
Herold EM, John C, Weber B, Kremser S, Eras J, Berner C, Deubler S, Zacharias M, Buchner J. Determinants of the assembly and function of antibody variable domains. Sci Rep 2017; 7:12276. [PMID: 28947772 PMCID: PMC5613017 DOI: 10.1038/s41598-017-12519-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023] Open
Abstract
The antibody Fv module which binds antigen consists of the variable domains VL and VH. These exhibit a conserved ß-sheet structure and comprise highly variable loops (CDRs). Little is known about the contributions of the framework residues and CDRs to their association. We exchanged conserved interface residues as well as CDR loops and tested the effects on two Fvs interacting with moderate affinities (KDs of ~2.5 µM and ~6 µM). While for the rather instable domains, almost all mutations had a negative effect, the more stable domains tolerated a number of mutations of conserved interface residues. Of particular importance for Fv association are VLP44 and VHL45. In general, the exchange of conserved residues in the VL/VH interface did not have uniform effects on domain stability. Furthermore, the effects on association and antigen binding do not strictly correlate. In addition to the interface, the CDRs modulate the variable domain framework to a significant extent as shown by swap experiments. Our study reveals a complex interplay of domain stability, association and antigen binding including an unexpected strong mutual influence of the domain framework and the CDRs on stability/association on the one side and antigen binding on the other side.
Collapse
Affiliation(s)
- Eva Maria Herold
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.,Sanofi-Aventis GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Christine John
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Stephan Kremser
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Jonathan Eras
- ETH Zürich, Otto-Stern-Weg 5, 8093, Zuerich, Switzerland
| | - Carolin Berner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Sabrina Deubler
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.
| |
Collapse
|
118
|
Abstract
Efforts to develop effective antibody therapeutics are frequently hampered by issues such as aggregation and nonspecificity, often only detected in late stages of the development process. In this study, we used a high throughput cross-reactivity assay to select nonspecific clones from a naïve human repertoire scFv library displayed on the surface of yeast. Most antibody families were de-enriched; however, the rarely expressed VH6 family was highly enriched among nonspecific clones, representing almost 90% of isolated clones. Mutational analysis of this family reveals a dominant role of CDRH2 in driving nonspecific binding. Homology modeling of a panel of VH6 antibodies shows a constrained β-sheet structure in CDRH2 that is not present in other families, potentially contributing to nonspecificity of the family. These findings confirm the common decision to exclude VH6 from synthetic antibody libraries, and support VH6 polyreactivity as a possible important role for the family in early ontogeny and cause for its overabundance in cases of some forms of autoimmunity.
Collapse
Affiliation(s)
- Ryan L Kelly
- a Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , U.S.A
| | - Jessie Zhao
- b Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , U.S.A
| | - Doris Le
- b Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , U.S.A
| | - K Dane Wittrup
- a Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , U.S.A.,b Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , U.S.A
| |
Collapse
|
119
|
Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, Tessier PM. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis. Front Immunol 2017; 8:986. [PMID: 28928732 PMCID: PMC5591402 DOI: 10.3389/fimmu.2017.00986] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Tong Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Seth D Ludwig
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sabyasachi Sen
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Peter M Tessier
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
120
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
121
|
Jain T, Boland T, Lilov A, Burnina I, Brown M, Xu Y, Vásquez M. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Bioinformatics 2017; 33:3758-3766. [DOI: 10.1093/bioinformatics/btx519] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tushar Jain
- Computational Biology, Adimab, Palo Alto, CA, USA
| | - Todd Boland
- Computational Biology, Adimab, Palo Alto, CA, USA
| | | | | | | | - Yingda Xu
- Protein Analytics, Adimab, Lebanon, NH, USA
| | | |
Collapse
|
122
|
Kennedy PJ, Oliveira C, Granja PL, Sarmento B. Monoclonal antibodies: technologies for early discovery and engineering. Crit Rev Biotechnol 2017; 38:394-408. [PMID: 28789584 DOI: 10.1080/07388551.2017.1357002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies are essential in modern life sciences biotechnology. Their architecture and diversity allow for high specificity and affinity to a wide array of biochemicals. Combining monoclonal antibody (mAb) technology with recombinant DNA and protein expression links antibody genotype with phenotype. Yet, the ability to select and screen for high affinity binders from recombinantly-displayed, combinatorial libraries unleashes the true power of mAbs and a flood of clinical applications. The identification of novel antibodies can be accomplished by a myriad of in vitro display technologies from the proven (e.g. phage) to the emerging (e.g. mammalian cell and cell-free) based on affinity binding as well as function. Lead candidates can be further engineered for increased affinity and half-life, reduced immunogenicity and/or enhanced manufacturing, and storage capabilities. This review begins with antibody biology and how the structure and genetic machinery relate to function, diversity, and in vivo affinity maturation and follows with the general requirements of (therapeutic) antibody discovery and engineering with an emphasis on in vitro display technologies. Throughout, we highlight where antibody biology inspires technology development and where high-throughput, "big data" and in silico strategies are playing an increasing role. Antibodies dominate the growing class of targeted therapeutics, alone or as bioconjugates. However, their versatility extends to research, diagnostics, and beyond.
Collapse
Affiliation(s)
- Patrick J Kennedy
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Carla Oliveira
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal
| | - Pedro L Granja
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,e Departmento de Engenharia Metalúrgica e de Materiais , FEUP - Faculdade de Engenharia da Universidade do Porto , Porto , Portugal
| | - Bruno Sarmento
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,f CESPU , Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde , Gandra , Portugal
| |
Collapse
|
123
|
Tullila A, Nevanen TK. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries. Int J Mol Sci 2017; 18:ijms18061169. [PMID: 28561803 PMCID: PMC5485993 DOI: 10.3390/ijms18061169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022] Open
Abstract
Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library.
Collapse
Affiliation(s)
- Antti Tullila
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland.
| | - Tarja K Nevanen
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02150 Espoo, Finland.
| |
Collapse
|
124
|
Zhang Z, Liu H, Guan Q, Wang L, Yuan H. Advances in the Isolation of Specific Monoclonal Rabbit Antibodies. Front Immunol 2017; 8:494. [PMID: 28529510 PMCID: PMC5418221 DOI: 10.3389/fimmu.2017.00494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/10/2017] [Indexed: 01/04/2023] Open
Abstract
The rabbit monoclonal antibodies (mAbs) have advantages in pharmaceuticals and diagnostics with high affinity and specificity. During the past decade, many techniques have been developed for isolating rabbit mAbs, including single B cell antibody technologies. This review describes the basic characterization of rabbit antibody repertoire and summarizes methods of hybridoma technologies, phage display platform, and single B cell antibody technologies. With advances in antibody function and repertoire analysis, rabbit mAbs will be widely used in therapeutic applications in the coming years.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Huijuan Liu
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qian Guan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China.,College of Life Science, Xinyang Normal University, Xinyang, China
| |
Collapse
|
125
|
Minter RR, Sandercock AM, Rust SJ. Phenotypic screening-the fast track to novel antibody discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017. [PMID: 28647091 DOI: 10.1016/j.ddtec.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The majority of antibody therapeutics have been isolated from target-led drug discovery, where many years of target research preceded drug program initiation. However, as the search for validated targets becomes more challenging and target space becomes increasingly competitive, alternative strategies, such as phenotypic drug discovery, are gaining favour. This review highlights successful examples of antibody phenotypic screens that have led to clinical drug candidates. We also review the requirements for performing an effective antibody phenotypic screen, including antibody enrichment and target identification strategies. Finally, the future impact of phenotypic drug discovery on antibody drug pipelines will be discussed.
Collapse
Affiliation(s)
- Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Alan M Sandercock
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Steven J Rust
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
126
|
Julian MC, Li L, Garde S, Wilen R, Tessier PM. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability. Sci Rep 2017; 7:45259. [PMID: 28349921 PMCID: PMC5368667 DOI: 10.1038/srep45259] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
The ability of antibodies to accumulate affinity-enhancing mutations in their complementarity-determining regions (CDRs) without compromising thermodynamic stability is critical to their natural function. However, it is unclear if affinity mutations in the hypervariable CDRs generally impact antibody stability and to what extent additional compensatory mutations are required to maintain stability during affinity maturation. Here we have experimentally and computationally evaluated the functional contributions of mutations acquired by a human variable (VH) domain that was evolved using strong selections for enhanced stability and affinity for the Alzheimer’s Aβ42 peptide. Interestingly, half of the key affinity mutations in the CDRs were destabilizing. Moreover, the destabilizing effects of these mutations were compensated for by a subset of the affinity mutations that were also stabilizing. Our findings demonstrate that the accumulation of both affinity and stability mutations is necessary to maintain thermodynamic stability during extensive mutagenesis and affinity maturation in vitro, which is similar to findings for natural antibodies that are subjected to somatic hypermutation in vivo. These findings for diverse antibodies and antibody fragments specific for unrelated antigens suggest that the formation of the antigen-binding site is generally a destabilizing process and that co-enrichment for compensatory mutations is critical for maintaining thermodynamic stability.
Collapse
Affiliation(s)
- Mark C Julian
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lijuan Li
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shekhar Garde
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rebecca Wilen
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Center for Biotechnology &Interdisciplinary Studies, Isermann Dept. of Chemical &Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
127
|
Abstract
Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.
Collapse
|
128
|
|
129
|
Abstract
Phage display has emerged as one of the leading technologies for the selection of highly specific monoclonal antibodies, offering a number of advantages over traditional methods of antibody generation. While there are various possibilities to conduct phage display (e.g., solution panning, solid-phase panning), whole cell panning is an elegant way to present membrane embedded target antigens in their natural environment and conformation to antibody-bearing phages. Here, a whole cell panning procedure using a Fab-based antibody library including primary cell based screening for selectivity is described.
Collapse
Affiliation(s)
- Yvonne Stark
- MorphoSys AG, Semmelweisstrasse 7, 82152, Planegg, Germany
| | - Sophie Venet
- MorphoSys AG, Semmelweisstrasse 7, 82152, Planegg, Germany
| | - Annika Schmid
- MorphoSys AG, Semmelweisstrasse 7, 82152, Planegg, Germany.
| |
Collapse
|
130
|
Kwong PD, Chuang G, DeKosky BJ, Gindin T, Georgiev IS, Lemmin T, Schramm CA, Sheng Z, Soto C, Yang A, Mascola JR, Shapiro L. Antibodyomics: bioinformatics technologies for understanding B-cell immunity to HIV-1. Immunol Rev 2017; 275:108-128. [PMID: 28133812 PMCID: PMC5516196 DOI: 10.1111/imr.12480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous antibodies have been identified from HIV-1-infected donors that neutralize diverse strains of HIV-1. These antibodies may provide the basis for a B cell-mediated HIV-1 vaccine. However, it has been unclear how to elicit similar antibodies by vaccination. To address this issue, we have undertaken an informatics-based approach to understand the genetic and immunologic processes controlling the development of HIV-1-neutralizing antibodies. As DNA sequencing comprises the fastest growing database of biological information, we focused on incorporating next-generation sequencing of B-cell transcripts to determine the origin, maturation pathway, and prevalence of broadly neutralizing antibody lineages (Antibodyomics1, 2, 4, and 6). We also incorporated large-scale robotic analyses of serum neutralization to identify and quantify neutralizing antibodies in donor cohorts (Antibodyomics3). Statistical analyses furnish another layer of insight (Antibodyomics5), with physical characteristics of antibodies and their targets through molecular dynamics simulations (Antibodyomics7) and free energy perturbation analyses (Antibodyomics8) providing information-rich output. Functional interrogation of individual antibodies (Antibodyomics9) and synthetic antibody libraries (Antibodyomics10) also yields multi-dimensional data by which to understand and improve antibodies. Antibodyomics, described here, thus comprise resolution-enhancing tools, which collectively embody an information-driven discovery engine aimed toward the development of effective B cell-based vaccines.
Collapse
Affiliation(s)
- Peter D. Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Gwo‐Yu Chuang
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Brandon J. DeKosky
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Tatyana Gindin
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Thomas Lemmin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Chaim A. Schramm
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Zizhang Sheng
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Cinque Soto
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - An‐Suei Yang
- Genomics Research CenterAcademia SinicaTaipeiTaiwan
| | - John R. Mascola
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Lawrence Shapiro
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
131
|
Nam DH, Fang K, Rodriguez C, Lopez T, Ge X. Generation of inhibitory monoclonal antibodies targeting matrix metalloproteinase-14 by motif grafting and CDR optimization. Protein Eng Des Sel 2016; 30:113-118. [PMID: 27986919 DOI: 10.1093/protein/gzw070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinase-14 (MMP-14) plays important roles in cancer metastasis, and the failures of broad-spectrum MMP compound inhibitors in clinical trials suggested selectivity is critical. By grafting an MMP-14 specific inhibition motif into complementarity determining region (CDR)-H3 of antibody scaffolds and optimizing other CDRs and the sequences that flank CDR-H3, we isolated a Fab 1F8 showing a binding affinity of 8.3 nM with >1000-fold enhancement on inhibition potency compared to the peptide inhibitor. Yeast surface display and fluorescence-activated cell sorting results indicated that 1F8 was highly selective to MMP-14 and competed with TIMP-2 on binding to the catalytic domain of MMP-14. Converting a low-affinity peptide inhibitor into a high potency antibody, the described methods can be used to develop other inhibitory antibodies of therapeutic significance.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Kuili Fang
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Carlos Rodriguez
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
132
|
Abstract
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is a very attractive scaffold for the design of novel therapeutics due to its quality of uniting all essential antibody functions. This article reviews the functionalization of this homodimeric glycoprotein by diversification of structural loops of CH3 domains for the design of Fcabs, i.e. antigen-binding Fc proteins. It reports the design of libraries for the selection of nanomolar binders with wildtype-like in vivo half-life and correlation of Fc receptor binding and ADCC. The in vitro and preclinical biological activity of selected Fcabs is compared with that of clinically approved antibodies. Recently, the great potential of the scaffold for the development of therapeutics for clinical use has been shown when the HER2-binding Fcab FS102 entered clinical phase I. Furthermore, methods for the engineering of biophysical properties of Fcabs applicable to proteins in general are presented as well as the different approaches in the design of heterodimeric Fc-based scaffolds used in the generation of bispecific monoclonal antibodies. Finally, this work critically analyzes and compares the various efforts in the design of highly diverse and functional libraries that have been made in the engineering of IgG1-Fc and structurally similar scaffolds.
Collapse
Affiliation(s)
- Elisabeth Lobner
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Hasenhindl
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
133
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
134
|
Egan TJ, Diem D, Weldon R, Neumann T, Meyer S, Urech DM. Novel multispecific heterodimeric antibody format allowing modular assembly of variable domain fragments. MAbs 2016; 9:68-84. [PMID: 27786600 PMCID: PMC5240654 DOI: 10.1080/19420862.2016.1248012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multispecific antibody formats provide a promising platform for the development of novel therapeutic concepts that could facilitate the generation of safer, more effective pharmaceuticals. However, the production and use of such antibody-based multispecifics is often made complicated by: 1) the instability of the antibody fragments of which they consist, 2) undesired inter-subunit associations, and 3) the need to include recombinant heterodimerization domains that confer distribution-impairing bulk or enhance immunogenicity. In this paper, we describe a broadly-applicable method for the stabilization of human or humanized antibody Fv fragments that entails replacing framework region IV of a Vκ1/VH3-consensus Fv framework with the corresponding germ-line sequence of a λ-type VL chain. We then used this stable Fv framework to generate a novel heterodimeric multispecific antibody format that assembles by cognate VL/VH associations between 2 split variable domains in the core of the complex. This format, termed multispecific antibody-based therapeutics by cognate heterodimerization (MATCH), can be applied to produce homogeneous and highly stable antibody-derived molecules that simultaneously bind 4 distinct antigens. The heterodimeric design of the MATCH format allows efficient in-format screening of binding domain combinations that result in maximal cooperative activity.
Collapse
Affiliation(s)
- Timothy J Egan
- a Numab AG, Wadenswil , Switzerland.,b Cartilage Engineering & Regeneration Lab, Department of Health , Science & Technology, The Swiss Federal Institute of Technology (ETH) , Zurich , Switzerland
| | | | | | | | | | | |
Collapse
|
135
|
Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J. Phage display as a promising approach for vaccine development. J Biomed Sci 2016; 23:66. [PMID: 27680328 PMCID: PMC5041315 DOI: 10.1186/s12929-016-0285-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Hamid Nickho
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
136
|
Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library. Toxins (Basel) 2016; 8:toxins8090266. [PMID: 27626445 PMCID: PMC5037492 DOI: 10.3390/toxins8090266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
Tetanus neurotoxin (TeNT) produced by Clostridiumtetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.
Collapse
|
137
|
Abstract
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
Collapse
Affiliation(s)
- André Frenzel
- a YUMAB GmbH , Rebenring , Braunschweig.,b Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie , Braunschweig , Germany
| | | | - Michael Hust
- b Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie , Braunschweig , Germany
| |
Collapse
|
138
|
Abstract
The in vitro antibody discovery technologies revolutionized the generation of target-specific antibodies that traditionally relied on the humoral response of immunized animals. An antibody library, a large collection of diverse, pre-constructed antibodies, can be rapidly screened using in vitro display technologies such as phage display. One of the keys to successful in vitro antibody discovery is the quality of the library diversity. Antibody diversity can be obtained either from natural B-cell sources or by the synthetic methods that combinatorially generate random nucleotide sequences. While the functionality of a natural antibody library depends largely upon the library size, various other factors can affect the quality of a synthetic antibody library, making the design and construction of synthetic antibody libraries complicated and challenging. In this review, we present various library designs and diversification methods for synthetic antibody library. From simple degenerate oligonucleotide synthesis to trinucleotide synthesis to physicochemically optimized library design, the synthetic approach is evolving beyond the simple emulation of natural antibodies, into a highly sophisticated method that is capable of producing high quality antibodies suitable for therapeutic, diagnostic, and other demanding applications. [BMB Reports 2015; 48(9): 489-494]
Collapse
Affiliation(s)
- Hyunbo Shim
- Departments of Bioinspired Science and Life Science, Ewha Woman's University, Seoul 03760, Korea
| |
Collapse
|
139
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
140
|
Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein. PLoS One 2016; 11:e0156798. [PMID: 27258388 PMCID: PMC4892554 DOI: 10.1371/journal.pone.0156798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F) glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab) is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs) against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction.
Collapse
|
141
|
Wang B, Lee CH, Johnson EL, Kluwe CA, Cunningham JC, Tanno H, Crooks RM, Georgiou G, Ellington AD. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs 2016; 8:1035-44. [PMID: 27224530 DOI: 10.1080/19420862.2016.1190059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development.
Collapse
Affiliation(s)
- Bo Wang
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Chang-Han Lee
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Erik L Johnson
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Christien A Kluwe
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA
| | - Josephine C Cunningham
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA
| | - Hidetaka Tanno
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Richard M Crooks
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA
| | - George Georgiou
- a Department of Chemical Engineering , University of Texas at Austin , Austin , TX , USA.,b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA.,c Center for Systems and Synthetic Biology , University of Texas at Austin , Austin , TX , USA.,d Institute for Cellular and Molecular Biology , University of Texas at Austin , Austin , TX , USA.,e Department of Biomedical Engineering , University of Texas at Austin , Austin , TX , USA
| | - Andrew D Ellington
- b Department of Molecular Biosciences , University of Texas at Austin , Austin , TX , USA.,c Center for Systems and Synthetic Biology , University of Texas at Austin , Austin , TX , USA.,d Institute for Cellular and Molecular Biology , University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
142
|
Mettler Izquierdo S, Varela S, Park M, Collarini EJ, Lu D, Pramanick S, Rucker J, Lopalco L, Etches R, Harriman W. High-efficiency antibody discovery achieved with multiplexed microscopy. Microscopy (Oxf) 2016; 65:341-52. [PMID: 27107009 PMCID: PMC5895110 DOI: 10.1093/jmicro/dfw014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
The analysis of secreted antibody from large and diverse populations of B cells in parallel at the clonal level can reveal desirable antibodies for diagnostic or therapeutic applications. By immobilizing B cells in microdroplets with particulate reporters, decoding and isolating them in a microscopy environment, we have recovered panels of antibodies with rare attributes to therapeutically relevant targets. The ability to screen up to 100 million cells in a single experiment can be fully leveraged by accessing primary B-cell populations from evolutionarily divergent species such as chickens.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Lu
- Crystal Bioscience, Emeryville, CA, USA
| | | | | | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
143
|
Abstract
Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases.
Collapse
|
144
|
Suharni, Nomura Y, Arakawa T, Hino T, Abe H, Nakada-Nakura Y, Sato Y, Iwanari H, Shiroishi M, Asada H, Shimamura T, Murata T, Kobayashi T, Hamakubo T, Iwata S, Nomura N. Proteoliposome-based selection of a recombinant antibody fragment against the human M2 muscarinic acetylcholine receptor. Monoclon Antib Immunodiagn Immunother 2016; 33:378-85. [PMID: 25545206 DOI: 10.1089/mab.2014.0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of antibodies against human G-protein-coupled receptors (GPCRs) has achieved limited success, which has mainly been attributed to their low stability in a detergent-solubilized state. We herein describe a method that can generally be applied to the selection of phage display libraries with human GPCRs reconstituted in liposomes. A key feature of this approach is the production of biotinylated proteoliposomes that can be immobilized on the surface of streptavidin-coupled microplates or paramagnetic beads and used as a binding target for antibodies. As an example, we isolated a single chain Fv fragment from an immune phage library that specifically binds to the human M2 muscarinic acetylcholine receptor with nanomolar affinity. The selected antibody fragment recognized the GPCR in both detergent-solubilized and membrane-embedded forms, which suggests that it may be a potentially valuable tool for structural and functional studies of the GPCR. The use of proteoliposomes as immunogens and screening bait will facilitate the application of phage display to this difficult class of membrane proteins.
Collapse
Affiliation(s)
- Suharni
- 1 Department of Cell Biology, Graduate School of Medicine, Kyoto University , Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Golden A, Stevens EJ, Yokobe L, Faulx D, Kalnoky M, Peck R, Valdez M, Steel C, Karabou P, Banla M, Soboslay PT, Adade K, Tekle AH, Cama VA, Fischer PU, Nutman TB, Unnasch TR, de los Santos T, Domingo GJ. A Recombinant Positive Control for Serology Diagnostic Tests Supporting Elimination of Onchocerca volvulus. PLoS Negl Trop Dis 2016; 10:e0004292. [PMID: 26745374 PMCID: PMC4706346 DOI: 10.1371/journal.pntd.0004292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/19/2015] [Indexed: 11/24/2022] Open
Abstract
Background Serological assays for human IgG4 to the Onchocerca volvulus antigen Ov16 have been used to confirm elimination of onchocerciasis in much of the Americas and parts of Africa. A standardized source of positive control antibody (human anti-Ov16 IgG4) will ensure the quality of surveillance data using these tests. Methodology/Principal Findings A recombinant human IgG4 antibody to Ov16 was identified by screening against a synthetic human Fab phage display library and converted into human IgG4. This antibody was developed into different positive control formulations for enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT) platforms. Variation in ELISA results and utility as a positive control of the antibody were assessed from multiple laboratories. Temperature and humidity conditions were collected across seven surveillance activities from 2011–2014 to inform stability requirements for RDTs and positive controls. The feasibility of the dried positive control for RDT was evaluated during onchocerciasis surveillance activity in Togo, in 2014. When the anti-Ov16 IgG4 antibody was used as a standard dilution in horseradish peroxidase (HRP) and alkaline phosphatase (AP) ELISAs, the detection limits were approximately 1ng/mL by HRP ELISA and 10ng/mL by AP ELISA. Positive control dilutions and spiked dried blood spots (DBS) produced similar ELISA results. Used as a simple plate normalization control, the positive control antibody may improve ELISA data comparison in the context of inter-laboratory variation. The aggregate temperature and humidity monitor data informed temperature parameters under which the dried positive control was tested and are applicable inputs for testing of diagnostics tools intended for sub-Saharan Africa. As a packaged positive control for Ov16 RDTs, stability of the antibody was demonstrated for over six months at relevant temperatures in the laboratory and for over 15 weeks under field conditions. Conclusions The recombinant human anti-Ov16 IgG4 antibody-based positive control will benefit inter-laboratory validation of ELISA assays and serve as quality control (QC) reagents for Ov16 RDTs at different points of the supply chain from manufacturer to field use. Serological markers such as antibody responses to pathogen-specific antigens are used to inform disease epidemiology in many elimination programs. A major challenge with program-scale serological testing, and with any diagnostic test validation, is access to consistent and unlimited control reagents with which to provide assay QC and facilitate data consolidation. In the context of disease elimination, clinical positive sera will be particularly difficult to source and use as routine, inter-laboratory reagents. This study reports on a recombinant antibody specific against a key serological marker for onchocerciasis: its selection, testing, and incorporation into protocols across relevant immunoassay platforms. We have demonstrated it is a viable reagent for integration into QC and QA protocols to support long-term serological testing for onchocerciasis to support disease elimination efforts. This approach should be generalizable to other diagnostic tools supporting programs to achieve the 2020 goals of the London Declaration on Neglected Tropical Diseases.
Collapse
Affiliation(s)
- Allison Golden
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
- * E-mail:
| | - Eric J. Stevens
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Lindsay Yokobe
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Dunia Faulx
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Michael Kalnoky
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Roger Peck
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Melissa Valdez
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Cathy Steel
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Méba Banla
- Onchocerciasis Reference Laboratory, National Institute of Hygiene, Sokodé, Togo
| | - Peter T. Soboslay
- Onchocerciasis Reference Laboratory, National Institute of Hygiene, Sokodé, Togo
- Institute of Tropical Medicine, University Clinics of Tübingen, Tübingen, Germany
| | - Kangi Adade
- National Onchocerciasis Control Programme, Kara, Togo
| | - Afework H. Tekle
- African Programme for Onchocerciasis Control, World Health Organization, Ouagadougou, Burkina Faso
| | - Vitaliano A. Cama
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Peter U. Fischer
- Department of Internal Medicine, Infectious Diseases Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Tala de los Santos
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| | - Gonzalo J. Domingo
- Diagnostics Global Program, PATH, Seattle, Washington, United States of America
| |
Collapse
|
146
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
147
|
Burkovitz A, Ofran Y. Understanding differences between synthetic and natural antibodies can help improve antibody engineering. MAbs 2015; 8:278-87. [PMID: 26652053 DOI: 10.1080/19420862.2015.1123365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Synthetic libraries are a major source of human-like antibody (Ab) drug leads. To assess the similarity between natural Abs and the products of these libraries, we compared large sets of natural and synthetic Abs using "CDRs Analyzer," a tool we introduce for structural analysis of Ab-antigen (Ag) interactions. Natural Abs, we found, recognize their Ags by combining multiple complementarity-determining regions (CDRs) to create an integrated interface. Synthetic Abs, however, rely dominantly, sometimes even exclusively on CDRH3. The increased contribution of CDRH3 to Ag binding in synthetic Abs comes with a substantial decrease in the involvement of CDRH2 and CDRH1. Furthermore, in natural Abs CDRs specialize in specific types of non-covalent interactions with the Ag. CDRH1 accounts for a significant portion of the cation-pi interactions; CDRH2 is the major source of salt-bridges and CDRH3 accounts for most hydrogen bonds. In synthetic Abs this specialization is lost, and CDRH3 becomes the main sources of all types of contacts. The reliance of synthetic Abs on CDRH3 reduces the complexity of their interaction with the Ag: More Ag residues contact only one CDR and fewer contact 3 CDRs or more. We suggest that the focus of engineering attempts on CDRH3 results in libraries enriched with variants that are not natural-like. This may affect not only Ag binding, but also Ab expression, stability and selectivity. Our findings can help guide library design, creating libraries that can bind more epitopes and Abs that better mimic the natural antigenic interactions.
Collapse
Affiliation(s)
- Anat Burkovitz
- a The Goodman Faculty of Life Sciences, Nanotechnology Building, Bar Ilan University , Ramat Gan , 5290002 , Israel
| | - Yanay Ofran
- a The Goodman Faculty of Life Sciences, Nanotechnology Building, Bar Ilan University , Ramat Gan , 5290002 , Israel
| |
Collapse
|
148
|
Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies. Proc Natl Acad Sci U S A 2015; 112:15354-9. [PMID: 26621728 DOI: 10.1073/pnas.1510944112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.
Collapse
|
149
|
Batonick M, Holland EG, Busygina V, Alderman D, Kay BK, Weiner MP, Kiss MM. Platform for high-throughput antibody selection using synthetically-designed antibody libraries. N Biotechnol 2015; 33:565-73. [PMID: 26607994 DOI: 10.1016/j.nbt.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
Synthetic humanized antibody libraries are frequently generated by random incorporation of changes at multiple positions in the antibody hypervariable regions. Although these libraries have very large theoretical diversities (>10(20)), the practical diversity that can be achieved by transformation of Escherichia coli is limited to about 10(10). To constrain the practical diversity to sequences that more closely mimic the diversity of natural human antibodies, we generated a scFv phage library using entirely pre-defined complementarity determining regions (CDR). We have used this library to select for novel antibodies against four human protein targets and demonstrate that identification of enriched sequences at each of the six CDRs in early selection rounds can be used to reconstruct a consensus antibody with selectivity for the target.
Collapse
Affiliation(s)
- Melissa Batonick
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States.
| | - Erika G Holland
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Valeria Busygina
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Dawn Alderman
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Brian K Kay
- University of Illinois at Chicago, 845 West Taylor Street Chicago, IL 60607, United States
| | - Michael P Weiner
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| | - Margaret M Kiss
- AxioMx, Inc., 688 East Main Street, Branford, CT 06405, United States
| |
Collapse
|
150
|
A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity. PLoS One 2015; 10:e0141045. [PMID: 26484868 PMCID: PMC4613135 DOI: 10.1371/journal.pone.0141045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
The present work describes the construction and validation of a human scFv library with a novel design approach to synthetic complementarity determining region (CDR) diversification. The advantage of synthetic antibody libraries includes the possibility of exerting fine control over factors like framework sequences, amino acid and codon usage, and CDR diversity. However, random combinatorial synthesis of oligonucleotides for CDR sequence diversity also produces many clones with unnatural sequences and/or undesirable modification motifs. To alleviate these issues, we designed and constructed a novel semi-synthetic human scFv library with non-combinatorial, pre-designed CDR diversity and a single native human framework each for heavy, kappa, and lambda chain variable domains. Next-generation sequencing analysis indicated that the library consists of antibody clones with highly nature-like CDR sequences and the occurrence of the post-translational modification motifs is minimized. Multiple unique clones with nanomolar affinity could be isolated from the library against a number of target antigens, validating the library design strategy. The results demonstrate that it is possible to construct a functional antibody library using low, non-combinatorial synthetic CDR diversity, and provides a new strategy for the design of antibody libraries suitable for demanding applications.
Collapse
|