101
|
Xiao S, Liang H, Wales DJ. The Contribution of Backbone Electrostatic Repulsion to DNA Mechanical Properties is Length-Scale-Dependent. J Phys Chem Lett 2019; 10:4829-4835. [PMID: 31380654 DOI: 10.1021/acs.jpclett.9b01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanics of DNA bending is crucially related to many vital biological processes. Recent experiments reported anomalous flexibility for DNA on short length scales, calling into doubt the validity of the harmonic worm-like chain (WLC) model in this region. In the present work, we systematically probed the bending dynamics of DNA at different length scales. In contrast to the remarkable deviation from the WLC description for DNA duplexes of less than three helical turns, our atomistic studies indicate that the neutral "null isomer" behaves in accord with the ideal elastic WLC and exhibits a uniform decay for the directional correlation of local bending. The backbone neutralization weakens the anisotropy in the effective bending preference and the helical periodicity of bend correlation that have previously been observed for normal DNA. The contribution of electrostatic repulsion to stretching cooperativity and the mechanical properties of DNA strands is length-scale-dependent: the phosphate neutralization increases the stiffness of DNA below two helical turns, but it is decreased for longer strands. We find that DNA rigidity is largely determined by base pair stacking, with electrostatic interactions contributing only around 10% of the total persistence length.
Collapse
Affiliation(s)
- Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
102
|
Gil A, Sanchez-Gonzalez A, Branchadell V. Unraveling the Modulation of the Activity in Drugs Based on Methylated Phenanthroline When Intercalating between DNA Base Pairs. J Chem Inf Model 2019; 59:3989-3995. [DOI: 10.1021/acs.jcim.9b00500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrià Gil
- CIC Nanogune, Tolosa Hiribidea 76, Donostia - San Sebastian, Gipuzkoa, Basque Country 20029, Spain
- Centro de Química e Bioquímica and BioISI − Biosystems and Integrative Sciences Institute, DQB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Angel Sanchez-Gonzalez
- Centro de Química e Bioquímica and BioISI − Biosystems and Integrative Sciences Institute, DQB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, Catalonia 08193, Spain
| |
Collapse
|
103
|
De Bruin L, Maddocks JH. cgDNAweb: a web interface to the cgDNA sequence-dependent coarse-grain model of double-stranded DNA. Nucleic Acids Res 2019; 46:W5-W10. [PMID: 29905876 PMCID: PMC6030996 DOI: 10.1093/nar/gky351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
The sequence-dependent statistical mechanical properties of fragments of double-stranded DNA is believed to be pertinent to its biological function at length scales from a few base pairs (or bp) to a few hundreds of bp, e.g. indirect read-out protein binding sites, nucleosome positioning sequences, phased A-tracts, etc. In turn, the equilibrium statistical mechanics behaviour of DNA depends upon its ground state configuration, or minimum free energy shape, as well as on its fluctuations as governed by its stiffness (in an appropriate sense). We here present cgDNAweb, which provides browser-based interactive visualization of the sequence-dependent ground states of double-stranded DNA molecules, as predicted by the underlying cgDNA coarse-grain rigid-base model of fragments with arbitrary sequence. The cgDNAweb interface is specifically designed to facilitate comparison between ground state shapes of different sequences. The server is freely available at cgDNAweb.epfl.ch with no login requirement.
Collapse
Affiliation(s)
- Lennart De Bruin
- Instituut-Lorentz for Theoretical Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - John H Maddocks
- Institut de Mathématiques, Station 8, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
104
|
Li S, Olson WK, Lu XJ. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res 2019; 47:W26-W34. [PMID: 31114927 PMCID: PMC6602438 DOI: 10.1093/nar/gkz394] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
Web 3DNA (w3DNA) 2.0 is a significantly enhanced version of the widely used w3DNA server for the analysis, visualization, and modeling of 3D nucleic-acid-containing structures. Since its initial release in 2009, the w3DNA server has continuously served the community by making commonly-used features of the 3DNA suite of command-line programs readily accessible. However, due to the lack of updates, w3DNA has clearly shown its age in terms of modern web technologies and it has long lagged behind further developments of 3DNA per se. The w3DNA 2.0 server presented here overcomes all known shortcomings of w3DNA while maintaining its battle-tested characteristics. Technically, w3DNA 2.0 implements a simple and intuitive interface (with sensible defaults) for increased usability, and it complies with HTML5 web standards for broad accessibility. Featurewise, w3DNA 2.0 employs the most recent version of 3DNA, enhanced with many new functionalities, including: the automatic handling of modified nucleotides; a set of 'simple' base-pair and step parameters for qualitative characterization of non-Watson-Crick double-helical structures; new structural parameters that integrate the rigid base plane and the backbone phosphate group, the two nucleic acid components most reliably determined with X-ray crystallography; in silico base mutations that preserve the backbone geometry; and a notably improved module for building models of single-stranded RNA, double-helical DNA, Pauling triplex, G-quadruplex, or DNA structures 'decorated' with proteins. The w3DNA 2.0 server is freely available, without registration, at http://web.x3dna.org.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
105
|
Leddin EM, Cisneros GA. Comparison of DNA and RNA substrate effects on TET2 structure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:91-112. [PMID: 31564308 DOI: 10.1016/bs.apcsb.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ten-eleven translocation (TET) enzymes can perform the stepwise oxidation of 5-methylcytosine (5mC) to 5-carboxylcytosine on both single-stranded (ss) and double-stranded (ds) DNA and RNA. It has been established that TET2 has a preference for ds DNA substrates, but it can catalyze the oxidation reaction on both ssDNA and RNA. The reasons for this substrate preference have been investigated for only a substrate 5mC ribonucleotide in a DNA strand, but not other nucleic acid configurations (Biochemistry58 (2019) 411). We performed molecular dynamics simulations on TET2 with various ss and ds substrates in order to better understand the structural and dynamical reasons for TET2's preference to act on ds DNA. Our simulations show that substrates that have a ribonucleotide experience several disruptions in their overall backbone shape, hydrogen bonding character, and non-bonded interactions. These differences appear to lead to the instability of ribonucleotide in the active site, and provide further rational for TET2's experimental behavior.
Collapse
Affiliation(s)
- Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, TX, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX, United States
| |
Collapse
|
106
|
Olson WK, Li S, Kaukonen T, Colasanti AV, Xin Y, Lu XJ. Effects of Noncanonical Base Pairing on RNA Folding: Structural Context and Spatial Arrangements of G·A Pairs. Biochemistry 2019; 58:2474-2487. [PMID: 31008589 PMCID: PMC6729125 DOI: 10.1021/acs.biochem.9b00122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Noncanonical base pairs play important roles in assembling the three-dimensional structures critical to the diverse functions of RNA. These associations contribute to the looped segments that intersperse the canonical double-helical elements within folded, globular RNA molecules. They stitch together various structural elements, serve as recognition elements for other molecules, and act as sites of intrinsic stiffness or deformability. This work takes advantage of new software (DSSR) designed to streamline the analysis and annotation of RNA three-dimensional structures. The multiscale structural information gathered for individual molecules, combined with the growing number of unique, well-resolved RNA structures, makes it possible to examine the collective features deeply and to uncover previously unrecognized patterns of chain organization. Here we focus on a subset of noncanonical base pairs involving guanine and adenine and the links between their modes of association, secondary structural context, and contributions to tertiary folding. The rigorous descriptions of base-pair geometry that we employ facilitate characterization of recurrent geometric motifs and the structural settings in which these arrangements occur. Moreover, the numerical parameters hint at the natural motions of the interacting bases and the pathways likely to connect different spatial forms. We draw attention to higher-order multiplexes involving two or more G·A pairs and the roles these associations appear to play in bridging different secondary structural units. The collective data reveal pairing propensities in base organization, secondary structural context, and deformability and serve as a starting point for further multiscale investigations and/or simulations of RNA folding.
Collapse
Affiliation(s)
- Wilma K. Olson
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Shuxiang Li
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Thomas Kaukonen
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Andrew V. Colasanti
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Yurong Xin
- Department of Chemistry & Chemical Biology and Center for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
107
|
Sharp KA, Lu XJ, Cingolani G, Harvey SC. DNA Conformational Changes Play a Force-Generating Role during Bacteriophage Genome Packaging. Biophys J 2019; 116:2172-2180. [PMID: 31103227 DOI: 10.1016/j.bpj.2019.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022] Open
Abstract
Motors that move DNA, or that move along DNA, play essential roles in DNA replication, transcription, recombination, and chromosome segregation. The mechanisms by which these DNA translocases operate remain largely unknown. Some double-stranded DNA (dsDNA) viruses use an ATP-dependent motor to drive DNA into preformed capsids. These include several human pathogens as well as dsDNA bacteriophages-viruses that infect bacteria. We previously proposed that DNA is not a passive substrate of bacteriophage packaging motors but is instead an active component of the machinery. We carried out computational studies on dsDNA in the channels of viral portal proteins, and they reveal DNA conformational changes consistent with that hypothesis. dsDNA becomes longer ("stretched") in regions of high negative electrostatic potential and shorter ("scrunched") in regions of high positive potential. These results suggest a mechanism that electrostatically couples the energy released by ATP hydrolysis to DNA translocation: The chemical cycle of ATP binding, hydrolysis, and product release drives a cycle of protein conformational changes. This produces changes in the electrostatic potential in the channel through the portal, and these drive cyclic changes in the length of dsDNA as the phosphate groups respond to the protein's electrostatic potential. The DNA motions are captured by a coordinated protein-DNA grip-and-release cycle to produce DNA translocation. In short, the ATPase, portal, and dsDNA work synergistically to promote genome packaging.
Collapse
Affiliation(s)
- Kim A Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
108
|
Caraglio M, Skoruppa E, Carlon E. Overtwisting induces polygonal shapes in bent DNA. J Chem Phys 2019; 150:135101. [PMID: 30954045 DOI: 10.1063/1.5084950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
By combining analytical results and simulations of various coarse-grained models, we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross interaction term discussed in the recent DNA literature, induces minimal energy shapes with a periodic alternation of parts with high and low curvature resembling rounded polygons. We briefly discuss the possible experimental relevance of these findings. We finally show that the twist and bending energies of minicircles are governed by renormalized stiffness constants, rather than the bare ones. This has important consequences for the analysis of experiments involving circular DNA meant to determine DNA elastic constants.
Collapse
Affiliation(s)
- Michele Caraglio
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Skoruppa
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
109
|
Karunakaran I, Angamuthu A, Gopalan P. Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2017-1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
We aim to understand the structure and stability of the backbone tailored Watson-Crick base pairs, Guanine-Cytosine (GC), Adenine-Thymine (AT) and Adenine-Uracil (AU) by incorporating N-(2-aminoethyl) glycine units (linked by amide bonds) at the purine and pyrimidine sites of the nucleobases. Density functional theory (DFT) is employed in which B3LYP/6-311++G∗
∗ level of theory has been used to optimize all the structures. The peptide attached base pairs are compared with the natural deoxyribose nucleic acid (DNA)/ribonucleic acid (RNA) base pairs and the calculations are carried out in both the gas and solution phases. The structural propensities of the optimized base pairs are analyzed using base pair geometries, hydrogen bond distances and stabilization energies and, compared with the standard reference data. The structural parameters were found to correlate well with the available data. The addition of peptide chain at the back bone of the DNA/RNA base pairs results only with a minimal distortion and hence does not alter the structural configuration of the base pairs. Also enhanced stability of the base pairs is spotted while adding peptidic chain at the purine site rather than the pyrimidine site of the nucleobases. The stability of the complexes is further interpreted by considering the hydrogen bonded N–H stretching frequencies of the respective base pairs. The discrimination in the interaction energies observed in both gas and solution phases are resulted due to the existence of distinct lowest unoccupied molecular orbitals (LUMO) in the solution phase. The reactivity of the base pairs is also analyzed through the in-depth examinations on the highest occupied molecular orbital (HOMO)-LUMO orbitals.
Collapse
Affiliation(s)
- Indumathi Karunakaran
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India
| | - Abiram Angamuthu
- Department of Physics , Karunya Institute of Technology and Sciences , Coimbatore 641114, Tamilnadu , India
| | - Praveena Gopalan
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India , Tel.: +91-7812844344
| |
Collapse
|
110
|
Zhang H, Fu H, Shao X, Dehez F, Chipot C, Cai W. Changes in Microenvironment Modulate the B- to A-DNA Transition. J Chem Inf Model 2019; 59:2324-2330. [PMID: 30767527 DOI: 10.1021/acs.jcim.8b00885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
B- to A-DNA transition is known to be sensitive to the macroscopic properties of the solution, such as salt and ethanol concentrations. Microenvironmental effects on DNA conformational transition have been broadly studied. Providing an intuitive picture of how DNA responds to environmental changes is, however, still needed. Analyzing the chemical equilibrium of B-to-A DNA transition at critical concentrations, employing explicit-solvent simulations, is envisioned to help understand such microenvironmental effects. In the present study, free-energy calculations characterizing the B- to A-DNA transition and the distribution of cations were carried out in solvents with different ethanol concentrations. With the addition of ethanol, the most stable structure of DNA changes from the B- to A-form, in agreement with previous experimental observation. In 60% ethanol, a chemical equilibrium is found, showing reversible transition between B- and A-DNA. Analysis of the microenvironment around DNA suggests that with the increase of ethanol concentration, the cations exhibit a significant tendency to move toward the backbone, and mobility of water molecules around the major groove and backbone decreases gradually, leading eventually to a B-to-A transition. The present results provide a free-energy view of DNA microenvironment and of the role of cation motion in the conformational transition.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China
| | - Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China.,State Key Laboratory of Medicinal Chemical Biology , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| | - François Dehez
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , Vandoeuvre-lès-Nancy F-54506 , France.,LPCT, UMR 7019 Université de Lorraine CNRS , Vandoeuvre-lès-Nancy F-54500 , France
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , Vandoeuvre-lès-Nancy F-54506 , France.,LPCT, UMR 7019 Université de Lorraine CNRS , Vandoeuvre-lès-Nancy F-54500 , France.,Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| |
Collapse
|
111
|
Halder A, Vemuri S, Roy R, Katuri J, Bhattacharyya D, Mitra A. Evidence for Hidden Involvement of N3-Protonated Guanine in RNA Structure and Function. ACS OMEGA 2019; 4:699-709. [PMID: 30775644 PMCID: PMC6372247 DOI: 10.1021/acsomega.8b02908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/25/2018] [Indexed: 05/05/2023]
Abstract
Charged nucleobases have been found to occur in several known RNA molecules and are considered essential for their structure and function. The mechanism of their involvement is however not yet fully understood. Revelation of the role of N7-protonated guanine, in modulating the geometry and stability of noncanonical base pairs formed through its unprotonated edges [Watson-Crick (WC) and sugar], has triggered the need to evaluate the feasibility of similar roles of other protonated nucleobases [Halder et al., Phys Chem Chem Phys, 2015, 17, 26249]. In this context, N3 protonation of guanine makes an interesting case as its influence on the charge distribution of the WC edge is similar to that of N7 protonation, though its thermodynamic cost of protonation is significantly higher. In this work, we have carried out structural bioinformatics analyses and quantum mechanics-based calculations to show that N3 protonation of guanine may take place in a cellular environment, at least in the G:C W:W Trans and G:G W:H Cis base pairs. Our results provide a reasonable starting point for future investigations in order to address the larger mechanistic question.
Collapse
Affiliation(s)
- Antarip Halder
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Saurabh Vemuri
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Rohit Roy
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Jayanth Katuri
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| | - Dhananjay Bhattacharyya
- Computational
Science Division, Saha Institute of Nuclear
Physics (SINP), 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center
for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology,
Hyderabad (IIIT-H), Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
112
|
Alcolea Palafox M. Effect of the sulfur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs. Biopolymers 2019; 110:e23247. [PMID: 30676643 DOI: 10.1002/bip.23247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
The effect of the sulphur atom on the uracil ring was analyzed in different DNA:RNA microhelixes with three nucleotide base-pairs, including uridine, 2-thiouridine, 4-thiouridine, 2,4-dithiouridine, cytidine, adenosine and guanosine. Distinct backbone and helical parameters were optimized at different density functional (DFT) levels. The Watson-Crick pair with 2-thiouridine appears weaker than with uridine, but its interaction with water molecules appears easier. Two types of microhelixes were found, depending on the H-bond of H2' hydroxyl atom: A-type appears with the ribose ring in 3 E-envelope C3' -endo, and B-type in 2 E-envelope C2' -endo. B-type is less common but it is more stable and with higher dipole-moment. The sulphur atoms significantly increase the dipole-moment of the microhelix, as well as the rise and propeller twist parameters. Simulations with four Na atoms H-bonded to the phosphate groups, and further hydration with explicit water molecules were carried out. A re-definition of the numerical value calculation of several base-pair and base-stacking parameters is suggested.
Collapse
Affiliation(s)
- Mauricio Alcolea Palafox
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
113
|
Li G, Quan Y, Wang X, Liu R, Bie L, Gao J, Zhang HY. Trinucleotide Base Pair Stacking Free Energy for Understanding TF-DNA Recognition and the Functions of SNPs. Front Chem 2019; 6:666. [PMID: 30713839 PMCID: PMC6345724 DOI: 10.3389/fchem.2018.00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) affect base pair stacking, which is the primary factor for maintaining the stability of DNA. However, the mechanism of how SNPs lead to phenotype variations is still unclear. In this work, we connected SNPs and base pair stacking by a 3-mer base pair stacking free energy matrix. The SNPs with large base pair stacking free energy differences led to phenotype variations. A molecular dynamics (MD) simulation was then applied. Our results showed that base pair stacking played an important role in the transcription factor (TF)-DNA interaction. Changes in DNA structure mainly originate from TF-DNA interactions, and with the increased base pair stacking free energy, the structure of DNA approaches its free type, although its binding affinity was increased by the SNP. In addition, quantitative models using base pair stacking features revealed that base pair stacking can be used to predict TF binding specificity. As such, our work combined knowledge from bioinformatics and structural biology and provided a new understanding of the relationship between SNPs and phenotype variations. The 3-mer base pair stacking free energy matrix is useful in high-throughput screening of SNPs and predicting TF-DNA binding affinity.
Collapse
Affiliation(s)
- Gen Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Lihua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
114
|
de Oliveira Martins E, Basílio Barbosa V, Weber G. DNA/RNA hybrid mesoscopic model shows strong stability dependence with deoxypyrimidine content and stacking interactions similar to RNA/RNA. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
115
|
Frei S, Istrate A, Leumann CJ. 6'-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations. Beilstein J Org Chem 2018; 14:3088-3097. [PMID: 30643586 PMCID: PMC6317435 DOI: 10.3762/bjoc.14.288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022] Open
Abstract
Here we report on the synthesis, biophysical properties and molecular modeling of oligonucleotides containing unsaturated 6'-fluoro[4.3.0]bicyclo nucleotides (6'F-bc4,3-DNA). Two 6'F-bc4,3 phosphoramidite building blocks (T and C) were synthesized starting from a previously described [3.3.0]bicyclic sugar. The conversion of this sugar to a gem-difluorinated tricyclic intermediate via difluorocarbene addition followed either by a NIS-mediated or Vorbrüggen nucleosidation yielded in both cases the β-tricyclic nucleoside as major anomer. Subsequent desilylation and cyclopropane ring opening of these tricyclic intermediates afforded the unsaturated 6'F-bc4,3 nucleosides. The successful incorporation of the corresponding phosphoramidite building blocks into oligonucleotides was achieved with tert-butyl hydroperoxide as oxidation agent. Thermal melting experiments of the modified duplexes disclosed a destabilizing effect versus DNA and RNA complements, but with a lesser degree of destabilization versus complementary DNA (ΔT m/mod = -1.5 to -3.7 °C). Molecular dynamics simulation on the nucleoside and oligonucleotide level revealed the preference of the C1'-exo/C2'-endo alignment of the furanose ring. Moreover, the simulation of duplexes with complementary RNA disclosed a DNA/RNA-type duplex structure suggesting that this modification might be a substrate for RNase H.
Collapse
Affiliation(s)
- Sibylle Frei
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
116
|
DeNizio JE, Liu MY, Leddin EM, Cisneros GA, Kohli RM. Selectivity and Promiscuity in TET-Mediated Oxidation of 5-Methylcytosine in DNA and RNA. Biochemistry 2018; 58:411-421. [PMID: 30387995 DOI: 10.1021/acs.biochem.8b00912] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enzymes of the ten-eleven translocation (TET) family add diversity to the repertoire of nucleobase modifications by catalyzing the oxidation of 5-methylcytosine (5mC). TET enzymes were initially found to oxidize 5-methyl-2'-deoxycytidine in genomic DNA, yielding products that contribute to epigenetic regulation in mammalian cells, but have since been found to also oxidize 5-methylcytidine in RNA. Considering the different configurations of single-stranded (ss) and double-stranded (ds) DNA and RNA that coexist in a cell, defining the scope of TET's preferred activity and the mechanisms of substrate selectivity is critical to better understand the enzymes' biological functions. To this end, we have systematically examined the activity of human TET2 on DNA, RNA, and hybrid substrates in vitro. We found that, while ssDNA and ssRNA are well tolerated, TET2 is most proficient at dsDNA oxidation and discriminates strongly against dsRNA. Chimeric and hybrid substrates containing mixed DNA and RNA character helped reveal two main features by which the enzyme discriminates between substrates. First, the identity of the target nucleotide alone is the strongest reactivity determinant, with a preference for 5-methyldeoxycytidine, while both DNA or RNA are relatively tolerated on the rest of the target strand. Second, while a complementary strand is not required for activity, DNA is the preferred partner, and complementary RNA diminishes reactivity. Our biochemical analysis, complemented by molecular dynamics simulations, provides support for an active site optimally configured for dsDNA reactivity but permissive for various nucleic acid configurations, suggesting a broad range of plausible roles for TET-mediated 5mC oxidation in cells.
Collapse
Affiliation(s)
| | | | - Emmett M Leddin
- Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | | |
Collapse
|
117
|
Karwowski BT. The AT Interstrand Cross-Link: Structure, Electronic Properties, and Influence on Charge Transfer in dsDNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:665-685. [PMID: 30500729 PMCID: PMC6258832 DOI: 10.1016/j.omtn.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/01/2022]
Abstract
The interaction of chemical and physical agents with genetic material can lead to almost 80 different DNA damage formations. The targeted intentional DNA damage by radiotherapy or chemotherapy is a front-line anticancer therapy. An interstrand cross-link can result from ionization radiation or specific chemical agents, such as trans-/cisplatin activity. Here, the influence of the adenine and thymidine (AT) interstrand linkage, the covalent bond between the adenine N6 and thymidine C5 methylene group, on the isolated base pair as well as double-stranded DNA (dsDNA) was taken into quantum mechanical/molecular mechanical (QM/MM) consideration at the m062x/6-31+G*:UFF level of theory in the aqueous phase. All the results presented in this article, for the first time, show that an AT-interstrand cross-link (ICL) changes the positive and negative charge migration process due to a higher activation energy forced by the cross-link’s presence. However, the final radical cation destination in cross-linked DNA is left in the same place as in a native double-stranded-deoxyoligonucleotide. Additionally, the direction of the radical anion transfer was found to be opposite to that of native dsDNA. Therefore, it can be postulated that the appearance of the AT-ICL does not disturb the hole migration in the double helix, with subsequent effective changes in the electron migration process.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
118
|
Lindow N, Baum D, Leborgne M, Hege HC. Interactive Visualization of RNA and DNA Structures. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:967-976. [PMID: 30334794 DOI: 10.1109/tvcg.2018.2864507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The analysis and visualization of nucleic acids (RNA and DNA) is playing an increasingly important role due to their fundamental importance for all forms of life and the growing number of known 3D structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed. In contrast to proteins, which are composed of amino acids, the ingredients of nucleic acids are nucleotides. They form structuring patterns that differ from those of proteins and, hence, also require different visualization and exploration techniques. In order to support interactive exploration of nucleic acids, the computation of secondary structure motifs as well as their visualization in 2D and 3D must be fast. Therefore, in this paper, we focus on the performance of both the computation and visualization of nucleic acid structure. We present a ray casting-based visualization of RNA and DNA secondary and tertiary structures, which enables for the first time real-time visualization of even large molecular dynamics trajectories. Furthermore, we provide a detailed description of all important aspects to visualize nucleic acid secondary and tertiary structures. With this, we close an important gap in molecular visualization.
Collapse
|
119
|
Silanteva I, Komolkin AV. Representation of DNA environment: Spiral staircase distribution function. J Comput Chem 2018; 39:2300-2306. [PMID: 30299550 DOI: 10.1002/jcc.25549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
In the present study, we investigated the local structure of DNA and its environment using a new visualization technique. The spiral staircase distribution function (SSDF) is determined as two-dimensional density distribution of atoms of water and ligands in local reference frames linked with each base pair of poly-DNA molecule, either GC or AT. This property of SSDF provides opportunity to study sequence-specific binding of ions, peptides, and other agents derived from a molecular dynamics computer simulation. The spatial structure of double-stranded DNA environment in water solution containing either Mg2+ or Na+ ions was investigated using of SSDF. The distributions of ions around GC and AT base pairs are shown separately. It is observed that Mg2+ ions interact with DNA atoms by means of the layer of water molecules and penetrate into the major groove only. Na+ ions have a direct contact with DNA atoms and penetrate both into the major and minor grooves of DNA. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irina Silanteva
- Faculty of Physics, Saint Petersburg State University, Universitetsaya emb., 7-9, Saint Petersburg, 199034, Russian Federation
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg State University, Universitetsaya emb., 7-9, Saint Petersburg, 199034, Russian Federation
| |
Collapse
|
120
|
Kriegel F, Matek C, Dršata T, Kulenkampff K, Tschirpke S, Zacharias M, Lankaš F, Lipfert J. The temperature dependence of the helical twist of DNA. Nucleic Acids Res 2018; 46:7998-8009. [PMID: 30053087 PMCID: PMC6125625 DOI: 10.1093/nar/gky599] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 06/08/2018] [Accepted: 07/20/2018] [Indexed: 01/11/2023] Open
Abstract
DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. Quantitative understanding and optimization of its functions requires precise experimental characterization and accurate modeling of DNA properties. A defining feature of DNA is its helicity. DNA unwinds with increasing temperature, even for temperatures well below the melting temperature. However, accurate quantitation of DNA unwinding under external forces and a microscopic understanding of the corresponding structural changes are currently lacking. Here we combine single-molecule magnetic tweezers measurements with atomistic molecular dynamics and coarse-grained simulations to obtain a comprehensive view of the temperature dependence of DNA twist. Experimentally, we find that DNA twist changes by ΔTw(T) = (-11.0 ± 1.2)°/(°C·kbp), independent of applied force, in the range of forces where torque-induced melting is negligible. Our atomistic simulations predict ΔTw(T) = (-11.1 ± 0.3)°/(°C·kbp), in quantitative agreement with experiments, and suggest that the untwisting of DNA with temperature is predominantly due to changes in DNA structure for defined backbone substates, while the effects of changes in substate populations are minor. Coarse-grained simulations using the oxDNA framework yield a value of ΔTw(T) = (-6.4 ± 0.2)°/(°C·kbp) in semi-quantitative agreement with experiments.
Collapse
Affiliation(s)
- Franziska Kriegel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Christian Matek
- Technical University of Munich and Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Klara Kulenkampff
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Sophie Tschirpke
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Martin Zacharias
- Physics-Department T38, Technical University of Munich, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
121
|
Jena NR, Das P, Behera B, Mishra PC. Analogues of P and Z as Efficient Artificially Expanded Genetic Information System. J Phys Chem B 2018; 122:8134-8145. [PMID: 30063353 DOI: 10.1021/acs.jpcb.8b04207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To artificially expand the genetic information system and to realize artificial life, it is necessary to discover new functional DNA bases that can form stable duplex DNA and participate in error-free replication. It is recently proposed that the 2-amino-imidazo[1,2- a]-1,3,5-triazin-4(8 H)one (P) and 6-amino-5-nitro-2(1 H)-pyridone (Z) would form a base pair complex, which is more stable than that of the normal G-C base pair and would produce an unperturbed duplex DNA. Here, by using quantum chemical calculations in aqueous medium, it is shown that the P and Z molecules can be modified with the help of electron-withdrawing and -donating substituents mainly found in B-DNA to generate new bases that can produce even more stable base pairs. Among the various bases studied, P3, P4, Z3, and Z5 are found to produce base pairs, which are about 2-15 kcal/mol more stable than the P-Z base pair. It is further shown that these base pairs can be stacked onto the G-C and A-T base pairs to produce stable dimers. The consecutive stacking of these base pairs is found to yield even more stable dimers. The influence of charge penetration effects and backbone atoms in stabilizing these dimers are also discussed. It is thus proposed that the P3, P4, Z3, and Z5 would form promiscuous artificial genetic information system and can be used for different biological applications. However, the evaluations of the dynamical effects of these bases in DNA-containing several nucleotides and the efficacy of DNA polymerases to replicate these bases would provide more insights.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Khamaria, Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Khamaria, Jabalpur 482005 , India
| | - B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Khamaria, Jabalpur 482005 , India
| | - P C Mishra
- Department of Physics , Banaras Hindu University , Varanasi 221005 , India
| |
Collapse
|
122
|
Howell SC, Qiu X, Curtis JE. Monte Carlo simulation algorithm for B-DNA. J Comput Chem 2018; 37:2553-63. [PMID: 27671358 DOI: 10.1002/jcc.24474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/12/2016] [Accepted: 07/23/2016] [Indexed: 01/12/2023]
Abstract
Understanding the structure-function relationship of biomolecules containing DNA has motivated experiments aimed at determining molecular structure using methods such as small-angle X-ray and neutron scattering (SAXS and SANS). SAXS and SANS are useful for determining macromolecular shape in solution, a process which benefits by using atomistic models that reproduce the scattering data. The variety of algorithms available for creating and modifying model DNA structures lack the ability to rapidly modify all-atom models to generate structure ensembles. This article describes a Monte Carlo algorithm for simulating DNA, not with the goal of predicting an equilibrium structure, but rather to generate an ensemble of plausible structures which can be filtered using experimental results to identify a sub-ensemble of conformations that reproduce the solution scattering of DNA macromolecules. The algorithm generates an ensemble of atomic structures through an iterative cycle in which B-DNA is represented using a wormlike bead-rod model, new configurations are generated by sampling bend and twist moves, then atomic detail is recovered by back mapping from the final coarse-grained configuration. Using this algorithm on commodity computing hardware, one can rapidly generate an ensemble of atomic level models, each model representing a physically realistic configuration that could be further studied using molecular dynamics. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven C Howell
- Neutron Condensed Matter Science Group, NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8562
| | - Xiangyun Qiu
- Department of Physics, The George Washington University, Washington, District of Columbia, 20052
| | - Joseph E Curtis
- Neutron Condensed Matter Science Group, NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8562.
| |
Collapse
|
123
|
New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins. Structure 2018; 26:1237-1250.e6. [PMID: 30057026 DOI: 10.1016/j.str.2018.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/03/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
The tumor suppressor p53 acts as a transcription factor recognizing diverse DNA response elements (REs). Previous structural studies of p53-DNA complexes revealed non-canonical Hoogsteen geometry of A/T base pairs at conserved CATG motifs leading to changes in DNA shape and its interface with p53. To study the effects of DNA shape on binding characteristics, we designed REs with modified base pairs "locked" into either Hoogsteen or Watson-Crick form. Here we present crystal structures of these complexes and their thermodynamic and kinetic parameters, demonstrating that complexes with Hoogsteen base pairs are stabilized relative to those with all-Watson-Crick base pairs. CATG motifs are abundant in p53REs such as GADD45 and p53R2 related to cell-cycle arrest and DNA repair. The high-resolution structures of these complexes validate their propensity to adopt the unique Hoogsteen-induced structure, thus providing insights into the functional role of DNA shape and broadening the mechanisms that contribute to DNA recognition by proteins.
Collapse
|
124
|
Luo J. Sub-picosecond proton tunnelling in deformed DNA hydrogen bonds under an asymmetric double-oscillator model. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:81. [PMID: 29974268 DOI: 10.1140/epje/i2018-11690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
We present a model of proton tunnelling across DNA hydrogen bonds, compute the characteristic tunnelling time (CTT) from donor to acceptor and discuss its biological implications. The model is a double oscillator characterised by three geometry parameters describing planar deformations of the H bond, and a symmetry parameter representing the energy ratio between ground states in the individual oscillators. We discover that some values of the symmetry parameter lead to CTTs which are up to 40 orders of magnitude smaller than a previous model predicted. Indeed, if the symmetry parameter is sufficiently far from its extremal values of 1 or 0, then the proton's CTT under any physically realistic planar deformation is guaranteed to be below one picosecond, which is a biologically relevant time-scale. This supports theories of links between proton tunnelling and biological processes such as spontaneous mutation.
Collapse
Affiliation(s)
- J Luo
- Department of Mathematical Sciences, Durham University, Durham, UK.
| |
Collapse
|
125
|
Bie L, Du L, Yuan Q, Gao J. How a single 5-methylation of cytosine regulates the recognition of C/EBPβ transcription factor: a molecular dynamic simulation study. J Mol Model 2018; 24:159. [PMID: 29892907 DOI: 10.1007/s00894-018-3678-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
CpG methylation can regulate gene expression by altering the specific binding of protein and DNA. In order to understand how a single 5mC regulates protein-DNA interactions, we have compared the structures and dynamics of CEBP/βprotein-DNA complexes before and after methylation, and the results indicate that even a single 5mC can regulate protein-DNA recognition by steric-hindrance effect of methyl group and changing the hydrogen bond interactions. The interactions between the methyl group, mCpG motif, and the conserved residue arginine make the protein read out the variation of local environment, which further enhances the specific recognition and affects the base pair stacking. The stacking interactions can propagate along the backbone of DNA and lead to long-range allosteric effects, including obvious conformational variations for DNA base pairs.
Collapse
Affiliation(s)
- Lihua Bie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Likai Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Jun Gao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
126
|
Capobianco A, Landi A, Peluso A. Modeling DNA oxidation in water. Phys Chem Chem Phys 2018; 19:13571-13578. [PMID: 28513687 DOI: 10.1039/c7cp02029e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel set of hole-site energies and electronic coupling parameters to be used, in the framework of the simplest tight-binding approximation, for predicting DNA hole trapping efficiencies and rates of hole transport in oxidized DNA is proposed. The novel parameters, significantly different from those previously reported in the literature, have been inferred from reliable density functional calculations, including both the sugar-phosphate ionic backbone and the effects of the aqueous environment. It is shown that most of the experimental oxidation free energies of DNA tracts and of oligonucleotides available from photoelectron spectroscopy and voltammetric measurements are reproduced with great accuracy, without the need for introducing sequence dependent parameters.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, I-84084 Fisciano (SA), Italy.
| | | | | |
Collapse
|
127
|
SAMANTA SUDIPTA, RAGHUNATHAN DEVANATHAN, MUKHERJEE SANCHITA, SANYAL BIPLAB. DEPENDENCE OF HOMO–LUMO GAP OF DNA BASE PAIR STEPS ON TWIST ANGLE: A DENSITY FUNCTIONAL APPROACH. J BIOL SYST 2018. [DOI: 10.1142/s021833901850002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electronic structure calculations of all 10 unique base pair (bp) steps have been calculated to study the interaction energies of the bp steps, density of states (DOS), projected density of states (pDOS) using the density functional theory (DFT). Plane wave basis with ultrasoft pseudo-potential method has been used within the local density approximation (LDA) for the exchange correlation functional. Electron densities of the bp steps corresponding to HOMO and LUMO level have been calculated to understand the difference in stacking energies of the bp steps. The variation of HOMO–LUMO gap (g) of all possible bp steps on twist angle has been studied. We have observed that out of the 10 bp steps, 4 purine–purine bp steps (d(AA), d(GG), d(AG) and d(GA)), show significant variation of [Formula: see text] on twist angle. The observed variation on twist angle of d(AA) bp step has been explained by the calculated DOS and electron densities.
Collapse
Affiliation(s)
- SUDIPTA SAMANTA
- BioSystems and Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, Republic of Singapore 138602, Singapore
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - DEVANATHAN RAGHUNATHAN
- Prochem Solutions Pte. Ltd., 89C Science Park Drive, The Rutherford, # 04-13, Singapore Science Park 1, Singapore 118261, Singapore
| | - SANCHITA MUKHERJEE
- Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - BIPLAB SANYAL
- Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala, Sweden
| |
Collapse
|
128
|
Biton YY. Effects of Protein-Induced Local Bending and Sequence Dependence on the Configurations of Supercoiled DNA Minicircles. J Chem Theory Comput 2018; 14:2063-2075. [PMID: 29558800 DOI: 10.1021/acs.jctc.7b01090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yoav Y. Biton
- Department of Mechanical Engineering, SCE, Shamoon College of Engineering, Beer Sheva 84100, Israel
| |
Collapse
|
129
|
Rube HT, Rastogi C, Kribelbauer JF, Bussemaker HJ. A unified approach for quantifying and interpreting DNA shape readout by transcription factors. Mol Syst Biol 2018; 14:e7902. [PMID: 29472273 PMCID: PMC5822049 DOI: 10.15252/msb.20177902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023] Open
Abstract
Transcription factors (TFs) interpret DNA sequence by probing the chemical and structural properties of the nucleotide polymer. DNA shape is thought to enable a parsimonious representation of dependencies between nucleotide positions. Here, we propose a unified mathematical representation of the DNA sequence dependence of shape and TF binding, respectively, which simplifies and enhances analysis of shape readout. First, we demonstrate that linear models based on mononucleotide features alone account for 60-70% of the variance in minor groove width, roll, helix twist, and propeller twist. This explains why simple scoring matrices that ignore all dependencies between nucleotide positions can partially account for DNA shape readout by a TF Adding dinucleotide features as sequence-to-shape predictors to our model, we can almost perfectly explain the shape parameters. Building on this observation, we developed a post hoc analysis method that can be used to analyze any mechanism-agnostic protein-DNA binding model in terms of shape readout. Our insights provide an alternative strategy for using DNA shape information to enhance our understanding of how cis-regulatory codes are interpreted by the cellular machinery.
Collapse
Affiliation(s)
- H Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Program in Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
130
|
Garg A, Heinemann U. A novel form of RNA double helix based on G·U and C·A + wobble base pairing. RNA (NEW YORK, N.Y.) 2018; 24:209-218. [PMID: 29122970 PMCID: PMC5769748 DOI: 10.1261/rna.064048.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/05/2017] [Indexed: 05/27/2023]
Abstract
Wobble base pairs are critical in various physiological functions and have been linked to local structural perturbations in double-helical structures of nucleic acids. We report a 1.38-Å resolution crystal structure of an antiparallel octadecamer RNA double helix in overall A conformation, which includes a unique, central stretch of six consecutive wobble base pairs (W helix) with two G·U and four rare C·A+ wobble pairs. Four adenines within the W helix are N1-protonated and wobble-base-paired with the opposing cytosine through two regular hydrogen bonds. Combined with the two G·U pairs, the C·A+ base pairs facilitate formation of a half turn of W-helical RNA flanked by six regular Watson-Crick base pairs in standard A conformation on either side. RNA melting experiments monitored by differential scanning calorimetry, UV and circular dichroism spectroscopy demonstrate that the RNA octadecamer undergoes a pH-induced structural transition which is consistent with the presence of a duplex with C·A+ base pairs at acidic pH. Our crystal structure provides a first glimpse of an RNA double helix based entirely on wobble base pairs with possible applications in RNA or DNA nanotechnology and pH biosensors.
Collapse
Affiliation(s)
- Ankur Garg
- Crystallography, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie University Berlin, 14195 Berlin, Germany
| | - Udo Heinemann
- Crystallography, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie University Berlin, 14195 Berlin, Germany
| |
Collapse
|
131
|
Li J, Sagendorf JM, Chiu TP, Pasi M, Perez A, Rohs R. Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding. Nucleic Acids Res 2018; 45:12877-12887. [PMID: 29165643 PMCID: PMC5728407 DOI: 10.1093/nar/gkx1145] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
Uncovering the mechanisms that affect the binding specificity of transcription factors (TFs) is critical for understanding the principles of gene regulation. Although sequence-based models have been used successfully to predict TF binding specificities, we found that including DNA shape information in these models improved their accuracy and interpretability. Previously, we developed a method for modeling DNA binding specificities based on DNA shape features extracted from Monte Carlo (MC) simulations. Prediction accuracies of our models, however, have not yet been compared to accuracies of models incorporating DNA shape information extracted from X-ray crystallography (XRC) data or Molecular Dynamics (MD) simulations. Here, we integrated DNA shape information extracted from MC or MD simulations and XRC data into predictive models of TF binding and compared their performance. Models that incorporated structural information consistently showed improved performance over sequence-based models regardless of data source. Furthermore, we derived and validated nine additional DNA shape features beyond our original set of four features. The expanded repertoire of 13 distinct DNA shape features, including six intra-base pair and six inter-base pair parameters and minor groove width, is available in our R/Bioconductor package DNAshapeR and enables a comprehensive structural description of the double helix on a genome-wide scale.
Collapse
Affiliation(s)
- Jinsen Li
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Jared M Sagendorf
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Tsu-Pei Chiu
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Marco Pasi
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alberto Perez
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
132
|
Halder A, Roy R, Bhattacharyya D, Mitra A. Consequences of Mg2+ binding on the geometry and stability of RNA base pairs. Phys Chem Chem Phys 2018; 20:21934-21948. [DOI: 10.1039/c8cp03602k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quantum chemical calculations reveal the role of magnesium in stabilizing the geometries of intrinsically unstable RNA base pairs.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| | - Rohit Roy
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| | | | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB)
- International Institute of Information Technology (IIIT-H)
- Hyderabad 500032
- India
| |
Collapse
|
133
|
Smith DA, Holroyd LF, van Mourik T, Jones AC. A DFT study of 2-aminopurine-containing dinucleotides: prediction of stacked conformations with B-DNA structure. Phys Chem Chem Phys 2017; 18:14691-700. [PMID: 27186599 DOI: 10.1039/c5cp07816d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The fluorescence properties of dinucleotides incorporating 2-aminopurine (2AP) suggest that the simplest oligonucleotides adopt conformations similar to those found in duplex DNA. However, there is a lack of structural data for these systems. We report a density functional theory (DFT) study of the structures of 2AP-containing dinucleotides (deoxydinucleoside monophosphates), including full geometry optimisation of the sugar-phosphate backbone. Our DFT calculations employ the M06-2X functional for reliable treatment of dispersion interactions and include implicit aqueous solvation. Dinucleotides with 2AP in the 5'-position and each of the natural bases in the 3'-position are examined, together with the analogous 5'-adenine-containing systems. Computed structures are compared in detail with typical B-DNA base-step parameters, backbone torsional angles and sugar pucker, derived from crystallographic data. We find that 2AP-containing dinucleotides adopt structures that closely conform to B-DNA in all characteristic parameters. The structures of 2AP-containing dinucleotides closely resemble those of their adenine-containing counterparts, demonstrating the fidelity of 2AP as a mimic of the natural base. As a first step towards exploring the conformational heterogeneity of dinucleotides, we also characterise an imperfectly stacked conformation and one in which the bases are completely unstacked.
Collapse
Affiliation(s)
- Darren A Smith
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Leo F Holroyd
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Tanja van Mourik
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Anita C Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
134
|
Xu F, Zheng H, Clauvelin N, Lu XJ, Olson WK, Nanda V. Parallels between DNA and collagen - comparing elastic models of the double and triple helix. Sci Rep 2017; 7:12802. [PMID: 29038480 PMCID: PMC5643560 DOI: 10.1038/s41598-017-12878-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Multi-stranded helices are widespread in nature. The interplay of polymeric properties with biological function is seldom discussed. This study probes analogies between structural and mechanical properties of collagen and DNA. We modeled collagen with Eulerian rotational and translational parameters of adjacent rungs in the triple-helix ladder and developed statistical potentials by extracting the dispersion of the parameters from a database of atomic-resolution structures. The resulting elastic model provides a common quantitative way to describe collagen deformations upon interacting with integrins or matrix metalloproteinase and DNA deformations upon protein binding. On a larger scale, deformations in Type I collagen vary with a periodicity consistent with the D-periodic banding of higher-order fibers assemblies. This indicates that morphologies of natural higher-order collagen packing might be rooted in the characteristic deformation patterns.
Collapse
Affiliation(s)
- Fei Xu
- School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu, 214122, China.
| | - Hongning Zheng
- School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu, 214122, China
| | - Nicolas Clauvelin
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology and the Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
135
|
Mukherjee D, Bhattacharyya D. Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation. J Mol Model 2017; 23:300. [DOI: 10.1007/s00894-017-3470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
|
136
|
Bohr HG, Shim I, Stein C, Ørum H, Hansen HF, Koch T. Electronic Structures of LNA Phosphorothioate Oligonucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:428-441. [PMID: 28918042 PMCID: PMC5537454 DOI: 10.1016/j.omtn.2017.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 01/08/2023]
Abstract
Important oligonucleotides in anti-sense research have been investigated in silico and experimentally. This involves quantum mechanical (QM) calculations and chromatography experiments on locked nucleic acid (LNA) phosphorothioate (PS) oligonucleotides. iso-potential electrostatic surfaces are essential in this study and have been calculated from the wave functions derived from the QM calculations that provide binding information and other properties of these molecules. The QM calculations give details of the electronic structures in terms of e.g., energy and bonding, which make them distinguish or differentiate between the individual PS diastereoisomers determined by the position of sulfur atoms. Rules are derived from the electronic calculations of these molecules and include the effects of the phosphorothioate chirality and formation of electrostatic potential surfaces. Physical and electrochemical descriptors of the PS oligonucleotides are compared to the experiments in which chiral states on these molecules can be distinguished. The calculations demonstrate that electronic structure, electrostatic potential, and topology are highly sensitive to single PS configuration changes and can give a lead to understanding the activity of the molecules.
Collapse
Affiliation(s)
- Henrik G Bohr
- Department of Chemistry, B-206-DTU, The Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Irene Shim
- Department of Chemistry, B-206-DTU, The Technical University of Denmark, 2800 Lyngby, Denmark
| | - Cy Stein
- Department of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Henrik Ørum
- Anemonevej 4, Hareskov, 3500 Værløse, Denmark
| | - Henrik F Hansen
- Roche Innovation Center Copenhagen, Fremtidsvej 3, 2970, Denmark
| | - Troels Koch
- Roche Innovation Center Copenhagen, Fremtidsvej 3, 2970, Denmark
| |
Collapse
|
137
|
Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S, Nguyen CH, Pedersen EB, Jørgensen PT, Wengel J, Nilsson L, Smith CIE, Zain R. LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci Rep 2017; 7:11043. [PMID: 28887512 PMCID: PMC5591256 DOI: 10.1038/s41598-017-09147-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
The anti-gene strategy is based on sequence-specific recognition of double-strand DNA by triplex forming (TFOs) or DNA strand invading oligonucleotides to modulate gene expression. To be efficient, the oligonucleotides (ONs) should target DNA selectively, with high affinity. Here we combined hybridization analysis and electrophoretic mobility shift assay with molecular dynamics (MD) simulations to better understand the underlying structural features of modified ONs in stabilizing duplex- and triplex structures. Particularly, we investigated the role played by the position and number of locked nucleic acid (LNA) substitutions in the ON when targeting a c-MYC or FXN (Frataxin) sequence. We found that LNA-containing single strand TFOs are conformationally pre-organized for major groove binding. Reduced content of LNA at consecutive positions at the 3'-end of a TFO destabilizes the triplex structure, whereas the presence of Twisted Intercalating Nucleic Acid (TINA) at the 3'-end of the TFO increases the rate and extent of triplex formation. A triplex-specific intercalating benzoquinoquinoxaline (BQQ) compound highly stabilizes LNA-containing triplex structures. Moreover, LNA-substitution in the duplex pyrimidine strand alters the double helix structure, affecting x-displacement, slide and twist favoring triplex formation through enhanced TFO major groove accommodation. Collectively, these findings should facilitate the design of potent anti-gene ONs.
Collapse
Affiliation(s)
- Y Vladimir Pabon-Martinez
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Sylvain Geny
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Chi-Hung Nguyen
- Institut Curie, PSL Research University, UMR 9187-U 1196, CNRS-Institut Curie, INSERM, Centre Universitaire, Orsay, France
| | - Erik B Pedersen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Per T Jørgensen
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Huddinge, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86, Huddinge, Stockholm, Sweden.
- Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
138
|
Pasi M, Zakrzewska K, Maddocks JH, Lavery R. Analyzing DNA curvature and its impact on the ionic environment: application to molecular dynamics simulations of minicircles. Nucleic Acids Res 2017; 45:4269-4277. [PMID: 28180333 PMCID: PMC5397150 DOI: 10.1093/nar/gkx092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
We propose a method for analyzing the magnitude and direction of curvature within nucleic acids, based on the curvilinear helical axis calculated by Curves+. The method is applied to analyzing curvature within minicircles constructed with varying degrees of over- or under-twisting. Using the molecular dynamics trajectories of three different minicircles, we are able to quantify how curvature varies locally both in space and in time. We also analyze how curvature influences the local environment of the minicircles, notably via increased heterogeneity in the ionic distributions surrounding the double helix. The approach we propose has been integrated into Curves+ and the utilities Canal (time trajectory analysis) and Canion (environmental analysis) and can be used to study a wide variety of static and dynamic structural data on nucleic acids.
Collapse
Affiliation(s)
- Marco Pasi
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, France
| | - Krystyna Zakrzewska
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, France
| | - John H Maddocks
- Section de Mathématiques, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Richard Lavery
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon, France
| |
Collapse
|
139
|
Kundu S, Mukherjee S, Bhattacharyya D. Melting of polymeric DNA double helix at elevated temperature: a molecular dynamics approach. J Mol Model 2017; 23:226. [DOI: 10.1007/s00894-017-3398-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/25/2017] [Indexed: 01/27/2023]
|
140
|
Hanson RM, Lu XJ. DSSR-enhanced visualization of nucleic acid structures in Jmol. Nucleic Acids Res 2017; 45:W528-W533. [PMID: 28472503 PMCID: PMC5570162 DOI: 10.1093/nar/gkx365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Sophisticated and interactive visualizations are essential for making sense of the intricate 3D structures of macromolecules. For proteins, secondary structural components are routinely featured in molecular graphics visualizations. However, the field of RNA structural bioinformatics is still lagging behind; for example, current molecular graphics tools lack built-in support even for base pairs, double helices, or hairpin loops. DSSR (Dissecting the Spatial Structure of RNA) is an integrated and automated command-line tool for the analysis and annotation of RNA tertiary structures. It calculates a comprehensive and unique set of features for characterizing RNA, as well as DNA structures. Jmol is a widely used, open-source Java viewer for 3D structures, with a powerful scripting language. JSmol, its reincarnation based on native JavaScript, has a predominant position in the post Java-applet era for web-based visualization of molecular structures. The DSSR-Jmol integration presented here makes salient features of DSSR readily accessible, either via the Java-based Jmol application itself, or its HTML5-based equivalent, JSmol. The DSSR web service accepts 3D coordinate files (in mmCIF or PDB format) initiated from a Jmol or JSmol session and returns DSSR-derived structural features in JSON format. This seamless combination of DSSR and Jmol/JSmol brings the molecular graphics of 3D RNA structures to a similar level as that for proteins, and enables a much deeper analysis of structural characteristics. It fills a gap in RNA structural bioinformatics, and is freely accessible (via the Jmol application or the JSmol-based website http://jmol.x3dna.org).
Collapse
Affiliation(s)
- Robert M. Hanson
- Department of Chemistry, St. Olaf College, Northfield, MN 55057, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
141
|
A metallo-DNA nanowire with uninterrupted one-dimensional silver array. Nat Chem 2017; 9:956-960. [DOI: 10.1038/nchem.2808] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
|
142
|
Dršata T, Réblová K, Beššeová I, Šponer J, Lankaš F. rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif. J Chem Theory Comput 2017; 13:3359-3371. [DOI: 10.1021/acs.jctc.7b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomáš Dršata
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Filip Lankaš
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Laboratory
of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
143
|
Uusitalo JJ, Ingólfsson HI, Marrink SJ, Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys J 2017. [PMID: 28633759 DOI: 10.1016/j.bpj.2017.05.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain molecular dynamics simulations are a key tool to that end. Here, we have extended the coarse-grain Martini force field to include RNA after our recent extension to DNA. In the same way DNA was modeled, the tertiary structure of RNA is constrained using an elastic network. This model, therefore, is not designed for applications involving RNA folding but rather offers a stable RNA structure for studying RNA interactions with other (bio)molecules. The RNA model is compatible with all other Martini models and opens the way to large-scale explicit-solvent molecular dynamics simulations of complex systems involving RNA.
Collapse
Affiliation(s)
- Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| | - Ignacio Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
144
|
Abstract
The energetics of B-DNA bending toward the major and minor grooves were quantified by free energy simulations at four different KCl concentrations. Increased [KCl] led to more flexible DNA, with persistence lengths that agreed well with experimental values. At all salt concentrations, major groove bending was preferred, although preferences for major and minor groove bending were similar for the A-tract containing sequence. Since the phosphate repulsions and DNA internal energy favored minor groove bending, the preference for major groove bending was thought to originate from differences in solvation. Water in the minor groove was tighter bound than water in the major groove, and harder to displace than major groove water, which favored the compression of the major groove upon bending. Higher [KCl] decreased the persistence length for both major and minor groove bending but did not greatly affect the free energy spacing between the minor and major groove bending curves. For sequences without A-tracts, salt affected major and minor bending to nearly the same degree, and did not change the preference for major groove bending. For the A-tract containing sequence, an increase in salt concentration decreased the already small energetic difference between major and minor groove bending. Since salts did not significantly affect the relative differences in bending energetics and hydration, it is likely that the increased bending flexibilities upon salt increase are simply due to screening.
Collapse
Affiliation(s)
- Ning Ma
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
145
|
Hartono Y, Pabon-Martinez YV, Uyar A, Wengel J, Lundin KE, Zain R, Smith CIE, Nilsson L, Villa A. Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides: In Silico and in Vitro Studies. ACS OMEGA 2017; 2:2165-2177. [PMID: 30023656 PMCID: PMC6044803 DOI: 10.1021/acsomega.7b00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 06/08/2023]
Abstract
Pseudoisocytidine (ΨC) is a synthetic cytidine analogue that can target DNA duplex to form parallel triplex at neutral pH. Pseudoisocytidine has mainly two tautomers, of which only one is favorable for triplex formation. In this study, we investigated the effect of sequence on ΨC tautomerization using λ-dynamics simulation, which takes into account transitions between states. We also performed in vitro binding experiments with sequences containing ΨC and furthermore characterized the structure of the formed triplex using molecular dynamics simulation. We found that the neighboring methylated or protonated cytidine promotes the formation of the favorable tautomer, whereas the neighboring thymine or locked nucleic acid has a poor effect, and consecutive ΨC has a negative influence. The deleterious effect of consecutive ΨC in a triplex formation was confirmed using in vitro binding experiments. Our findings contribute to improving the design of ΨC-containing triplex-forming oligonucleotides directed to target G-rich DNA sequences.
Collapse
Affiliation(s)
- Yossa
Dwi Hartono
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
- Division
of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Y. Vladimir Pabon-Martinez
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Arzu Uyar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Jesper Wengel
- Department
of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, 5230 Odense M, Denmark
| | - Karin E. Lundin
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Rula Zain
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
- Department
of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Lennart Nilsson
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| |
Collapse
|
146
|
Halder A, Roy R, Bhattacharyya D, Mitra A. How Does Mg 2+ Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair. Biophys J 2017; 113:277-289. [PMID: 28506525 DOI: 10.1016/j.bpj.2017.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/30/2022] Open
Abstract
Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg2+, accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg2+. This, in conjunction with recently raised doubts regarding some of the Mg2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg2+ binding modes for this basepair. Our detailed investigation of Mg2+-bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg2+ ions in shaping RNA structure, folding and function.
Collapse
Affiliation(s)
- Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, India
| | - Rohit Roy
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, India
| | | | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, India.
| |
Collapse
|
147
|
Karthik S, Thirugnanasambandam A, Mandal PK, Gautham N. Crystal structure of d(CCGGGGTACCCCGG) 2 at 1.4 Å resolution. Acta Crystallogr F Struct Biol Commun 2017; 73:259-265. [PMID: 28471357 PMCID: PMC5417315 DOI: 10.1107/s2053230x17004770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/27/2017] [Indexed: 11/10/2022] Open
Abstract
The X-ray crystal structure of the DNA tetradecamer sequence d(CCGGGGTACCCCGG)2 is reported at 1.4 Å resolution in the tetragonal space group P41212. The sequence was designed to fold as a four-way junction. However, it forms an A-type double helix in the presence of barium chloride. The metal ion could not be identified in the electron-density map. The crystallographic asymmetric unit consists of one A-type double helix with 12 base pairs per turn, in contrast to 11 base pairs per turn for canonical A-DNA. A large number of solvent molecules have been identified in both the grooves of the duplex and around the backbone phosphate groups.
Collapse
Affiliation(s)
- Selvam Karthik
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Pradeep Kumar Mandal
- Institut Européen de Chimie et Biologie (IECB), 2 Rue Robert Escarpit, 33607 Pessac CEDEX, France
| | - Namasivayam Gautham
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| |
Collapse
|
148
|
Molt RW, Georgiadis MM, Richards NG. Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 μs molecular dynamics simulations. Nucleic Acids Res 2017; 45:3643-3653. [PMID: 28334863 PMCID: PMC5397145 DOI: 10.1093/nar/gkx144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/12/2017] [Accepted: 02/24/2017] [Indexed: 12/25/2022] Open
Abstract
Z Little is known about the influence of multiple consecutive 'non-standard' ( , 6-amino-5-nitro-2(1H)-pyridone, and , 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one) nucleobase pairs on the structural parameters of duplex DNA. nucleobase pairs follow standard rules for Watson-Crick base pairing but have rearranged hydrogen bonding donor and acceptor groups. Using the X-ray crystal structure as a starting point, we have modeled the motions of a DNA duplex built from a self-complementary oligonucleotide (5΄-CTTATPPPZZZATAAG-3΄) in water over a period of 50 μs and calculated DNA local parameters, step parameters, helix parameters, and major/minor groove widths to examine how the presence of multiple, consecutive nucleobase pairs might impact helical structure. In these simulations, the -containing DNA duplex exhibits a significantly wider major groove and greater average values of stagger, slide, rise, twist and h-rise than observed for a 'control' oligonucleotide in which nucleobase pairs are replaced by . The molecular origins of these structural changes are likely associated with at least two differences between and . First, the electrostatic properties of differ from in terms of density distribution and dipole moment. Second, differences are seen in the base stacking of pairs in dinucleotide steps, arising from energetically favorable stacking of the nitro group in with π-electrons of the adjacent base.
Collapse
Affiliation(s)
- Robert W. Molt
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, FL 32940, USA
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | |
Collapse
|
149
|
Karthik S, Thirugnanasambandam A, Mandal PK, Gautham N. Comparison of X-ray crystal structures of a tetradecamer sequence d(CCCGGGTACCCGGG) 2 at 1.7 Å resolution. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:343-354. [PMID: 28387634 DOI: 10.1080/15257770.2017.1287378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We present here a comparison of three different X-ray crystal structures of DNA tetradecamer sequence d(CCCGGGTACCCGGG)2 all at about 1.7 Å resolution. The sequence was designed as an attempt to form a DNA four-way junction with A-type helical arms. However, in the presence of zinc, magnesium, and in the absence of any metal ion, it does not take up the junction structure, but forms an A-type double helix. This allowed us to study possible conformational changes in the double helix due to the presence of metal ions. Upon addition of the zinc ion, there is a change in the space group from P41212 to P41. The overall conformation of the duplex remains the same. There are small changes in the interaction of the metal ions with the DNA. In the zinc-bound structure, there are two zinc ions that show direct interaction with the N7 atoms of terminal G13 bases at either end of the molecule. There are small changes in the interhelical contacts. The consequence of these differences is to break some of the symmetry and change the space group.
Collapse
Affiliation(s)
- S Karthik
- a CAS in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai , Tamil Nadu , India
| | - A Thirugnanasambandam
- a CAS in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai , Tamil Nadu , India
| | - P K Mandal
- a CAS in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai , Tamil Nadu , India
| | - N Gautham
- a CAS in Crystallography and Biophysics , University of Madras , Guindy Campus, Chennai , Tamil Nadu , India
| |
Collapse
|
150
|
Cortini R, Cheng X, Smith JC. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:084002. [PMID: 28092632 DOI: 10.1088/1361-648x/aa4e68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of [Formula: see text]. Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.
Collapse
Affiliation(s)
- Ruggero Cortini
- Chemistry Department, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Sorbonne Université, 4 place Jussieu, 75252 Cedex 05, Paris, France. Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | |
Collapse
|