101
|
Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bächinger HP. Crystal structure of human collagen XVIII trimerization domain: A novel collagen trimerization Fold. J Mol Biol 2009; 392:787-802. [PMID: 19631658 PMCID: PMC3048824 DOI: 10.1016/j.jmb.2009.07.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/15/2022]
Abstract
Collagens contain a unique triple-helical structure with a repeating sequence -G-X-Y-, where proline and hydroxyproline are major constituents in X and Y positions, respectively. Folding of the collagen triple helix requires trimerization domains. Once trimerized, collagen chains are correctly aligned and the folding of the triple helix proceeds in a zipper-like fashion. Here we report the isolation, characterization, and crystal structure of the trimerization domain of human type XVIII collagen, a member of the multiplexin family. This domain differs from all other known trimerization domains in other collagens and exhibits a high trimerization potential at picomolar concentrations. Strong chain association and high specificity of binding are needed for multiplexins, which are present at very low levels.
Collapse
Affiliation(s)
- Sergei P. Boudko
- Research Department of Shriners Hospital for Children, 3101 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Takako Sasaki
- Research Department of Shriners Hospital for Children, 3101 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Jürgen Engel
- Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Thomas F. Lerch
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Jay Nix
- Molecular Biology Consortium, Advanced Light Source Beamline 4.2.2, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| | - Hans Peter Bächinger
- Research Department of Shriners Hospital for Children, 3101 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Pk. Rd., Portland, OR 97239, USA
| |
Collapse
|
102
|
Krishna OD, Kiick KL. Supramolecular assembly of electrostatically stabilized, hydroxyproline-lacking collagen-mimetic peptides. Biomacromolecules 2009; 10:2626-31. [PMID: 19681603 PMCID: PMC2751732 DOI: 10.1021/bm900551c] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanical and biological functions of the native collagens remain an inspiration in materials design, but widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need and to expand the potential for recombinant expression of functional, hydroxyproline-lacking collagen-mimetic peptides, we have designed a hydrophilic, nonrepetitive, and thermally stable collagen-mimetic peptide via the incorporation of triple-helix-stabilizing charged triplets. The peptide sequence is also equipped with a type III-collagen-mimetic cystine knot at the C-terminus to facilitate covalent cross-linking of the triple helix via simple air oxidation. Circular dichroic spectroscopy (CD) studies of this collagen-mimetic peptide revealed a typical, thermally stable, collagen triple helix signature with a weak positive maximum at 225 nm and a triple helix melting temperature (T(m)) of 35 and 43 degrees C for the reduced and oxidized forms, respectively. The thermal behavior was confirmed via analysis by differential scanning calorimetry. Interestingly, this hydroxyproline-lacking, collagen-mimetic peptide also assembles into nanorods and microfibrillar structures as observed via transmission electron microscopy. The identification and demonstrated useful collagen-mimetic properties of this peptide suggests important opportunities in the recombinant design of new collagen-based biomaterials.
Collapse
Affiliation(s)
- Ohm D. Krishna
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L. Kiick
- To whom correspondence should be addressed. , Tel.: +302-831-0201. Fax: +302-831-4545
| |
Collapse
|
103
|
Habazettl J, Reiner A, Kiefhaber T. NMR Structure of a Monomeric Intermediate on the Evolutionarily Optimized Assembly Pathway of a Small Trimerization Domain. J Mol Biol 2009; 389:103-14. [DOI: 10.1016/j.jmb.2009.03.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 11/16/2022]
|
104
|
Werten MWT, Teles H, Moers APHA, Wolbert EJH, Sprakel J, Eggink G, de Wolf FA. Precision Gels from Collagen-Inspired Triblock Copolymers. Biomacromolecules 2009; 10:1106-13. [DOI: 10.1021/bm801299u] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc W. T. Werten
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| | - Helena Teles
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| | - Antoine P. H. A. Moers
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| | - Emil J. H. Wolbert
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| | - Joris Sprakel
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| | - Gerrit Eggink
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| | - Frits A. de Wolf
- Biobased Products, Agrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, NL-6708 PD Wageningen, The Netherlands, Bioprocess Engineering, Agrotechnology & Food Sciences Group, Wageningen UR, Bomenweg 2, NL-6703 HD Wageningen, The Netherlands, and Laboratory of Physical Chemistry and Colloid Science, Agrotechnology & Food Sciences Group, Wageningen UR, Dreijenplein 6, NL-6703 HB, Wageningen, The Netherlands
| |
Collapse
|
105
|
Xu K, Nowak I, Kirchner M, Xu Y. Recombinant collagen studies link the severe conformational changes induced by osteogenesis imperfecta mutations to the disruption of a set of interchain salt bridges. J Biol Chem 2008; 283:34337-44. [PMID: 18845533 DOI: 10.1074/jbc.m805485200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The clinical severity of Osteogenesis Imperfecta (OI), also known as the brittle bone disease, relates to the extent of conformational changes in the collagen triple helix induced by Gly substitution mutations. The lingering question is why Gly substitutions at different locations of collagen cause different disruptions of the triple helix. Here, we describe markedly different conformational changes of the triple helix induced by two Gly substitution mutations placed only 12 residues apart. The effects of the Gly substitutions were characterized using a recombinant collagen fragment modeling the 63-residue segment of the alpha1 chain of type I collagen containing no Hyp (residues 877-939) obtained from Escherichia coli. Two Gly --> Ser substitutions at Gly-901 and Gly-913 associated with, respectively, mild and severe OI variants were introduced by site-directed mutagenesis. Biophysical characterization and limited protease digestion experiments revealed that while the substitution at Gly-901 causes relatively minor destabilization of the triple helix, the substitution at Gly-913 induces large scale unfolding of an unstable region C-terminal to the mutation site. This extensive unfolding is caused by the intrinsic low stability of the C-terminal region of the helix and the mutation induced disruption of a set of salt bridges, which functions to lock this unstable region into the triple helical conformation. The extensive conformational changes associated with the loss of the salt bridges highlight the long range impact of the local interactions of triple helix and suggest a new mechanism by which OI mutations cause severe conformational damages in collagen.
Collapse
Affiliation(s)
- Ke Xu
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, USA
| | | | | | | |
Collapse
|
106
|
Boudko SP, Engel J, Bächinger HP. Trimerization and triple helix stabilization of the collagen XIX NC2 domain. J Biol Chem 2008; 283:34345-51. [PMID: 18845531 DOI: 10.1074/jbc.m806352200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms of chain selection and assembly of fibril-associated collagens with interrupted triple helices (FACITs) must differ from that of fibrillar collagens, since they lack the characteristic C-propeptide. We analyzed two carboxyl-terminal noncollagenous domains, NC2 and NC1, of collagen XIX as potential trimerization units and found that NC2 forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. In contrast, the NC1 domain requires formation of an adjacent collagen triple helix to form interchain disulfide bridges. The NC2 domain of collagen XIX and probably of other FACITs is responsible for chain selection and trimerization.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
107
|
Boudko SP, Engel J, Okuyama K, Mizuno K, Bächinger HP, Schumacher MA. Crystal structure of human type III collagen Gly991-Gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries. J Biol Chem 2008; 283:32580-9. [PMID: 18805790 DOI: 10.1074/jbc.m805394200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III collagen is a critical collagen that comprises extensible connective tissue such as skin, lung, and the vascular system. Mutations in the type III collagen gene, COL3A1, are associated with the most severe forms of Ehlers-Danlos syndrome. A characteristic feature of type III collagen is the presence of a stabilizing C-terminal cystine knot. Crystal structures of collagen triple helices reported so far contain artificial sequences like (Gly-Pro-Pro)(n) or (Gly-Pro-Hyp)(n). To gain insight into the structural properties exhibited by the natural type III collagen triple helix, we synthesized, crystallized, and determined the structure of a 12-triplet repeating peptide containing the natural type III collagen sequence from residues 991 to 1032 including the C-terminal cystine knot region, to 2.3A resolution. This represents the longest collagen triple helical structure determined to date with a native sequence. Strikingly, the Gly(991)-Gly(1032) structure reveals that the central non-imino acid-containing region adopts 10/3 superhelical properties, whereas the imino acid rich N- and C-terminal regions adhere to a 7/2 superhelical conformation. The structure is consistent with two models for the cystine knot; however, the poor density for the majority of this region suggests that multiple conformations may be adopted. The structure shows that the multiple non-imino acids make several types of direct intrahelical as well as interhelical contacts. The looser superhelical structure of the non-imino acid region of collagen triple helices combined with the extra contacts afforded by ionic and polar residues likely play a role in fibrillar assembly and interactions with other extracellular components.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
108
|
Stevens J, Blixt O, Chen LM, Donis RO, Paulson JC, Wilson IA. Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J Mol Biol 2008; 381:1382-94. [PMID: 18672252 PMCID: PMC2519951 DOI: 10.1016/j.jmb.2008.04.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 11/17/2022]
Abstract
Adaptation of avian influenza viruses for replication and transmission in the human host is believed to require mutations in the hemagglutinin glycoprotein (HA) which enable binding to human alpha2-6 sialosides and concomitant reduction in affinity for avian alpha2-3 linked sialosides. Here, we show by glycan microarray analyses that the two mutations responsible for such specificity changes in 1957 H2N2 and 1968 H3N2 pandemic viruses, when inserted into recombinant HAs or intact viruses of some recent avian H5N1 isolates (clade 2.2), impart such attributes. This propensity to adapt to human receptors is primarily dependent on arginine at position 193 within the receptor-binding site, as well as loss of a vicinal glycosylation site. Widespread occurrence of these susceptible H5N1 clade 2.2 influenza strains has already occurred in Europe, the Middle East, and Africa. Thus, these avian strains should be considered high-risk, because of their significantly lower threshold for acquiring human receptor specificity and, therefore, warrant increased surveillance and further study.
Collapse
Affiliation(s)
- James Stevens
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Ola Blixt
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemical Physiology and Glycan Array Synthesis Core of the Consortium for Functional Glycomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Li-Mei Chen
- Influenza Division, Molecular Virology Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333
| | - Ruben O. Donis
- Influenza Division, Molecular Virology Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333
| | - James C. Paulson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Department of Chemical Physiology and Glycan Array Synthesis Core of the Consortium for Functional Glycomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
109
|
Bhardwaj A, Walker-Kopp N, Wilkens S, Cingolani G. Foldon-guided self-assembly of ultra-stable protein fibers. Protein Sci 2008; 17:1475-85. [PMID: 18535304 PMCID: PMC2525528 DOI: 10.1110/ps.036111.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 02/06/2023]
Abstract
A common objective in protein engineering is the enhancement of the thermodynamic properties of recombinant proteins for possible applications in nanobiotechnology. The performance of proteins can be improved by the rational design of chimeras that contain structural elements with the desired properties, thus resulting in a more effective exploitation of protein folds designed by nature. In this paper, we report the design and characterization of an ultra-stable self-refolding protein fiber, which rapidly reassembles in solution after denaturation induced by harsh chemical treatment or high temperature. This engineered protein fiber was constructed on the molecular framework of bacteriophage P22 tail needle gp26, by fusing its helical core to the foldon domain of phage T4 fibritin. Using protein engineering, we rationally permuted the foldon upstream and downstream from the gp26 helical core and characterized gp26-foldon chimeras by biophysical analysis. Our data demonstrate that one specific protein chimera containing the foldon immediately downstream from the gp26 helical core, gp26(1-140)-F, displays the highest thermodynamic and structural stability and refolds spontaneously in solution following denaturation. The gp26-foldon chimeric fiber remains stable in 6.0 M guanidine hydrochloride, or at 80 degrees C, rapidly refolds after denaturation, and has both N and C termini accessible for chemical/biological modification, thereby representing an ideal platform for the design of self-assembling nanoblocks.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
110
|
Fan CY, Huang CC, Chiu WC, Lai CC, Liou GG, Li HC, Chou MY. Production of multivalent protein binders using a self-trimerizing collagen-like peptide scaffold. FASEB J 2008; 22:3795-804. [PMID: 18635738 DOI: 10.1096/fj.08-111484] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A class of multivalent protein binders was designed to overcome the limitations of low-affinity therapeutic antibodies. These binders, termed "collabodies," use a triplex-forming collagen-like peptide to drive the trimerization of a heterologous target-binding domain. Different forms of collabody, consisting of the human single-chain variable fragment (scFv) fused to either the N or C terminus of the collagen-like peptide scaffold (Gly-Pro-Pro)(10), were stably expressed as soluble secretory proteins in mammalian cells. The collabody consisting of scFv fused to the N terminus of collagen scaffold is present as a homotrimer, whereas it exhibited a mixture of trimer and interchain disulfide-bonded hexamer when cysteine residues were introduced and flanked the scaffold. The collagenous motif in collabody is prolyl-hydroxylated, with remarkable thermal and serum stabilities. The collabody erb_scFv-Col bound to the extracellular domain of epidermal growth factor receptor with a binding strength approximately 20- and 1000-fold stronger than the bivalent and monovalent counterparts, respectively. The trimeric collagen scaffold does not compromise the functionality of the binding moieties of parental immunoglobulin G (IgG); therefore, it could be applied to fuse other protein molecules to acquire significantly improved targeting-binding strengths.
Collapse
Affiliation(s)
- Chia-Yu Fan
- Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Bldg. 53, No 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 310, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
111
|
Wang AY, Foss CA, Leong S, Mo X, Pomper MG, Yu SM. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity. Biomacromolecules 2008; 9:1755-63. [PMID: 18547103 PMCID: PMC3095440 DOI: 10.1021/bm701378k] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Functionalized collagen that incorporates exogenous compounds may offer new and improved biomaterials applications, especially in drug-delivery, multifunctional implants, and tissue engineering. To that end, we developed a specific and reversible collagen modification technique utilizing associative chain interactions between synthetic collagen mimetic peptide (CMP) [(ProHypGly) chi; Hyp = hydroxyproline] and type I collagen. Here we show temperature-dependent collagen binding and subsequent release of a series of CMPs with varying chain lengths indicating a triple helical propensity driven binding mechanism. The binding took place when melted, single-strand CMPs were allowed to fold while in contact with reconstituted type I collagens. The binding affinity is highly specific to collagen as labeled CMP bound to nanometer scale periodic positions on type I collagen fibers and could be used to selectively image collagens in ex vivo human liver tissue. When heated to physiological temperature, bound CMPs discharged from the collagen at a sustained rate that correlated with CMP's triple helical propensity, suggesting that sustainability is mediated by dynamic collagen-CMP interactions. We also report on the spatially defined modification of collagen film with linear and multi-arm poly(ethylene glycol)-CMP conjugates; at 37 degrees C, these PEG-CMP conjugates exhibited temporary cell repelling activity lasting up to 9 days. These results demonstrate new opportunities for targeting pathologic collagens for diagnostic or therapeutic applications and for fabricating multifunctional collagen coatings and scaffolds that can temporally and spatially control the behavior of cells associated with the collagen matrices.
Collapse
Affiliation(s)
- Allen Y. Wang
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Catherine A. Foss
- Department of Radiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Shirley Leong
- Department of Biomolecular and Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Xiao Mo
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Martin G. Pomper
- Department of Radiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Seungju M. Yu
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomolecular and Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
112
|
Ruggiero F, Koch M. Making recombinant extracellular matrix proteins. Methods 2008; 45:75-85. [DOI: 10.1016/j.ymeth.2008.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022] Open
|
113
|
Coate TM, Wirz JA, Copenhaver PF. Reverse signaling via a glycosyl-phosphatidylinositol-linked ephrin prevents midline crossing by migratory neurons during embryonic development in Manduca. J Neurosci 2008; 28:3846-60. [PMID: 18400884 PMCID: PMC2879879 DOI: 10.1523/jneurosci.5691-07.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/12/2008] [Accepted: 02/26/2008] [Indexed: 11/21/2022] Open
Abstract
We have investigated whether reverse signaling via a glycosyl-phosphatidylinositol (GPI)-linked ephrin controls the behavior of migratory neurons in vivo. During the formation of the enteric nervous system (ENS) in the moth Manduca, approximately 300 neurons [enteric plexus (EP) cells] migrate onto the midgut via bilaterally paired muscle bands but avoid adjacent midline regions. As they migrate, the EP cells express a single ephrin ligand (MsEphrin; a GPI-linked ligand), whereas the midline cells express the corresponding Eph receptor (MsEph). Blocking endogenous MsEphrin-MsEph receptor interactions in cultured embryos resulted in aberrant midline crossing by the neurons and their processes. In contrast, activating endogenous MsEphrin on the EP cells with dimeric MsEph-Fc constructs inhibited their migration and outgrowth, supporting a role for MsEphrin-dependent reverse signaling in this system. In short-term cultures, blocking endogenous MsEph receptors allowed filopodia from the growth cones of the neurons to invade the midline, whereas activating neuronal MsEphrin led to filopodial retraction. MsEphrin-dependent signaling may therefore guide the migratory enteric neurons by restricting the orientation of their leading processes. Knocking down MsEphrin expression in the EP cells with morpholino antisense oligonucleotides also induced aberrant midline crossing, consistent with the effects of blocking endogenous MsEphrin-MsEph interactions. Unexpectedly, this treatment enhanced the overall extent of migration, indicating that MsEphrin-dependent signaling may also modulate the general motility of the EP cells. These results demonstrate that MsEphrin-MsEph receptor interactions normally prevent midline crossing by migratory neurons within the developing ENS, an effect that is most likely mediated by reverse signaling through this GPI-linked ephrin ligand.
Collapse
Affiliation(s)
| | - Jacqueline A. Wirz
- Biochemistry and Molecular Biology, Program in Molecular and Cellular Biosciences, Oregon Health & Science University, Portland, Oregon 97239
| | | |
Collapse
|
114
|
Sapinoro R, Maguire CA, Burgess A, Dewhurst S. Enhanced transduction of dendritic cells by FcgammaRI-targeted adenovirus vectors. J Gene Med 2008; 9:1033-45. [PMID: 17966114 DOI: 10.1002/jgm.1112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The high affinity Fcgamma receptor I (FcgammaRI; aka CD64) is expressed by dendritic cells (DC) and antigens targeted to this receptor elicit enhanced immune responses. This study was designed to test the hypothesis that targeting an adenoviral (Ad) vector to FcgammaRI would lead to enhanced transduction of DC and an improved immune response to vector-encoded antigens. METHODS A bispecific adaptor molecule consisting of a trimeric adenovirus fiber-binding moiety fused to a single-chain antibody specific for human FcgammaRI was generated. Transduction of cultured cells, including human DC, by the FcgammaRI-targeted Ad was then evaluated using reporter genes (GFP, luciferase). Immunophenotypic and functional characteristics of vector-transduced DC were also measured by flow cytometry, cytokine ELISA and mixed lymphocyte reaction (MLR); antigen-specific stimulation of autologous CD8(+) T cells was evaluated using vectors encoding cytomegalovirus (CMV) pp65. RESULTS FcgammaRI-targeted Ad transduced primary DC with 10-15-fold greater efficiency than unmodified Ad or Ad vectors complexed to an adaptor protein that targeted an irrelevant receptor. However, FcgammaRI-targeting had no effect of Ad-induced activation of DC, as measured by cytokine release or expression of cell surface activation markers. Finally, FcgammaRI-targeting of vectors encoding CMV pp65 resulted in an increase in the activation of antigen-specific autologous human CD8(+) T cells. CONCLUSIONS FcgammaRI-targeting significantly enhances the efficiency of Ad vector-mediated gene transfer in primary human DC, and results in an improved immune response to a vector-encoded antigen.
Collapse
Affiliation(s)
- Ramil Sapinoro
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
115
|
Raman SS, Vijayaraj R, Parthasarathi R, Subramanian V, Ramasami T. A molecular dynamics analysis of ion pairs formed by lysine in collagen: Implication for collagen function and stability. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.theochem.2007.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
116
|
Papanikolopoulou K, van Raaij MJ, Mitraki A. Creation of hybrid nanorods from sequences of natural trimeric fibrous proteins using the fibritin trimerization motif. Methods Mol Biol 2008; 474:15-33. [PMID: 19031058 DOI: 10.1007/978-1-59745-480-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
Collapse
|
117
|
Boulègue C, Musiol HJ, Götz MG, Renner C, Moroder L. Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal 2008; 10:113-25. [PMID: 17961005 DOI: 10.1089/ars.2007.1868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Native collagens are molecules that are difficult to handle because of their high tendency towards aggregation and denaturation. It was discovered early on that synthetic collagenous peptides are more amenable to conformational characterization and thus can serve as useful models for structural and functional studies. Single-stranded collagenous peptides of high propensity to self-associate into triple-helical trimers were used for this purpose as well as interchain-crosslinked homotrimers assembled on synthetic scaffolds. With the growing knowledge of the biosynthetic pathways of natural collagens and the importance of their interchain disulfide crosslinks, which stabilize the triple-helical structure, native as well as de novo designed cystine knots have gained increasing attention in the assembly of triple-stranded collagen peptides. In addition, natural sequences of collagens were incorporated in order to biophysically characterize their functional epitopes. This review is focused on the methods developed over the years, and future perspectives for the production of collagen-mimicking synthetic and recombinant triple-helical homo- and heterotrimers.
Collapse
Affiliation(s)
- Cyril Boulègue
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
118
|
Koide T. Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering. Philos Trans R Soc Lond B Biol Sci 2007; 362:1281-91. [PMID: 17581806 PMCID: PMC2440396 DOI: 10.1098/rstb.2007.2115] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagens, characterized by a unique triple-helical structure, are the predominant component of extracellular matrices (ECMs) existing in all multicellular animals. Collagens not only maintain structural integrity of tissues and organs, but also regulate a number of biological events, including cell attachment, migration and differentiation, tissue regeneration and animal development. The specific functions of collagens are generally triggered by specific interactions of collagen-binding molecules (membrane receptors, soluble factors and other ECM components) with certain structures displayed on the collagen triple helices. Thus, synthetic triple-helical peptides that mimic the structure of native collagens have been used to investigate the individual collagen-protein interactions, as well as collagen structure and stability. The first part of this article illustrates the design of various collagen-mimetic peptides and their recent applications in matrix biology. Collagen is also acknowledged as one of the most promising biomaterials in regenerative medicine and tissue engineering. However, the use of animal-derived collagens in human could put the recipients at risks of pathogen transmission or allergic reactions. Hence, the production of safe artificial collagen surrogates is currently of considerable interest. The latter part of this article reviews recent attempts to develop artificial collagens as novel biomaterials.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| |
Collapse
|
119
|
Bai H, Xu K, Xu Y, Matsui H. Fabrication of Au nanowires of uniform length and diameter using a monodisperse and rigid biomolecular template: collagen-like triple helix. Angew Chem Int Ed Engl 2007; 46:3319-22. [PMID: 17352428 DOI: 10.1002/anie.200605213] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hanying Bai
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
120
|
Bhardwaj A, Olia AS, Walker-Kopp N, Cingolani G. Domain organization and polarity of tail needle GP26 in the portal vertex structure of bacteriophage P22. J Mol Biol 2007; 371:374-87. [PMID: 17574574 DOI: 10.1016/j.jmb.2007.05.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/11/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
The attachment of tailed bacteriophages to the host cell wall as well as the penetration and injection of the viral genome into the host is mediated by the virion tail complex. In phage P22, a member of the Podoviridae family that infects Salmonella enterica, the tail contains an approximately 220 A elongated protein needle, previously identified as tail accessory factor gp26. Together with tail factors gp4 and gp10, gp26 is critical to close the portal protein channel and retain the viral DNA inside the capsid. By virtue of its topology and position in the virion, the tail needle gp26 is thought to function as a penetrating device to perforate the Salmonella cell wall. Here, we define the domain organization of gp26, characterize the structural determinants for its stability, and define the polarity of the gp26 assembly into the phage portal vertex structure. We have found that the N-terminal 27 residues of gp26 form a functional domain that, although not required for gp26 trimerization and overall stability, is essential for the correct attachment to gp10, which is thought to plug the portal vertex structure. The region downstream of domain I, domain II, folds into helical core, which exhibits four trimerization octad repeats with consensus Ile-xx-Leu-xxx-Val/Tyr. We demonstrate that in vitro, domain II represents the main self-assembling, highly stable trimerization core of gp26, which retains a folded conformation both in an anhydrous environment and in the presence of 10% SDS. The C terminus of gp26, immediately downstream of domain II, contains a beta-sheet-rich region, domain III, and a short coiled coil, domain IV, which, although not required for gp26 trimerization, enhance its thermodynamic stability. We propose that domains III and IV of the tail needle form the tip utilized by the phage to penetrate the host cell wall.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750, E. Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
121
|
Bai H, Xu K, Xu Y, Matsui H. Fabrication of Au Nanowires of Uniform Length and Diameter Using a Monodisperse and Rigid Biomolecular Template: Collagen-like Triple Helix. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
122
|
Huang J, Wong Po Foo C, Kaplan DL. Biosynthesis and Applications of Silk‐like and Collagen‐like Proteins. POLYM REV 2007. [DOI: 10.1080/15583720601109560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
123
|
Baronas‐Lowell D, Lauer‐Fields JL, Fields GB. Defining the Roles of Collagen and Collagen‐Like Proteins Within the Proteome. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120023245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diane Baronas‐Lowell
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Janelle L. Lauer‐Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| | - Gregg B. Fields
- a Department of Chemistry and Biochemistry , Florida Atlantic University , 777 Glades Road, Boca Raton , Florida , 33431‐0991 , USA
| |
Collapse
|
124
|
Oganesian A, Au S, Horst JA, Holzhausen LC, Macy AJ, Pace JM, Bornstein P. The NH2-terminal propeptide of type I procollagen acts intracellularly to modulate cell function. J Biol Chem 2006; 281:38507-18. [PMID: 17018525 PMCID: PMC3086210 DOI: 10.1074/jbc.m607536200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the NH(2)-terminal propeptide of type I procollagen (N-propeptide) is poorly understood. We now show that a recombinant trimeric N-propeptide interacts with transforming growth factor-beta1 and BMP2 and exhibits functional effects in stably transfected cells. The synthesis of N-propeptide by COS-7 cells results in an increase in phosphorylation of Akt and Smad3 and is associated with a marked reduction in type I procollagen synthesis and impairment in adhesion. In C2C12 cells, N-propeptide inhibits the osteoblastic differentiation induced by BMP2. Our data suggest that these effects are mediated by the interaction of N-propeptide with an intracellular receptor in the secretory pathway, because they are not observed when recombinant N-propeptide is added to the culture medium of either COS-7 or C2C12 cells. Both the binding of N-propeptide to cytokines and its functional properties are entirely dependent on the exon 2-encoded globular domain, and a mutation that substitutes a serine for a highly conserved cysteine in exon 2 abolishes its function. Our findings suggest that N-propeptide performs an important feedback regulatory function and provides a rationale for the prominence of a homotrimeric form of type I procollagen (alpha1 trimer) during vertebrate development.
Collapse
Affiliation(s)
- Anush Oganesian
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Sandra Au
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Jeremy A. Horst
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Lars C. Holzhausen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Athena J. Macy
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - James M. Pace
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Paul Bornstein
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
125
|
Schwarzer D, Stummeyer K, Gerardy-Schahn R, Mühlenhoff M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J Biol Chem 2006; 282:2821-31. [PMID: 17158460 DOI: 10.1074/jbc.m609543200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding and assembly of endosialidases, the trimeric tail spike proteins of Escherichia coli K1-specific bacteriophages, crucially depend on their C-terminal domain (CTD). Homologous CTDs were identified in phage proteins belonging to three different protein families: neck appendage proteins of several Bacillus phages, L-shaped tail fibers of coliphage T5, and K5 lyases, the tail spike proteins of phages infecting E. coli K5. By analyzing a representative of each family, we show that in all cases, the CTD is cleaved off after a strictly conserved serine residue and alanine substitution prevented cleavage. Further structural and functional analyses revealed that (i) CTDs are autonomous domains with a high alpha-helical content; (ii) proteolytically released CTDs assemble into hexamers, which are most likely dimers of trimers; (iii) highly conserved amino acids within the CTD are indispensable for CTD-mediated folding and complex formation; (iv) CTDs can be exchanged between proteins of different families; and (v) proteolytic cleavage is essential to stabilize the native protein complex. Data obtained for full-length and proteolytically processed endosialidase variants suggest that release of the CTD increases the unfolding barrier, trapping the mature trimer in a kinetically stable conformation. In summary, we characterize the CTD as a novel C-terminal chaperone domain, which assists folding and assembly of unrelated phage proteins.
Collapse
Affiliation(s)
- David Schwarzer
- Abteilung Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
126
|
Stevens J, Blixt O, Paulson JC, Wilson IA. Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol 2006; 4:857-64. [PMID: 17013397 PMCID: PMC7097745 DOI: 10.1038/nrmicro1530] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
New technologies are urgently required for rapid surveillance of the current H5N1 avian influenza A outbreaks to gauge the potential for adaptation of the virus to the human population, a crucial step in the emergence of pandemic influenza virus strains. Owing to the species-specific nature of the interaction between the virus and host glycans, attention has recently focused on novel glycan array technologies that can rapidly assess virus receptor specificity and the potential emergence of human-adapted H5N1 viruses.
Collapse
Affiliation(s)
- James Stevens
- Department of Molecular Biology,
- Glycan Array Synthesis Core-D, Consortium for Functional Glycomics,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037 California USA
| | - Ola Blixt
- Department of Molecular Biology,
- Glycan Array Synthesis Core-D, Consortium for Functional Glycomics,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037 California USA
| | - James C. Paulson
- Department of Molecular Biology,
- Glycan Array Synthesis Core-D, Consortium for Functional Glycomics,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037 California USA
| | - Ian A. Wilson
- Department of Molecular Biology,
- Glycan Array Synthesis Core-D, Consortium for Functional Glycomics,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037 California USA
| |
Collapse
|
127
|
Mitraki A, Papanikolopoulou K, Van Raaij MJ. Natural Triple β‐Stranded Fibrous Folds1. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:97-124. [PMID: 17190612 DOI: 10.1016/s0065-3233(06)73004-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.
Collapse
Affiliation(s)
- Anna Mitraki
- Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete, Greece
| | | | | |
Collapse
|
128
|
Bachmann A, Kiefhaber T, Boudko S, Engel J, Bächinger HP. Collagen triple-helix formation in all-trans chains proceeds by a nucleation/growth mechanism with a purely entropic barrier. Proc Natl Acad Sci U S A 2005; 102:13897-902. [PMID: 16172389 PMCID: PMC1236557 DOI: 10.1073/pnas.0505141102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collagen consists of repetitive Gly-Xaa-Yaa tripeptide units with proline and hydroxyproline frequently found in the Xaa and Yaa position, respectively. This sequence motif allows the formation of a highly regular triple helix that is stabilized by steric (entropic) restrictions in the constituent polyproline-II-helices and backbone hydrogen bonds between the three strands. Concentration-dependent association reactions and slow prolyl isomerization steps have been identified as major rate-limiting processes during collagen folding. To gain information on the dynamics of triple-helix formation in the absence of these slow reactions, we performed stopped-flow double-jump experiments on cross-linked fragments derived from human type III collagen. This technique allowed us to measure concentration-independent folding kinetics starting from unfolded chains with all peptide bonds in the trans conformation. The results show that triple-helix formation occurs with a rate constant of 113 +/- 20 s(-1) at 3.7 degrees C and is virtually independent of temperature, indicating a purely entropic barrier. Comparison of the effect of guanidinium chloride on folding kinetics and stability reveals that the rate-limiting step is represented by bringing 10 consecutive tripeptide units (3.3 per strand) into a triple-helical conformation. The following addition of tripeptide units occurs on a much faster time scale and cannot be observed experimentally. These results support an entropy-controlled zipper-like nucleation/growth mechanism for collagen triple-helix formation.
Collapse
Affiliation(s)
- Annett Bachmann
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH 4056 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
129
|
Reid SP, Cárdenas WB, Basler CF. Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology 2005; 341:179-89. [PMID: 16095644 PMCID: PMC3955989 DOI: 10.1016/j.virol.2005.06.044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/14/2005] [Accepted: 06/23/2005] [Indexed: 11/30/2022]
Abstract
We have identified a putative coiled-coil motif within the amino-terminal half of the ebolavirus VP35 protein. Cross-linking studies demonstrated the ability of VP35 to form trimers, consistent with the presence of a functional coiled-coil motif. VP35 mutants lacking the coiled-coil motif or possessing a mutation designed to disrupt coiled-coil function were defective in oligomerization, as deduced by co-immunoprecipitation studies. VP35 inhibits signaling that activates interferon regulatory factor 3 (IRF-3) and inhibits (IFN)-alpha/beta production. Experiments comparing the ability of VP35 mutants to block IFN responses demonstrated that the VP35 amino-terminus, which retains the putative coiled-coil motif, was unable to inhibit IFN responses, whereas the VP35 carboxy-terminus weakly inhibited the activation of IFN responses. IFN-antagonist function was restored when a heterologous trimerization motif was fused to the carboxy-terminal half of VP35, suggesting that an oligomerization function at the amino-terminus facilitates an "IFN-antagonist" function exerted by the carboxy-terminal half of VP35.
Collapse
Affiliation(s)
| | | | - Christopher F. Basler
- Corresponding Author: Christopher F. Basler, PhD, Assistant Professor, Dept. Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, Tel (212) 241-4847, Fax (212) 534-1684,
| |
Collapse
|
130
|
Moroder L, Musiol HJ, Götz M, Renner C. Synthesis of single- and multiple-stranded cystine-rich peptides. Biopolymers 2005; 80:85-97. [PMID: 15612050 DOI: 10.1002/bip.20174] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The large abundance of bioactive single- and multiple-stranded cystine-rich peptides in nature has fostered the development of orthogonal thiol-protection schemes and of efficient chemistries for regioselective disulfide formation in synthetic replica for decades. In parallel to these entirely synthetic strategies, an increased knowledge of oxidative refolding mechanisms of proteins has been accumulated, and the collective experience with air oxidation of cysteine-rich peptides into their native disulfide frameworks have largely confirmed Anfinsen's principle of the self-assembly of polypeptide chains. In fact, a continuously growing number of cysteine-rich bioactive peptides from the most diverse sources and with differing cysteine patterns were found to retain the critical sequence-encoded structural information for correct oxidative folding into the native structures as dominant isomers, although in the biosynthetic pathways the mature peptide forms are mostly generated by posttranslational processing of folded precursors. Such self-assembly processes can be optimized by opportune manipulation of the experimental conditions or by induction of productive intermediates. But there are also numerous cases where folding and disulfide formation are thermodynamically not coupled and where the application of a defined succession of regioselective cysteine pairings still represents the method of choice to install the desired native or non-native cystine frameworks. Among our contributions to the state of the art in the synthesis of cystine-rich peptides, we have mainly addressed the induction of correct oxidative refolding of single-stranded cysteine-rich peptides into their native structures by the use of selenocysteine and suitable strategies for disulfide-mediated assembly of monomers into defined oligomers as mimics of homo- and heterotrimeric collagens as a synthetic approach for the development of new biomaterials.
Collapse
Affiliation(s)
- Luis Moroder
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
131
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2005; 69:1190-202. [PMID: 15627372 DOI: 10.1007/s10541-005-0064-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In studying bacteriophage T4--one of the basic models of molecular biology for several decades--there has come a Renaissance, and this virus is now actively used as object of structural biology. The structures of six proteins of the phage particle have recently been determined at atomic resolution by X-ray crystallography. Three-dimensional reconstruction of the infection device--one of the most complex multiprotein components--has been developed on the basis of cryo-electron microscopy images. The further study of bacteriophage T4 structure will allow a better understanding of the regulation of protein folding, assembly of biological structures, and also mechanisms of functioning of the complex biological molecular machines.
Collapse
Affiliation(s)
- V V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
132
|
Meier S, Güthe S, Kiefhaber T, Grzesiek S. Foldon, the natural trimerization domain of T4 fibritin, dissociates into a monomeric A-state form containing a stable beta-hairpin: atomic details of trimer dissociation and local beta-hairpin stability from residual dipolar couplings. J Mol Biol 2005; 344:1051-69. [PMID: 15544812 DOI: 10.1016/j.jmb.2004.09.079] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/27/2004] [Accepted: 09/27/2004] [Indexed: 11/26/2022]
Abstract
The C-terminal domain of T4 fibritin (foldon) is obligatory for the formation of the fibritin trimer structure and can be used as an artificial trimerization domain. Its native structure consists of a trimeric beta-hairpin propeller. At low pH, the foldon trimer disintegrates into a monomeric (A-state) form that has similar properties as that of an early intermediate of the trimer folding pathway. The formation of this A-state monomer from the trimer, its structure, thermodynamic stability, equilibrium association and folding dynamics have been characterized to atomic detail by modern high-resolution NMR techniques. The foldon A-state monomer forms a beta-hairpin with intact and stable H-bonds that is similar to the monomer in the foldon trimer, but lacks a defined structure in its N and C-terminal parts. Its thermodynamic stability in pure water is comparable to designed hairpins stabilized in alcohol/water mixtures. Details of the thermal unfolding of the foldon A-state have been characterized by chemical shifts and residual dipolar couplings (RDCs) detected in inert, mechanically stretched polyacrylamide gels. At the onset of the thermal transition, uniform relative changes in RDC values indicate a uniform decrease of local N-HN and Calpha-Halpha order parameters for the hairpin strand residues. In contrast, near-turn residues show particular thermal stability in RDC values and hence in local order parameters. This coincides with increased transition temperatures of the beta-turn residues observed by chemical shifts. At high temperatures, the RDCs converge to non-zero average values consistent with predictions from random chain polymer models. Residue-specific deviations above the unfolding transition reveal the persistence of residual order around proline residues, large hydrophobic residues and at the beta-turn.
Collapse
Affiliation(s)
- Sebastian Meier
- Division of Structural Biology Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
133
|
Abstract
Collagen, a large insoluble protein with a characteristic triple helical structure, is found as the most prominent component of extracellular matrix. The functions of collagen are not limited to providing mechanical strength to various tissues and organs as a structural protein, as it has been pointed out that collagen exhibits various biological functions through specific interactions with other macromolecules. However, the use of native triple helical collagen is often troublesome because of its insolubility and gelating properties. Instead, triple helical collagen-like peptides have been designed and are used as collagen surrogates in studies on collagen structure, stability, and biological functions including binding to other proteins and cultured cells. This article reviews recent progress in peptide design, synthesis, and the applications of collagen-like peptides in current matrix biology, while emphasizing the advantages of the peptide-based strategy.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Science, Niigata University of Science and Applied Life Sciences, Niigata, Japan.
| |
Collapse
|
134
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
135
|
Boudko SP, Strelkov SV, Engel J, Stetefeld J. Design and crystal structure of bacteriophage T4 mini-fibritin NCCF. J Mol Biol 2004; 339:927-35. [PMID: 15165860 DOI: 10.1016/j.jmb.2004.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/30/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
Fibritin is a fibrous protein that forms "whiskers" attached to the neck of bacteriophage T4. Whiskers interact with the long tail fibers regulating the assembly and infectivity of the virus. The fibritin trimer includes the N-terminal domain responsible for attachment to the phage particle and for the collar formation, the central domain forming a 500 A long segmented coiled-coil structure, and the C-terminal "foldon" domain. We have designed a "mini" fibritin with most of the coiled-coil domain deleted, and solved its crystal structure. The non-helical N-terminal part represents a new protein fold that tightly interacts with the coiled-coil segment forming a single domain, as revealed by calorimetry. The analysis of the crystal structure and earlier electron microscopy data on the collar-whisker complex suggests the necessity of other proteins to participate in the collar formation. Crystal structure determination of the N-terminal domain of fibritin is the first step towards elucidating the detailed structure and assembly mechanism of the collar-whisker complex.
Collapse
Affiliation(s)
- Sergei P Boudko
- Biozentrum, University of Basel, Klingelbergstr.70, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
136
|
Mizuno K, Hayashi T, Peyton DH, Bächinger HP. Hydroxylation-induced stabilization of the collagen triple helix. Acetyl-(glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)(10)-NH(2) forms a highly stable triple helix. J Biol Chem 2004; 279:38072-8. [PMID: 15231845 DOI: 10.1074/jbc.m402953200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen triple helix is one of the most abundant protein motifs in animals. The structural motif of collagen is the triple helix formed by the repeated sequence of -Gly-Xaa-Yaa-. Previous reports showed that H-(Pro-4(R)Hyp-Gly)(10)-OH (where '4(R)Hyp' is (2S,4R)-4-hydroxyproline) forms a trimeric structure, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not form a triple helix. Compared with H-(Pro-Pro-Gly)(10)-OH, the melting temperature of H-(Pro-4(R)Hyp-Gly)(10)-OH is higher, suggesting that 4(R)Hyp in the Yaa position has a stabilizing effect. The inability of triple helix formation of H-(4(R)Hyp-Pro-Gly)(10)-OH has been explained by a stereoelectronic effect, but the details are unknown. In this study, we synthesized a peptide that contains 4(R)Hyp in both the Xaa and the Yaa positions, that is, Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) and compared it to Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2), and Ac-(Gly-4(R)Hyp-Pro)(10)-NH(2). Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) showed a polyproline II-like circular dichroic spectrum in water. The thermal transition temperatures measured by circular dichroism and differential scanning calorimetry were slightly higher than the values measured for Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2) under the same conditions. For Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), the calorimetric and the van't Hoff transition enthalpy DeltaH were significantly smaller than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). We postulate that the denatured states of the two peptides are significantly different, with Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) forming a more polyproline II-like structure instead of a random coil. Two-dimensional nuclear Overhauser effect spectroscopy suggests that the triple helical structure of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2) is more flexible than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). This is confirmed by the kinetics of amide (1)H exchange with solvent deuterium of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), which is faster than that of Ac-(Gly-Pro-4(R)Hyp)(10)-NH(2). The higher transition temperature of Ac-(Gly-4(R)Hyp-4(R)Hyp)(10)-NH(2), can be explained by the higher trans/cis ratio of the Gly-4(R)Hyp peptide bonds than that of the Gly-Pro bonds, and this ratio compensates for the weaker interchain hydrogen bonds.
Collapse
Affiliation(s)
- Kazunori Mizuno
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, and Shriners Hospital for Children, Research Department, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
137
|
Engel J. Role of oligomerization domains in thrombospondins and other extracellular matrix proteins. Int J Biochem Cell Biol 2004; 36:997-1004. [PMID: 15094115 DOI: 10.1016/j.biocel.2003.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 12/23/2003] [Accepted: 12/29/2003] [Indexed: 10/26/2022]
Abstract
Coiled coils, collagen triple helices and globular oligomerization domains mediate the subunit assembly of many proteins in vertebrates and invertebrates. Oligomerization offers functional advantages including multivalency, increased binding strength and the combined function of different domains. These features are seen in natural proteins and may be introduced by protein engineering. The special focus of this review is on oligomerization domain of extracellular matrix proteins. For thrombospondins, initial interesting results on the functional role of oligomerization have been published. Other features remain to be explored. For example, it is not clear why thrombospondin-1 and thrombospondin-2 are trimers whereas thrombospondins-3 to -5 are pentamers. To stimulate this type of research, this review makes a survey of oligomerization domains and their functional role in extracellular matrix proteins.
Collapse
Affiliation(s)
- Jürgen Engel
- Department for Biophysical Chemistry, Biozentrum, University of Basel, Basel CH 4056, Switzerland.
| |
Collapse
|
138
|
Steplewski A, Majsterek I, McAdams E, Rucker E, Brittingham RJ, Ito H, Hirai K, Adachi E, Jimenez SA, Fertala A. Thermostability Gradient in the Collagen Triple Helix Reveals its Multi-domain Structure. J Mol Biol 2004; 338:989-98. [PMID: 15111062 DOI: 10.1016/j.jmb.2004.03.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/04/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Bower JF, Yang X, Sodroski J, Ross TM. Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d. J Virol 2004; 78:4710-9. [PMID: 15078953 PMCID: PMC387675 DOI: 10.1128/jvi.78.9.4710-4719.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 12/24/2003] [Indexed: 11/20/2022] Open
Abstract
DNA vaccines expressing the envelope (Env) of human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting immune responses. Oligomeric or trimeric (gp140) forms of Env that more closely mimic the native proteins on the virion are often more effective immunogens than monomeric (gp120) envelopes. In this study, several forms of Env constructed from the HIV-1 isolate YU-2 (HIV-1(YU-2)) were tested for their immunogenic potential: a trimeric form of uncleaved (-) Env stabilized with a synthetic trimer motif isolated from the fibritin (FT) protein of the T4 bacteriophage, sgp140(YU-2)(-/FT), was compared to sgp140(YU-2)(-) without a synthetic trimerization domain, as well as to monomeric gp120(YU-2). DNA plasmids were constructed to express Env alone or fused to various copies of murine C3d (mC3d). BALB/c mice were vaccinated (day 1 and week 4) with DNA expressing a codon-optimized envelope gene insert, alone or fused to mC3d. Mice were subsequently boosted (week 8) with the DNA or recombinant Env protein. All mice had high anti-Env antibody titers regardless of the use of mC3d. Sera from mice vaccinated with DNA expressing non-C3d-fused trimers elicited neutralizing antibodies against homologous HIV-1(YU-2) virus infection in vitro. In contrast, sera from mice inoculated with DNA expressing Env-C3d protein trimers elicited antibody that neutralized both homologous HIV-1(YU-2) and heterologous HIV-1(ADA), albeit at low titers. Therefore, DNA vaccines expressing trimeric envelopes coupled to mC3d, expressed in vivo from codon-optimized sequences, elicit low titers of neutralizing antibodies against primary isolates of HIV-1.
Collapse
Affiliation(s)
- Joseph F Bower
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
140
|
Renner C, Saccà B, Moroder L. Synthetic heterotrimeric collagen peptides as mimics of cell adhesion sites of the basement membrane. Biopolymers 2004; 76:34-47. [PMID: 14997473 DOI: 10.1002/bip.10569] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagen type IV forms a network in the basement membrane into which other constituents of the tissue are incorporated. It also provides cell-adhesion sites that are specifically recognized by cell-surface receptors, i.e., the integrins. Different from the ubiquitous sequential RGD adhesion motif found in most of the matrix proteins, in collagen type IV, the responsible binding sites for alpha1beta1 integrin have been identified as Asp461 of the two alpha1 chains and Arg461 of the alpha2 chain. Because of the heterotrimeric character of this collagen, the spatial geometry of the binding epitope depends not only on the triple-helical fold, but decisively even on the stagger of the chains. To investigate the effects of chain registration on the conformational properties and binding affinities of this adhesion epitope, two synthetic heterotrimeric collagen peptides consisting of the identical three chains were assembled by an artificial cystine knot in two different registers, i.e., in the most plausible alpha2alpha1alpha1' and less probable alpha1alpha2alpha1' chain alignment. A detailed conformational characterization of both trimers allowed to correlate their different binding affinities for alpha1beta1 integrin with the degree of local plasticity of the two different triple helices. Optimal local breathing of the rod-shaped collagens is apparently crucial for selective recognition by proteins interacting with these main components of the extracellular matrix.
Collapse
Affiliation(s)
- Christian Renner
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | |
Collapse
|
141
|
Güthe S, Kapinos L, Möglich A, Meier S, Grzesiek S, Kiefhaber T. Very Fast Folding and Association of a Trimerization Domain from Bacteriophage T4 Fibritin. J Mol Biol 2004; 337:905-15. [PMID: 15033360 DOI: 10.1016/j.jmb.2004.02.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/30/2004] [Accepted: 02/05/2004] [Indexed: 11/27/2022]
Abstract
The foldon domain constitutes the C-terminal 30 amino acid residues of the trimeric protein fibritin from bacteriophage T4. Its function is to promote folding and trimerization of fibritin. We investigated structure, stability and folding mechanism of the isolated foldon domain. The domain folds into the same trimeric beta-propeller structure as in fibritin and undergoes a two-state unfolding transition from folded trimer to unfolded monomers. The folding kinetics involve several consecutive reactions. Structure formation in the region of the single beta-hairpin of each monomer occurs on the submillisecond timescale. This reaction is followed by two consecutive association steps with rate constants of 1.9(+/-0.5)x10(6)M(-1)s(-1) and 5.4(+/-0.3)x10(6)M(-1)s(-1) at 0.58 M GdmCl, respectively. This is similar to the fastest reported bimolecular association reactions for folding of dimeric proteins. At low concentrations of protein, folding shows apparent third-order kinetics. At high concentrations of protein, the reaction becomes almost independent of protein concentrations with a half-time of about 3 ms, indicating that a first-order folding step from a partially folded trimer to the native protein (k=210 +/- 20 s(-1)) becomes rate-limiting. Our results suggest that all steps on the folding/trimerization pathway of the foldon domain are evolutionarily optimized for rapid and specific initiation of trimer formation during fibritin assembly. The results further show that beta-hairpins allow efficient and rapid protein-protein interactions during folding.
Collapse
Affiliation(s)
- Sarah Güthe
- Division of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
142
|
Papanikolopoulou K, Forge V, Goeltz P, Mitraki A. Formation of Highly Stable Chimeric Trimers by Fusion of an Adenovirus Fiber Shaft Fragment with the Foldon Domain of Bacteriophage T4 Fibritin. J Biol Chem 2004; 279:8991-8. [PMID: 14699113 DOI: 10.1074/jbc.m311791200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.
Collapse
|
143
|
Boudko SP, Engel J. Structure formation in the C terminus of type III collagen guides disulfide cross-linking. J Mol Biol 2004; 335:1289-97. [PMID: 14729344 DOI: 10.1016/j.jmb.2003.11.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In type III collagen the main triple-helical domain is followed by a disulfide knot and the C-terminal propeptide, which are both essential for nucleation, stabilization and registration of the triple helix. We demonstrate that oxidative inter-chain disulfide bridging does not occur between the knot sequences GlyProCysCysGly of dissociated randomly coiled chains. N-terminal fusion of the obligatory trimeric domain of mini-fibritin is able to direct this process efficiently, demonstrating a folded precursor mechanism in which the thiol groups have to be properly placed for the formation of native disulfide bonds. The natural C-propeptide domain may act in a similar way as the mini-fibritin domain. After disulfide linkage and triple-helix formation the catalyzing mini-fibritin domain was removed by thrombin cleavage. In this way a short but stable triple-helical collagen fragment was expressed in Escherichia coli for structural and functional studies.
Collapse
Affiliation(s)
- Sergei P Boudko
- Biozentrum, University of Basel, Klingelbergstr 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
144
|
Mizuno K, Hayashi T, Peyton DH, Bachinger HP. The Peptides Acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and Acetyl-(Gly-Pro-3(S)Hyp)10-NH2 Do Not Form a Collagen Triple Helix. J Biol Chem 2004; 279:282-7. [PMID: 14576161 DOI: 10.1074/jbc.m308181200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.
Collapse
Affiliation(s)
- Kazunori Mizuno
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | | | | | | |
Collapse
|
145
|
Mesyanzhinov VV. Bacteriophage T4: Structure, Assembly, and Initiation Infection Studied in Three Dimensions. Adv Virus Res 2004; 63:287-352. [PMID: 15530564 DOI: 10.1016/s0065-3527(04)63005-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Vadim V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya S., 117997 Moscow, Russia
| |
Collapse
|
146
|
Majsterek I, McAdams E, Adachi E, Dhume ST, Fertala A. Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci 2003; 12:2063-72. [PMID: 12931004 PMCID: PMC2324002 DOI: 10.1110/ps.0385103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.
Collapse
Affiliation(s)
- Ireneusz Majsterek
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
147
|
Pakkanen O, Hämäläinen ER, Kivirikko KI, Myllyharju J. Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris. Effect of an engineered C-terminal oligomerization domain foldon. J Biol Chem 2003; 278:32478-83. [PMID: 12805365 DOI: 10.1074/jbc.m304405200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.
Collapse
Affiliation(s)
- Outi Pakkanen
- Collagen Research Unit, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
148
|
Affiliation(s)
- Peter R Weigele
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
149
|
Frank S, Boudko S, Mizuno K, Schulthess T, Engel J, Bächinger HP. Collagen triple helix formation can be nucleated at either end. J Biol Chem 2003; 278:7747-50. [PMID: 12540847 DOI: 10.1074/jbc.c200698200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The directional dependence of folding rates for rod-like macromolecules such as parallel alpha-helical coiled-coils, DNA double-helices, and collagen triple helices is largely unexplored. This is mainly due to technical difficulties in measuring rates in different directions. Folding of collagens is nucleated by trimeric non-collagenous domains. These are usually located at the COOH terminus, suggesting that triple helix folding proceeds from the COOH to the NH(2) terminus. Evidence is presented here that effective nucleation is possible at both ends of the collagen-like peptide (Gly-Pro-Pro)(10), using designed proteins in which this peptide is fused either NH(2)- or COOH-terminal to a nucleation domain, either T4-phage foldon or the disulfide knot of type III collagen. The location of the nucleation domain influences triple-helical stability, which might be explained by differences in the linker sequences and the presence or absence of repulsive charges at the carboxyl-terminal end of the triple helix. Triple helical folding rates are found to be independent of the site of nucleation and consistent with cis-trans isomerization being the rate-limiting step.
Collapse
Affiliation(s)
- Sabine Frank
- Department of Biophysical Chemistry, Biozentrum, Universität Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
150
|
Stetefeld J, Frank S, Jenny M, Schulthess T, Kammerer RA, Boudko S, Landwehr R, Okuyama K, Engel J. Collagen stabilization at atomic level: crystal structure of designed (GlyProPro)10foldon. Structure 2003; 11:339-46. [PMID: 12623021 DOI: 10.1016/s0969-2126(03)00025-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In a designed fusion protein the trimeric domain foldon from bacteriophage T4 fibritin was connected to the C terminus of the collagen model peptide (GlyProPro)(10) by a short Gly-Ser linker to facilitate formation of the three-stranded collagen triple helix. Crystal structure analysis at 2.6 A resolution revealed conformational changes within the interface of both domains compared with the structure of the isolated molecules. A striking feature is an angle of 62.5 degrees between the symmetry axis of the foldon trimer and the axis of the triple helix. The melting temperature of (GlyProPro)(10) in the designed fusion protein (GlyProPro)(10)foldon is higher than that of isolated (GlyProPro)(10,) which suggests an entropic stabilization compensating for the destabilization at the interface.
Collapse
Affiliation(s)
- Jörg Stetefeld
- Department of Biophysical Chemistry, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|