101
|
Miyakoshi M, Archer JA, Wu CY, Nakai T, Chen SHA. Age-Related Changes in Episodic Processing of Scenes: A Functional Activation and Connectivity Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:4107. [PMID: 37112449 PMCID: PMC10141112 DOI: 10.3390/s23084107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
The posterior-to-anterior shift in aging (PASA) effect is seen as a compensatory model that enables older adults to meet increased cognitive demands to perform comparably as their young counterparts. However, empirical support for the PASA effect investigating age-related changes in the inferior frontal gyrus (IFG), hippocampus, and parahippocampus has yet to be established. 33 older adults and 48 young adults were administered tasks sensitive to novelty and relational processing of indoor/outdoor scenes in a 3-Tesla MRI scanner. Functional activation and connectivity analyses were applied to examine the age-related changes on the IFG, hippocampus, and parahippocampus among low/high-performing older adults and young adults. Significant parahippocampal activation was generally found in both older (high-performing) and young adults for novelty and relational processing of scenes. Younger adults had significantly greater IFG and parahippocampal activation than older adults, and greater parahippocampal activation compared to low-performing older adults for relational processing-providing partial support for the PASA model. Observations of significant functional connectivity within the medial temporal lobe and greater negative left IFG-right hippocampus/parahippocampus functional connectivity for young compared to low-performing older adults for relational processing also supports the PASA effect partially.
Collapse
Affiliation(s)
- Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Gerontechnology, National Center for Geriatrics and Gerontology, Ohbu 474-8511, Aichi, Japan
| | | | - Chiao-Yi Wu
- Centre for Research in Child Development, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | - Toshiharu Nakai
- Department of Gerontechnology, National Center for Geriatrics and Gerontology, Ohbu 474-8511, Aichi, Japan
- Department of Dental Radiology, Graduate School of Dentistry, Osaka University, Suita 565-0871, Osaka, Japan;
- Institute of NeuroImaging & Informatics, Ohbu 474-8511, Aichi, Japan
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore;
- Centre for Research and Development in Learning, Nanyang Technological University, Singapore 637335, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
102
|
Trost W, Hars M, Fernandez N, Herrmann F, Chevalley T, Ferrari S, Gold G, Rizzoli R, Vuilleumier P, Trombetti A. Functional brain changes in sarcopenia: evidence for differential central neural mechanisms in dynapenic older women. Aging Clin Exp Res 2023; 35:1015-1025. [PMID: 37029271 PMCID: PMC10149465 DOI: 10.1007/s40520-023-02391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND The European Working Group on Sarcopenia in Older People (EWGSOP2) recently revised its definition and diagnostic criteria for sarcopenia, placing muscle strength at the forefront. The pathogenesis of dynapenia (or low muscle strength) is still not fully understood, but there is emerging evidence that central neural factors constitute critical determinants. METHODS Our cross-sectional study included 59 community-dwelling older women (mean age 73.1 ± 4.9 years). Participants underwent detailed skeletal muscle assessments for muscle strength defined by handgrip strength and chair rise time measurements using the recently published EWGSOP2 cut-off points. Functional magnetic resonance imaging (fMRI) was assessed during the performance of a cognitive dual-task paradigm, consisting of a baseline, two single-tasks (motor and arithmetic) and one dual-task (motor and arithmetic combined). RESULTS Forty-seven percent (28/59) of participants were classified as dynapenic. fMRI results revealed a differential recruitment of motor circuits in the brain during the dual-task condition in dynapenic as compared with non-dynapenic participants. In particular, while the brain activity during the single-tasks did not differ between the two groups, only during the dual-task non-dynapenic participants showed significant increased activation in dorsolateral prefrontal and premotor cortex, and in supplementary motor area as compared to dynapenic participants. CONCLUSION Our results point to a dysfunctional involvement of brain networks associated with motor control in dynapenia in a multi-tasking paradigm. A better knowledge of the link between dynapenia and brain functions could provide new impulses in the diagnosis and interventions for sarcopenia.
Collapse
Affiliation(s)
- Wiebke Trost
- Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva 14, Switzerland
- Laboratory for Behavioural Neurology and Imaging of Cognition, Campus Biotech, University of Geneva, Geneva, Switzerland
| | - Mélany Hars
- Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva 14, Switzerland
- Division of Geriatrics and Rehabilitation, Department of Rehabilitation and Geriatrics, Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Natalia Fernandez
- Laboratory for Behavioural Neurology and Imaging of Cognition, Campus Biotech, University of Geneva, Geneva, Switzerland
| | - François Herrmann
- Division of Geriatrics and Rehabilitation, Department of Rehabilitation and Geriatrics, Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Thierry Chevalley
- Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva 14, Switzerland
| | - Serge Ferrari
- Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva 14, Switzerland
| | - Gabriel Gold
- Division of Geriatrics and Rehabilitation, Department of Rehabilitation and Geriatrics, Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - René Rizzoli
- Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva 14, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioural Neurology and Imaging of Cognition, Campus Biotech, University of Geneva, Geneva, Switzerland
| | - Andrea Trombetti
- Division of Bone Diseases, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva 14, Switzerland.
- Division of Geriatrics and Rehabilitation, Department of Rehabilitation and Geriatrics, Faculty of Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
103
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
104
|
Age-related differences in food-specific inhibitory control: Electrophysiological and behavioral evidence in healthy aging. Appetite 2023; 183:106478. [PMID: 36746027 DOI: 10.1016/j.appet.2023.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
The number of older adults in the United States is estimated to nearly double from 52 million to 95 million by 2060. Approximately 80-85% of older adults are diagnosed with a chronic health condition. Many of these chronic health conditions are influenced by diet and physical activity, suggesting improved diet and eating behaviors could improve health-related outcomes. One factor that might improve dietary habits in older adults is food-related inhibitory control. We tested whether food-related inhibitory control, as measured via behavioral data (response time, accuracy) and scalp-recorded event-related potentials (ERP; N2 and P3 components), differed between younger and older adults over age 55. Fifty-nine older adults (31 females [52.5%], Mage = 64, SDage = 7.5) and 114 younger adults (82 females [71.9%], Mage = 20.8) completed two go/no-go tasks, one inhibiting to high-calorie stimuli and one inhibiting to low-calorie stimuli, while electroencephalogram (EEG) data were recorded. Older adults had slower overall response times than younger adults, but this was not specific to either food task. There was not a significant difference in accuracy between younger and older adults, but both groups' accuracy and response times were significantly better during the high-calorie task than the low-calorie task. For both the N2 and P3 ERP components, younger adults had larger no-go ERP amplitudes than older adults, but this effect was not food-specific, reflecting overall generalized lower inhibitory control processing in older adults. P3 amplitude for the younger adults demonstrated a specific food-related effect (greater P3 amplitude for high-calorie no-go than low-calorie no-go) that was not present for older adults. Findings support previous research demonstrating age-related differences in inhibitory control though those differences may not be specific to inhibiting towards food.
Collapse
|
105
|
Semantic cognition in healthy ageing: Neural signatures of representation and control mechanisms in naming typical and atypical objects. Neuropsychologia 2023; 184:108545. [PMID: 36934809 DOI: 10.1016/j.neuropsychologia.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/19/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Effective use of conceptual knowledge engages semantic representation and control processes to access information in a goal-driven manner. Neuropsychological findings of patients presenting either degraded knowledge (e.g., semantic dementia) or disrupted control (e.g., semantic aphasia) converge with neuroimaging evidence from young adults, and delineate the neural segregation of representation and control mechanisms. However, there is still scarce research on the neurofunctional underpinnings of such mechanisms in healthy ageing. To address this, we conducted an fMRI study, wherein young and older adults performed a covert naming task of typical and atypical objects. Three main age-related differences were found. As shown by age group and typicality interactions, older adults exhibited overactivation during naming of atypical (e.g., avocado) relative to typical concepts in brain regions associated to semantic representation, including anterior and medial portions of left temporal lobe (respectively, ATL and MTG). This provides evidence for the reorganization of neural activity in these brain regions contingent to the enrichment of semantic repositories in older ages. The medial orbitofrontal gyrus was also overactivated, indicating that the processing of atypical concepts (relative to typical items) taxes additional control resources in the elderly. Increased activation in the inferior frontal gyrus (IFG) was observed in naming typical items (relative to atypical ones), but only for young adults. This suggests that naming typical items (e.g., strawberry) taxes more on control processes in younger ages, presumably due to the semantic competition set by other items that share multiple features with the target (e.g., raspberry, blackberry, cherry). Together, these results reveal the dynamic nature of semantic control interplaying with conceptual representations as people grow older, by indicating that distinct neural bases uphold semantic performance from young to older ages. These findings may be explained by neural compensation mechanisms coming into play to support neurocognitive changes in healthy ageing.
Collapse
|
106
|
Long D, Zhang M, Yu J, Zhu Q, Chen F, Li F. Intelligent diagnosis of major depression disease based on multi-layer brain network. Front Neurosci 2023; 17:1126865. [PMID: 37008226 PMCID: PMC10060849 DOI: 10.3389/fnins.2023.1126865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionResting-state brain network with physiological and pathological basis has always been the ideal data for intelligent diagnosis of major depression disease (MDD). Brain networks are divided into low-order networks and high-order networks. Most of the studies only use a single-level network to classify while ignoring that the brain works cooperatively with different levels of networks. This study hopes to find out whether varying levels of networks will provide complementary information in the process of intelligent diagnosis and what impact will be made on the final classification results by combining the characteristics of different networks.MethodsOur data are from the REST-meta-MDD project. After the screening, 1,160 subjects from ten sites were included in this study (597 MDD and 563 normal controls). For each subject, we constructed three different levels of networks according to the brain atlas: the traditional low-order network based on Pearson’s correlation (low-order functional connectivity, LOFC), the high-order network based on topographical profile similarity (topographical information-based high-order functional connectivity, tHOFC) and the associated network between them (aHOFC). Two sample t-test is used for feature selection, and then features from different sources are fused. Finally, the classifier is trained by a multi-layer perceptron or support vector machine. The performance of the classifier was evaluated using the leave-one-site cross-validation method.ResultsThe classification ability of LOFC is the highest among the three networks. The classification accuracy of the three networks combined is similar to the LOFC network. These are seven features chosen in all networks. In the aHOFC classification, six features were selected in each round but not seen in other classifications. In the tHOFC classification, five features were selected in each round but were unique. These new features have crucial pathological significance and are essential supplements to LOFC.ConclusionA high-order network can provide auxiliary information for low-order networks but cannot improve classification accuracy.
Collapse
Affiliation(s)
- Dan Long
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengda Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Jing Yu
- The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qi Zhu
- The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Fengnong Chen
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Fangyin Li
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Fangyin Li,
| |
Collapse
|
107
|
Depestele S, van Dun K, Verstraelen S, Van Hoornweder S, Meesen R. Midfrontal Theta and Cognitive Control During Interlimb Coordination Across the Adult Lifespan. J Mot Behav 2023; 55:278-288. [PMID: 36863697 DOI: 10.1080/00222895.2023.2183178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Interlimb coordination is required for adequate execution of most daily life activities. Yet, aging negatively affects interlimb coordination, impacting the quality of life in older people. Therefore, disentangling the underlying age-related neural mechanisms is of utmost importance. Here, we investigated neurophysiological processes of an interlimb reaction time task, including both simple and complex coordination modes. Midfrontal theta power, measured using electroencephalography (EEG), was analyzed as a marker for cognitive control. In total, 82 healthy adults participated, with 27 younger, 26 middle-aged, and 29 older adults. On a behavioral level, reaction time increased across the adult lifespan, and error rate was higher in older adults. Notably, aging disproportionately affected reaction times in the complex coordination modes, with larger reaction time increases from simple to complex movements than in younger adults, starting already at middle age. On the neurophysiological level, EEG showed that only younger adults had significantly increased levels of midfrontal theta power during complex relative to simple coordination modes, while no significant differences were found between simple and complex movements in middle-aged and older adults. The absence of this theta power upregulation with regard to movement complexity with increasing age might reflect a premature saturation of the available mental resources.
Collapse
Affiliation(s)
- Siel Depestele
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Agoralaan, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Kim van Dun
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Agoralaan, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Agoralaan, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Sybren Van Hoornweder
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Agoralaan, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Raf Meesen
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Agoralaan, UHasselt-Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
108
|
Depestele S, van Dun K, Verstraelen S, Ross V, Van Hoornweder S, Brijs K, Brijs T, Getzmann S, Meesen R. Age-related changes in midfrontal theta activity during steering control: A driving simulator study. Neurobiol Aging 2023; 123:145-153. [PMID: 36572595 DOI: 10.1016/j.neurobiolaging.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Motor control, a ubiquitous part of driving, requires increased cognitive controlled processing in older adults relative to younger adults. However, the influence of aging on motor-related neural mechanisms in the context of driving has rarely been studied. The present study aimed to identify age-related changes in cognitive control and attention allocation during a simulated steering task, using electroencephalography. Midfrontal theta, a marker for cognitive control, and posterior alpha power, a marker for attention allocation, were measured in a total of 26 young, 25 middle-aged, and 28 older adults. By adapting driving speed, the difficulty level of this steering task was individualized for each participant. Results show age-related changes in midfrontal theta power, but not in posterior alpha power, despite similar steering accuracy across age groups. Specifically, only younger and, to a lesser extent, middle-aged adults exhibited increased theta power while driving through more demanding curved segments relative to straight segments. In contrast, theta power upregulation was absent in older adults, suggesting a saturation of cognitive resources while driving, possibly due to a limitation in resource capacity, or less automatic motor-related neural processing.
Collapse
Affiliation(s)
- Siel Depestele
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.
| | - Kim van Dun
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Veerle Ross
- UHasselt-Hasselt University, School of Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium
| | - Sybren Van Hoornweder
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Kris Brijs
- UHasselt-Hasselt University, School of Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium
| | - Tom Brijs
- UHasselt-Hasselt University, School of Transportation Sciences, Transportation Research Institute (IMOB), Hasselt, Belgium
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Raf Meesen
- UHasselt-Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| |
Collapse
|
109
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529095. [PMID: 36824737 PMCID: PMC9949134 DOI: 10.1101/2023.02.18.529095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. The current study used a ketogenic diet (KD) intervention, which reduces the brain’s reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer 1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers. The KD did not lead to any significant changes in CA3 activity. These observations suggest that the KD does not restore neuron activation patterns in aged animals, but rather the availability of ketone bodies in the frontal cortices may permit the engagement of compensatory mechanisms that produce better cognitive outcomes. Significance Statement This study extends understanding of how a ketogenic diet (KD) intervention may improve cognitive function in older adults. Young and aged rats were given 3 months of a KD or a calorie-match control diet and then expression of the immediate-early genes Arc and Homer 1a were measured to examine neural ensemble dynamics during cognitive testing. The KD diet was associated with increased activation of neurons in the superficial layers of the PL, but there were no changes in CA3. These observations are significant because they suggest that compensatory mechanisms for improving cognition are engaged in the presence of elevated ketone bodies. This metabolic shift away from glycolysis can meet the energetic needs of the frontal cortices when glucose utilization is compromised.
Collapse
|
110
|
Dinius CJ, Pocknell CE, Caffrey MP, Roche RAP. Cognitive interventions for memory and psychological well-being in aging and dementias. Front Psychol 2023; 14:1070012. [PMID: 36818134 PMCID: PMC9932670 DOI: 10.3389/fpsyg.2023.1070012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
The human lifespan has expanded drastically in the last few centuries, due to improvements in sanitation, medicine, and nutrition, but with this increase in longevity comes higher rates of cognitive pathology such as mild cognitive impairment (MCI) and dementia; the latter is estimated to reach more than 75 million people by 2030. Pathology risk is related to measures of executive function, lifestyle factors (e.g., education, occupation, and leisure activities), and cognitive reserve. One way of building cognitive reserve may be to structure the environment to encourage lifelong engagement and learning, and since a pharmacological "cure" for dementia remains elusive, non-pharmacological approaches such as physical activity, social engagement, and cognitive stimulation are becoming increasingly essential to preserving and protecting brain health. Here, we describe our recent research into Reminiscence Therapy (RT) to promote cognitive and psychological function in old age and early dementia. We review the Recall Initiative, which involved brain imaging and behavioral indices of memory pre- and post-RT. We also report results from a pilot study-AIM WARM-in which RT was combined with physical activity, specifically walking, for early-stage dementia. Finally, we outline our future directions for tailored reminiscence interventions in combination with other activities (e.g., yoga and meditation) for different groups, namely early Alzheimer's disease, Semantic Dementia, and older individuals in the prison system.
Collapse
|
111
|
Kraft JN, Hausman HK, Hardcastle C, Albizu A, O'Shea A, Evangelista ND, Boutzoukas EM, Van Etten EJ, Bharadwaj PK, Song H, Smith SG, DeKosky S, Hishaw GA, Wu S, Marsiske M, Cohen R, Alexander GE, Porges E, Woods AJ. Task-based functional connectivity of the Useful Field of View (UFOV) fMRI task. GeroScience 2023; 45:293-309. [PMID: 35948860 PMCID: PMC9886714 DOI: 10.1007/s11357-022-00632-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Declines in processing speed performance occur in aging and are a critical marker of functional independence in older adults. Numerous studies suggest that Useful Field of View (UFOV) training may ameliorate cognitive decline in older adults. Despite its efficacy, little is known about the neural correlates of this task. The current study is the first to investigate the coherence of functional connectivity during UFOV task completion. A total of 336 participants completed the UFOV task while undergoing task-based functional magnetic resonance imaging (fMRI). Ten spherical regions of interest (ROIs), selected a priori, were created based on regions with the greatest peak BOLD activation patterns in the UFOV fMRI task and regions that have been shown to significantly relate to UFOV fMRI task performance. We used a weighted ROI-to-ROI connectivity analysis to model task-specific functional connectivity strength between these a priori selected ROIs. We found that our UFOV fMRI network was functionally connected during task performance and was significantly associated to UFOV fMRI task performance. Within-network connectivity of the UFOV fMRI network showed comparable or better predictive power in accounting for UFOV accuracy compared to 7 resting state networks, delineated by Yeo and colleagues. Finally, we demonstrate that the within-network connectivity of UFOV fMRI task accounted for scores on a measure of "near transfer", the Double Decision task, better than the aforementioned resting state networks. Our data elucidate functional connectivity patterns of the UFOV fMRI task. This may assist in future targeted interventions that aim to improve synchronicity within the UFOV fMRI network.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hanna K Hausman
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Cheshire Hardcastle
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Nicole D Evangelista
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Emily J Van Etten
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Pradyumna K Bharadwaj
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Hyun Song
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Samantha G Smith
- Brain Imaging, Behavior and Aging Laboratory, Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Gainesville, FL, USA
| | - Steven DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, USA
| | - Samuel Wu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Gene E Alexander
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Consortium, Tucson, AZ, USA
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
112
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre JA, Yushkevich PA, Wolk DA. Aging and Alzheimer's Disease Have Dissociable Effects on Medial Temporal Lobe Connectivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284749. [PMID: 36711782 PMCID: PMC9882834 DOI: 10.1101/2023.01.18.23284749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.
Collapse
|
113
|
Ostlund I, Von Gunten M, Smith C, Edwards JG. Chronic Δ9-tetrahydrocannabinol impact on plasticity, and differential activation requirement for CB1-dependent long-term depression in ventral tegmental area GABA neurons in adult versus young mice. Front Neurosci 2023; 16:1067493. [PMID: 36699526 PMCID: PMC9869137 DOI: 10.3389/fnins.2022.1067493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The ventral tegmental area (VTA) mediates incentive salience and reward prediction error through dopamine (DA) neurons that are regulated by local VTA GABA neurons. In young mice, VTA GABA cells exhibit a form of synaptic plasticity known as long-term depression (LTD) that is dependent on cannabinoid 1 (CB1) receptors preceded by metabotropic glutamate receptor 5 (mGluR5) signaling to induce endocannabinoid production. This LTD was eliminated following chronic (7-10 consecutive days) exposure to the marijuana derived cannabinoid Δ9 -tetrahydrocannabinol (THC). We now examine the mechanism behind THC-induced elimination of LTD in adolescents as well as plasticity induction ability in adult versus young male and female mice using whole-cell electrophysiology experiments of VTA GABA cells. Chronic THC injections in adolescents resulted in a loss of CB1 agonist-mediated depression, illustrating chronic THC likely desensitizes or removes synaptic CB1. We noted that seven days withdrawal from chronic THC restored LTD and CB1 agonist-induced depression, suggesting reversibility of THC-induced changes. Adult mice continue to express functional mGluR5 and CB1, but require a doubling of the synaptic stimulation compared to young mice to induce LTD, suggesting a quantitative difference in CB1-dependent plasticity between young and adult mice. One potential rationale for this difference is changes in AMPA and NMDA glutamate receptors. Indeed, AMPA/NMDA ratios were increased in in adults compared to young mice. Lastly, we performed quantitative reverse-transcription PCR and identified that CB1, DAGLα, and GluA1 levels increased following chronic THC exposure. Collectively, our data demonstrate the first age-dependent GABA neuron plasticity in the VTA, which could have implications for decreased THC dependence capacity in adults, as well as the mechanism behind chronic THC-induced synaptic alterations in young mice.
Collapse
Affiliation(s)
- Isaac Ostlund
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| | | | - Calvin Smith
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Jeffrey G. Edwards
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| |
Collapse
|
114
|
Yang Y, Wang D, Hou W, Li H. Cognitive Decline Associated with Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:25-46. [PMID: 37418204 DOI: 10.1007/978-981-99-1627-6_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline is one of the most distinct signs of aging, and age-related cognitive decline is a heterogeneous issue varying in different cognitive domains and has significant differences among older adults. Identifying characteristics of cognitive aging is the basis of cognitive disease for early-detection and healthy aging promotion. In the current chapter, age-related decline of main cognitive domains, including sensory perception, memory, attention, executive function, language, reasoning, and space navigation ability are introduced respectively. From these aspects of cognition, we focus on the age-related effects, age-related cognitive diseases, and possible mechanisms of cognitive aging.
Collapse
Affiliation(s)
- Yiru Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Wenjie Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - He Li
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
115
|
Jockwitz C, Krämer C, Stumme J, Dellani P, Moebus S, Bittner N, Caspers S. Characterization of the angular gyrus in an older adult population: a multimodal multilevel approach. Brain Struct Funct 2023; 228:83-102. [PMID: 35904594 DOI: 10.1007/s00429-022-02529-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/26/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) has been associated with multiple cognitive functions, such as language, spatial and memory functions. Since the AG is thought to be a cross-modal hub region suffering from significant age-related structural atrophy, it may also play a key role in age-related cognitive decline. However, the exact relation between structural atrophy of the AG and cognitive decline in older adults is not fully understood, which may be related to two aspects: First, the AG is cytoarchitectonically divided into two areas, PGa and PGp, potentially sub-serving different cognitive functions. Second, the older adult population is characterized by high between-subjects variability which requires targeting individual phenomena during the aging process. We therefore performed a multimodal (gray matter volume [GMV], resting-state functional connectivity [RSFC] and structural connectivity [SC]) characterization of AG subdivisions PGa and PGp in a large older adult population, together with relations to age, cognition and lifestyle on the group level. Afterwards, we switched the perspective to the individual, which is especially important when it comes to the assessment of individual patients. The AG can be considered a heterogeneous structure in of the older brain: we found the different AG parts to be associated with different patterns of whole-brain GMV associations as well as their associations with RSFC, and SC patterns. Similarly, differential effects of age, cognition and lifestyle on the GMV of AG subdivisions were observed. This suggests each region to be structurally and functionally differentially involved in the older adult's brain network architecture, which was supported by differential molecular and genetic patterns, derived from the EBRAINS multilevel atlas framework. Importantly, individual profiles deviated considerably from the global conclusion drawn from the group study. Hence, general observations within the older adult population need to be carefully considered, when addressing individual conditions in clinical practice.
Collapse
Affiliation(s)
- Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. .,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Moebus
- Institute of Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Nora Bittner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
116
|
Salzman T, Tobón DP, Perreault H, Farhat F, Fraser S. Using Cognitive-Motor Dual-Tasks and Functional Near-Infrared Spectroscopy to Characterize Older Adults with and without Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1497-1508. [PMID: 37718810 DOI: 10.3233/jad-230469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) refers to individuals who report persistent cognitive deficits but perform normally on neuropsychological tests. Performance may be facilitated by increased prefrontal cortex activation, known as neural compensation, and could be used to differentiate between older adults with and without SCD. OBJECTIVE This cross-sectional pilot study measured changes in the hemodynamic response (ΔHbO2) using functional near-infrared spectroscopy (fNIRS) as well as cognitive and motor performance during fine and gross motor dual-tasks in older adults with and without SCD. METHODS Twenty older adults over 60 years old with (n = 10) and without (n = 10) SCD were recruited. Two experiments were conducted using 1) gross motor walking and 2) fine motor finger tapping tasks that were paired with an n-back working memory task. Participants also completed neuropsychological assessments and questionnaires on everyday functioning. RESULTS Repeated measures ANOVAs demonstrated slower response times during dual-task gait compared to the single task (p = 0.032) and in the non-SCD group, slower gait speed was also observed in the dual compared to single task (p = 0.044). Response times during dual-task finger tapping were slower than the single task (p = 0.049) and greater ΔHbO2 was observed overall in the SCD compared to non-SCD group (p = 0.002). CONCLUSIONS Examining neural and performance outcomes revealed differences between SCD and non-SCD groups and single and dual-tasks. Greater brain activation during dual-task finger tapping may reflect neural compensation, which should be examined in a larger sample and longitudinally to better characterize SCD.
Collapse
Affiliation(s)
- Talia Salzman
- School of Human Kinetics University of Ottawa, Ottawa, Canada
| | - Diana P Tobón
- Electronics and Telecommunications Engineering Department, Universidad de Medellín, Medellín, Colombia
| | - Hannah Perreault
- Interdisciplinary School of Health Sciences University of Ottawa, Ottawa, Canada
| | - Farah Farhat
- Interdisciplinary School of Health Sciences University of Ottawa, Ottawa, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences University of Ottawa, Ottawa, Canada
| |
Collapse
|
117
|
Zhang C, Jing H, Yan H, Li X, Liang J, Zhang Q, Liang W, Ou Y, Peng C, Yu Y, Wu W, Xie G, Guo W. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder. Front Neurosci 2023; 17:1135337. [PMID: 36960171 PMCID: PMC10028102 DOI: 10.3389/fnins.2023.1135337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Objective Prior researches have identified distinct differences in neuroimaging characteristics between healthy controls (HCs) and patients with major depressive disorder (MDD). However, the correlations between homotopic connectivity and clinical characteristics in patients with MDD have yet to be fully understood. The present study aimed to investigate common and unique patterns of homotopic connectivity and their relationships with clinical characteristics in patients with MDD. Methods We recruited 42 patients diagnosed with MDD and 42 HCs. We collected a range of clinical variables, as well as exploratory eye movement (EEM), event-related potentials (ERPs) and resting-state functional magnetic resonance imaging (rs-fMRI) data. The data were analyzed using correlation analysis, support vector machine (SVM), and voxel-mirrored homotopic connectivity (VMHC). Results Compared with HCs, patients with MDD showed decreased VMHC in the insula, and increased VMHC in the cerebellum 8/vermis 8/vermis 9 and superior/middle occipital gyrus. SVM analysis using VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula, or VMHC values in the superior/middle occipital gyrus and insula as inputs can distinguish HCs and patients with MDD with high accuracy, sensitivity, and specificity. Conclusion The study demonstrated that decreased VMHC in the insula and increased VMHC values in the sensory-motor networks may be a distinctive neurobiological feature for patients with MDD, which could potentially serve as imaging markers to discriminate HCs and patients with MDD.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Qinqin Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Can Peng
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Yu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Weibin Wu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
- *Correspondence: Guojun Xie,
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Wenbin Guo,
| |
Collapse
|
118
|
Dang M, Sang F, Long S, Chen Y. The Aging Patterns of Brain Structure, Function, and Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:85-97. [PMID: 37418208 DOI: 10.1007/978-981-99-1627-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The normal aging process brings changes in brain structure, function, and energy metabolism, which are presumed to contribute to the age-related decline in brain function and cognitive ability. This chapter aims to summarize the aging patterns of brain structure, function, and energy metabolism to distinguish them from the pathological changes associated with neurodegenerative diseases and explore protective factors in aging. We first described the normal atrophy pattern of cortical gray matter with age, which is negatively affected by some neurodegenerative diseases and is protected by a healthy lifestyle, such as physical exercise. Next, we summarized the main types of age-related white matter lesions, including white matter atrophy and hyperintensity. Age-related white matter changes mainly occurred in the frontal lobe, and white matter lesions in posterior regions may be an early sign of Alzheimer's disease. In addition, the relationship between brain activity and various cognitive functions during aging was discussed based on electroencephalography, magnetoencephalogram, and functional magnetic resonance imaging. An age-related reduction in occipital activity is coupled with increased frontal activity, which supports the posterior-anterior shift in aging (PASA) theory. Finally, we discussed the relationship between amyloid-β deposition and tau accumulation in the brain, as pathological manifestations of neurodegenerative disease and aging.
Collapse
Affiliation(s)
- Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Shijie Long
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China.
| |
Collapse
|
119
|
Wang Q, Dai W, Xu S, Zhu S, Sui Y, Kan C, Shen Y, Zhu Y, Guo C, Wang T. Brain activation of the PFC during dual-task walking in stroke patients: A systematic review and meta-analysis of functional near-infrared spectroscopy studies. Front Neurosci 2023; 17:1111274. [PMID: 36875661 PMCID: PMC9980909 DOI: 10.3389/fnins.2023.1111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Dual-task walking is a good paradigm to measure the walking ability of stroke patients in daily life. It allows for a better observation of brain activation under dual-task walking to assess the impact of the different tasks on the patient when combining with functional near-infrared spectroscopy (fNIRS). This review aims to summarize the cortical change of the prefrontal cortex (PFC) detected in single-task and dual-task walking in stroke patients. Methods Six databases (Medline, Embase, PubMed, Web of Science, CINAHL, and Cochrane Library) were systematically searched for relevant studies, from inception to August 2022. Studies that measured the brain activation of single-task and dual-task walking in stroke patients were included. The main outcome of the study was PFC activity measured using fNIRS. In addition, a subgroup analysis was also performed for study characteristics based on HbO to analyze the different effects of disease duration and the type of dual task. Results Ten articles were included in the final review, and nine articles were included in the quantitative meta-analysis. The primary analysis showed more significant PFC activation in stroke patients performing dual-task walking than single-task walking (SMD = 0.340, P = 0.02, I 2 = 7.853%, 95% CI = 0.054-0.626). The secondary analysis showed a significant difference in PFC activation when performing dual-task walking and single-task walking in chronic patients (SMD = 0.369, P = 0.038, I 2 = 13.692%, 95% CI = 0.020-0.717), but not in subacute patients (SMD = 0.203, P = 0.419, I 2 = 0%, 95% CI = -0.289-0.696). In addition, performing walking combining serial subtraction (SMD = 0.516, P < 0.001, I 2 = 0%, 95% CI = 0.239-0.794), obstacle crossing (SMD = 0.564, P = 0.002, I 2 = 0%, 95% CI = 0.205-0.903), or a verbal task (SMD = 0.654, P = 0.009, I 2 = 0%, 95% CI = 0.164-1.137) had more PFC activation than single-task walking, while performing the n-back task did not show significant differentiation (SMD = 0.203, P = 0.419, I 2 = 0%, 95% CI = -0.289-0.696). Conclusions Different dual-task paradigms produce different levels of dual-task interference in stroke patients with different disease durations, and it is important to choose the matching dual-task type in relation to the walking ability and cognitive ability of the patient, in order to better improve the assessment and training effects. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022356699.
Collapse
Affiliation(s)
- Qinglei Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjun Dai
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Xu
- Department of Rehabilitation, Changzhou Dean Hospital, Changzhou, China
| | - Shizhe Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Youxin Sui
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Chaojie Kan
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, Changzhou Dean Hospital, Changzhou, China
| | - Ying Shen
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan Guo
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
120
|
Wang D, Tang Z, Zhao J, Lu P. The Overview of Cognitive Aging Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:47-60. [PMID: 37418205 DOI: 10.1007/978-981-99-1627-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
To understand the cause of the age-related decline in cognitive function and its underlying mechanism, the cognitive aging model can provide us with important insights. In this section, we will introduce behavioral and neural models about age-related cognitive changes. Among behavioral models, several aging theories were discussed from the perspectives of educational, biological, and sociological factors, which could explain parts of the aging process. With the development of imaging technology, many studies have discussed the neural mechanism of aging and successively proposed neural models to explain the aging phenomenon. Behavioral models and neural mechanism models supplement each other, gradually unveiling the mystery of cognitive aging.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Zhihao Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Jiawei Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Peng Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China.
| |
Collapse
|
121
|
Park JH. Can the fNIRS-derived neural biomarker better discriminate mild cognitive impairment than a neuropsychological screening test? Front Aging Neurosci 2023; 15:1137283. [PMID: 37113573 PMCID: PMC10126359 DOI: 10.3389/fnagi.2023.1137283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Early detection of mild cognitive impairment (MCI), a pre-clinical stage of Alzheimer's disease (AD), has been highlighted as it could be beneficial to prevent progression to AD. Although prior studies on MCI screening have been conducted, the optimized detection way remain unclear yet. Recently, the potential of biomarker for MCI has gained a lot of attention due to a relatively low discriminant power of clinical screening tools. Methods This study evaluated biomarkers for screening MCI by performing a verbal digit span task (VDST) using functional near-infrared spectroscopy (fNIRS) to measure signals from the prefrontal cortex (PFC) from a group of 84 healthy controls and 52 subjects with MCI. The concentration changes of oxy-hemoglobin (HbO) were explored during the task in subject groups. Results Findings revealed that significant reductions in HbO concentration were observed in the PFC in the MCI group. Specially, the mean of HbO (mHbO) in the left PFC showed the highest discriminant power for MCI, which was higher than that of the Korean version of montreal cognitive assessment (MoCA-K) widely used as a screening tool for MCI. Furthermore, the mHbO in the PFC during the VDST was identified to be significantly correlated to the MoCA-K scores. Discussion These findings shed new light on the feasibility and superiority of fNIRS-derived neural biomarker for screening MCI.
Collapse
|
122
|
Mijalkov M, Veréb D, Jamialahmadi O, Canal-Garcia A, Gómez-Ruiz E, Vidal-Piñeiro D, Romeo S, Volpe G, Pereira JB. Sex differences in multilayer functional network topology over the course of aging in 37543 UK Biobank participants. Netw Neurosci 2023; 7:351-376. [PMID: 37334001 PMCID: PMC10275214 DOI: 10.1162/netn_a_00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Aging is a major risk factor for cardiovascular and neurodegenerative disorders, with considerable societal and economic implications. Healthy aging is accompanied by changes in functional connectivity between and within resting-state functional networks, which have been associated with cognitive decline. However, there is no consensus on the impact of sex on these age-related functional trajectories. Here, we show that multilayer measures provide crucial information on the interaction between sex and age on network topology, allowing for better assessment of cognitive, structural, and cardiovascular risk factors that have been shown to differ between men and women, as well as providing additional insights into the genetic influences on changes in functional connectivity that occur during aging. In a large cross-sectional sample of 37,543 individuals from the UK Biobank cohort, we demonstrate that such multilayer measures that capture the relationship between positive and negative connections are more sensitive to sex-related changes in the whole-brain connectivity patterns and their topological architecture throughout aging, when compared to standard connectivity and topological measures. Our findings indicate that multilayer measures contain previously unknown information on the relationship between sex and age, which opens up new avenues for research into functional brain connectivity in aging.
Collapse
Affiliation(s)
- Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Goteborg University, Goteborg, Sweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Goteborg University, Goteborg, Sweden
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
- Clinical Nutrition Unit, University Magna Graecia, Catanzaro, Italy
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana B. Pereira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
123
|
Van Ruitenbeek P, Santos Monteiro T, Chalavi S, King BR, Cuypers K, Sunaert S, Peeters R, Swinnen SP. Interactions between the aging brain and motor task complexity across the lifespan: balancing brain activity resource demand and supply. Cereb Cortex 2022; 33:6420-6434. [PMID: 36587289 PMCID: PMC10183738 DOI: 10.1093/cercor/bhac514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
The Compensation Related Utilization of Neural Circuits Hypothesis (CRUNCH) proposes a framework for understanding task-related brain activity changes as a function of healthy aging and task complexity. Specifically, it affords the following predictions: (i) all adult age groups display more brain activation with increases in task complexity, (ii) older adults show more brain activation compared with younger adults at low task complexity levels, and (iii) disproportionately increase brain activation with increased task complexity, but (iv) show smaller (or no) increases in brain activation at the highest complexity levels. To test these hypotheses, performance on a bimanual tracking task at 4 complexity levels and associated brain activation were assessed in 3 age groups (20-40, 40-60, and 60-80 years, n = 99). All age groups showed decreased tracking accuracy and increased brain activation with increased task complexity, with larger performance decrements and activation increases in the older age groups. Older adults exhibited increased brain activation at a lower complexity level, but not the predicted failure to further increase brain activity at the highest complexity level. We conclude that older adults show more brain activation than younger adults and preserve the capacity to deploy increased neural resources as a function of task demand.
Collapse
Affiliation(s)
- P Van Ruitenbeek
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - T Santos Monteiro
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - S Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - B R King
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Health & Kinesiology; University of Utah, 250 South 1850 East, Salt Lake City, Utah 84112
| | - K Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Agoralaan Gebouw A, 3590,Diepenbeek, Belgium
| | - S Sunaert
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - R Peeters
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - S P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences,Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| |
Collapse
|
124
|
Stumme J, Krämer C, Miller T, Schreiber J, Caspers S, Jockwitz C. Interrelating differences in structural and functional connectivity in the older adult's brain. Hum Brain Mapp 2022; 43:5543-5561. [PMID: 35916531 PMCID: PMC9704795 DOI: 10.1002/hbm.26030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
In the normal aging process, the functional connectome restructures and shows a shift from more segregated to more integrated brain networks, which manifests itself in highly different cognitive performances in older adults. Underpinnings of this reorganization are not fully understood, but may be related to age-related differences in structural connectivity, the underlying scaffold for information exchange between regions. The structure-function relationship might be a promising factor to understand the neurobiological sources of interindividual cognitive variability, but remain unclear in older adults. Here, we used diffusion weighted and resting-state functional magnetic resonance imaging as well as cognitive performance data of 573 older subjects from the 1000BRAINS cohort (55-85 years, 287 males) and performed a partial least square regression on 400 regional functional and structural connectivity (FC and SC, respectively) estimates comprising seven resting-state networks. Our aim was to identify FC and SC patterns that are, together with cognitive performance, characteristic of the older adults aging process. Results revealed three different aging profiles prevalent in older adults. FC was found to behave differently depending on the severity of age-related SC deteriorations. A functionally highly interconnected system is associated with a structural connectome that shows only minor age-related decreases. Because this connectivity profile was associated with the most severe age-related cognitive decline, a more interconnected FC system in older adults points to a process of dedifferentiation. Thus, functional network integration appears to increase primarily when SC begins to decline, but this does not appear to mitigate the decline in cognitive performance.
Collapse
Affiliation(s)
- Johanna Stumme
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Camilla Krämer
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tatiana Miller
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM‐1), Research Centre JülichJülichGermany
- Institute for Anatomy I, Medical Faculty & University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
125
|
Setton R, Mwilambwe-Tshilobo L, Girn M, Lockrow AW, Baracchini G, Hughes C, Lowe AJ, Cassidy BN, Li J, Luh WM, Bzdok D, Leahy RM, Ge T, Margulies DS, Misic B, Bernhardt BC, Stevens WD, De Brigard F, Kundu P, Turner GR, Spreng RN. Age differences in the functional architecture of the human brain. Cereb Cortex 2022; 33:114-134. [PMID: 35231927 PMCID: PMC9758585 DOI: 10.1093/cercor/bhac056] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.
Collapse
Affiliation(s)
- Roni Setton
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Amber W Lockrow
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Wen-Ming Luh
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
- Mila – Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Richard M Leahy
- Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - W Dale Stevens
- Department of Psychology, York University, Toronto, ON, Canada
| | - Felipe De Brigard
- Department of Philosophy, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Durham, NC, USA
| | - Prantik Kundu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
126
|
Application of Robotic Recovery Techniques to Stroke Survivors-Bibliometric Analysis. J Pers Med 2022; 12:jpm12122066. [PMID: 36556286 PMCID: PMC9788322 DOI: 10.3390/jpm12122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is a significant disability and death cause worldwide and is conventionally defined as a neurological impairment relating to the intense focal harm of the central nervous system (CNS) by vascular causative components. Although the applicability of robotic rehabilitation is a topic with considerable practical significance because it has produced noticeably higher improvements in motor function than regular (physical and occupational) therapy and exempted the therapists, most of the existing bibliometric papers were not focused on stroke survivors. Additionally, a modular system is designed by joining several medical end-effector devices to a single limb segment, which addresses the issue of potentially dangerous pathological compensatory motions. Searching the Web of Science database, 31,930 papers were identified, and using the VOSviewer software and science mapping technology, data were extracted on the most prolific countries, the connections between them, the most valuable journals according to certain factors, their average year of publication, the most influential papers, and the most relevant topical issues (bubble map of term occurrence). The most prolific country in the analyzed field and over the entire period evaluated (1975-2022) is the United States, and the most prolific journal is Neurorehabilitation and Neural Repair, observing a marked increase in the three periods of scientific interest for this field. The present paper assesses numerous scientific publications to provide, through statistical interpretation of the data, a detailed description of the use of robotic rehabilitation in stroke survivors. The findings may aid scientists, academics, and clinicians in establishing precise goals in the optimization of the management of stroke survivors via robotic rehabilitation, but also through easier access to scientifically validated literature.
Collapse
|
127
|
Terracina S, Petrella C, Francati S, Lucarelli M, Barbato C, Minni A, Ralli M, Greco A, Tarani L, Fiore M, Ferraguti G. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int J Mol Sci 2022; 23:15674. [PMID: 36555317 PMCID: PMC9778814 DOI: 10.3390/ijms232415674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
128
|
Burleson AM, Souza PE. Cognitive and linguistic abilities and perceptual restoration of missing speech: Evidence from online assessment. Front Psychol 2022; 13:1059192. [PMID: 36571056 PMCID: PMC9773209 DOI: 10.3389/fpsyg.2022.1059192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
When speech is clear, speech understanding is a relatively simple and automatic process. However, when the acoustic signal is degraded, top-down cognitive and linguistic abilities, such as working memory capacity, lexical knowledge (i.e., vocabulary), inhibitory control, and processing speed can often support speech understanding. This study examined whether listeners aged 22-63 (mean age 42 years) with better cognitive and linguistic abilities would be better able to perceptually restore missing speech information than those with poorer scores. Additionally, the role of context and everyday speech was investigated using high-context, low-context, and realistic speech corpi to explore these effects. Sixty-three adult participants with self-reported normal hearing completed a short cognitive and linguistic battery before listening to sentences interrupted by silent gaps or noise bursts. Results indicated that working memory was the most reliable predictor of perceptual restoration ability, followed by lexical knowledge, and inhibitory control and processing speed. Generally, silent gap conditions were related to and predicted by a broader range of cognitive abilities, whereas noise burst conditions were related to working memory capacity and inhibitory control. These findings suggest that higher-order cognitive and linguistic abilities facilitate the top-down restoration of missing speech information and contribute to individual variability in perceptual restoration.
Collapse
|
129
|
Involvement of executive control in neural capacity related to working memory in aging: an ERP P300 study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1311-1333. [PMID: 35680698 DOI: 10.3758/s13415-022-01018-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/27/2023]
Abstract
Executive control could be involved in neural capacity, which corresponds to the modulation of neural activity with increased task difficulty. Thus, by exploring the P300-an electrophysiological correlate of working memory-we examined the role played by executive control in both the age-related decline in working memory and neural capacity in aging. Event-related potentials (ERPs) were recorded while younger and older participants performed a Sternberg task with two set sizes (2 vs. 6 items), allowing us to calculate a neural capacity index. Participants also completed two control tasks (Stroop and 3-back tests), which were used to calculate a composite executive control index. Results indicated that working memory performance decreased with aging and difficulty. At the neural level, results indicated that the P300 amplitude varied with aging and also with task difficulty. In the low difficulty condition, frontal P300 amplitude was higher for older than for younger adults, whereas in the high difficulty condition, the amplitude of frontal and parietal P300 did not differ between both age groups. Results also suggest that task difficulty led to a decrease in parietal amplitude in both age groups and to an increase in frontal amplitude in younger but not older adults. Both executive control and frontal neural capacity mediated the age-related variance in working memory for older adults. Moreover, executive control mediated the age-related variance in the frontal neural capacity of older adults. Thus, the present study suggests a model for older adults in which executive control deficits with advancing age lead to less efficient frontal recruitment to cope with task difficulty (neural capacity), which in turn has a negative impact on working memory functioning.
Collapse
|
130
|
Yang W, Guo A, Yao H, Yang X, Li Z, Li S, Chen J, Ren Y, Yang J, Wu J, Zhang Z. Effect of aging on audiovisual integration: Comparison of high- and low-intensity conditions in a speech discrimination task. Front Aging Neurosci 2022; 14:1010060. [DOI: 10.3389/fnagi.2022.1010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Audiovisual integration is an essential process that influences speech perception in conversation. However, it is still debated whether older individuals benefit more from audiovisual integration than younger individuals. This ambiguity is likely due to stimulus features, such as stimulus intensity. The purpose of the current study was to explore the effect of aging on audiovisual integration, using event-related potentials (ERPs) at different stimulus intensities. The results showed greater audiovisual integration in older adults at 320–360 ms. Conversely, at 460–500 ms, older adults displayed attenuated audiovisual integration in the frontal, fronto-central, central, and centro-parietal regions compared to younger adults. In addition, we found older adults had greater audiovisual integration at 200–230 ms under the low-intensity condition compared to the high-intensity condition, suggesting inverse effectiveness occurred. However, inverse effectiveness was not found in younger adults. Taken together, the results suggested that there was age-related dissociation in audiovisual integration and inverse effectiveness, indicating that the neural mechanisms underlying audiovisual integration differed between older adults and younger adults.
Collapse
|
131
|
Ikeda N, Yamada S, Yasuda K, Uenishi S, Tamaki A, Ishida T, Tabata M, Tsuji T, Kimoto S, Takahashi S. Structural connectivity between the hippocampus and cortical/subcortical area relates to cognitive impairment in schizophrenia but not in mood disorders. J Neuropsychol 2022. [DOI: 10.1111/jnp.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/10/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuko Ikeda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Wakayama Prefectural Mental Health Care Center Wakayama Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shinya Uenishi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Atsushi Tamaki
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Takuya Ishida
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Michiyo Tabata
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shun Takahashi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Clinical Research and Education Center Asakayama General Hospital Sakai Japan
- Graduate School of Rehabilitation Science Osaka Metropolitan University Habikino Japan
- Department of Psychiatry Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
132
|
Cansino S. Brain connectivity changes associated with episodic recollection decline in aging: A review of fMRI studies. Front Aging Neurosci 2022; 14:1012870. [PMID: 36389073 PMCID: PMC9640923 DOI: 10.3389/fnagi.2022.1012870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
With advancing age, individuals experience a gradual decline in recollection, the ability to retrieve personal experiences accompanied by details, such as temporal and spatial contextual information. Numerous studies have identified several brain regions that exhibit age-related activation differences during recollection tasks. More recently, an increasing number of studies have provided evidence regarding how brain connectivity among the regions supporting recollection contributes to the explanation of recollection deficits in aging. However, brain connectivity evidence has not been examined jointly to provide an integrative view of how these new findings have improved our knowledge of the neurofunctional changes underlying the recollection deficits associated with aging. Therefore, the aim of the present study was to examine functional magnetic resonance imaging (fMRI) studies that employed one of the numerous methods available for analyzing brain connectivity in older adults. Only studies that applied connectivity analysis to data recorded during episodic recollection tasks, either during encoding or retrieval, were assessed. First, the different brain connectivity analysis methods and the information conveyed were briefly described. Then, the brain connectivity findings from the different studies were described and discussed to provide an integrative point of view of how these findings explain the decline in recollection associated with aging. The studies reviewed provide evidence that the hippocampus consistently decreased its connectivity with the parahippocampal gyrus and the posterior cingulate cortex, essential regions of the recollection network, in older adults relative to young adults. In addition, older adults exhibited increased connectivity between the hippocampus and several widespread regions compared to young adults. The increased connectivity was interpreted as brain intensification recourse to overcome recollection decay. Additionally, suggestions for future research in the field are outlined.
Collapse
|
133
|
Chupina I, Sierpowska J, Zheng XY, Dewenter A, Piastra M, Piai V. Time course of right-hemisphere recruitment during word production following left-hemisphere damage: A single case of young stroke. Eur J Neurosci 2022; 56:5235-5259. [PMID: 36028218 PMCID: PMC9826534 DOI: 10.1111/ejn.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Our understanding of post-stroke language function is largely based on older age groups, who show increasing age-related brain pathology and neural reorganisation. To illustrate language outcomes in the young-adult brain, we present the case of J., a 23-year-old woman with chronic aphasia from a left-hemisphere stroke affecting the temporal lobe. Diffusion MRI-based tractography indicated that J.'s language-relevant white-matter structures were severely damaged. Employing magnetoencephalography (MEG), we explored J.'s conceptual preparation and word planning abilities using context-driven and bare picture-naming tasks. These revealed naming deficits, manifesting as word-finding difficulties and semantic paraphasias about half of the time. Naming was however facilitated by semantically constraining lead-in sentences. Altogether, this pattern indicates disrupted lexical-semantic and phonological retrieval abilities. MEG revealed that J.'s conceptual and naming-related neural responses were supported by the right hemisphere, compared to the typical left-lateralised brain response of a matched control. Differential recruitment of right-hemisphere structures (330-440 ms post-picture onset) was found concurrently during successful naming (right mid-to-posterior temporal lobe) and word-finding attempts (right inferior frontal gyrus). Disconnection of the temporal lobes via corpus callosum was not critical for recruitment of the right hemisphere in visually guided naming, possibly due to neural activity right lateralising from the outset. Although J.'s right hemisphere responded in a timely manner during word planning, its lexical and phonological retrieval abilities remained modest.
Collapse
Affiliation(s)
- Irina Chupina
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands
| | - Joanna Sierpowska
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Cognition and Brain Plasticity Unit, Department of Cognition, Development and Educational PsychologyInstitut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Xiaochen Y. Zheng
- Donders Centre for Cognitive NeuroimagingRadboud UniversityNijmegenThe Netherlands
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)University Hospital, LMU MunichMunichGermany
| | - Maria‐Carla Piastra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Department of Neuroinformatics, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands,Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Vitória Piai
- Donders Centre for CognitionRadboud UniversityNijmegenThe Netherlands,Department of Medical Psychology, Donders Centre for Medical NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
134
|
Fu X, Yang X, Cui X, Liu F, Li H, Yan M, Xie G, Guo W. Overlapping and segregated changes of functional hubs in melancholic depression and non-melancholic depression. J Psychiatr Res 2022; 154:123-131. [PMID: 35933856 DOI: 10.1016/j.jpsychires.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous research found associations between neuropsychiatric disorders and patterns of highly connected "hub" nodes, which are crucial in coordinating brain functions. Melancholic depression is considered a relatively distinct and homogenous subtype of major depressive disorder (MDD), which responds better to pharmacological treatments than placebos or psychotherapies. Accordingly, melancholic depression probably has distinct neuropathological underpinnings. This study aims to examine the overlapping and segregated changes of functional hubs in melancholic and non-melancholic MDD. METHODS Thirty-one melancholic patients, 28 non-melancholic patients, and 32 healthy controls were included. Resting-state functional imaging data were analyzed using global functional connectivity. RESULTS Both melancholic and non-melancholic patients had increased GFC in the bilateral insula and decreased GFC in the PCC/precuneus compared to HCs. The distinction was that melancholic patients showed increased GFC in the bilateral thalamus, right inferior parietal lobule (IPL), and left cerebellum Crus I and decreased GFC in the left temporal lobe, whereas non-melancholic patients showed increased GFC in the left superior parietal lobe. Additionally, compared with non-melancholic patients, melancholic individuals displayed significant increases of GFC in the left IPL and cerebellum. CONCLUSION Increased GFC of the insula and decreased GFC of the PCC and precuneus are the common abnormalities of melancholic and non-melancholic MDD. Hyperconnectivity of the IPL and cerebellum might be distinctive neuropathological features of melancholic MDD.
Collapse
Affiliation(s)
- Xiaoya Fu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaolun Yang
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xilong Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Meiqi Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Guangrong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China.
| |
Collapse
|
135
|
McDonough IM, Nolin SA, Visscher KM. 25 years of neurocognitive aging theories: What have we learned? Front Aging Neurosci 2022; 14:1002096. [PMID: 36212035 PMCID: PMC9539801 DOI: 10.3389/fnagi.2022.1002096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The past 25 years have provided a rich discovery of at least four fundamental patterns that represent structural and functional brain aging across multiple cognitive domains. Of the many potential patterns of brain aging, few are ever examined simultaneously in a given study, leading one to question their mutual exclusivity. Moreover, more studies are emerging that note failures to replicate some brain aging patterns, thereby questioning the universality and prevalence of these patterns. Although some attempts have been made to create unifying theories incorporating many of these age-related brain patterns, we propose that the field’s understanding of the aging brain has been hindered due to a large number of influential models with little crosstalk between them. We briefly review these brain patterns, the influential domain-general theories of neurocognitive aging that attempt to explain them, and provide examples of recent challenges to these theories. Lastly, we elaborate on improvements that can be made to lead the field to more comprehensive and robust models of neurocognitive aging.
Collapse
Affiliation(s)
- Ian M. McDonough
- Department of Psychology, Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Ian M. McDonough,
| | - Sara A. Nolin
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina M. Visscher
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
136
|
Jia F, Liu CY, Tan LH, Siok WT. Lifespan developmental changes in neural substrates and functional connectivity for visual semantic processing. Cereb Cortex 2022; 33:4714-4728. [PMID: 36130092 DOI: 10.1093/cercor/bhac374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Human learning and cognitive functions change with age and experience, with late-developed complex cognitive functions, particularly those served by the prefrontal cortex, showing more age-dependent variance. Reading as a complex process of constructing meaning from print uses the left prefrontal cortex and may show a similar aging pattern. In this study, we delineated the lifespan developmental changes in the neural substrates and functional connectivity for visual semantic processing from childhood (age 6) to late adulthood (age 74). Different from previous studies that reported aging as a form of activation or neuronal changes, we examined additionally how the functional connectivity networks changed with age. A cohort of 122 Chinese participants performed semantic and font-size judgment tasks during functional magnetic resonance imaging. Although a common left-lateralized neural system including the left mid-inferior prefrontal cortex was recruited across all participants, the effect of age, or reading experience, is evident as 2 contrastive developmental patterns: a declining trend in activation strength and extent and an increasing trend in functional connections of the network. This study suggests that visual semantic processing is not prone to cognitive decline, and that continuous reading until old age helps strengthen the functional connections of reading-related brain regions.
Collapse
Affiliation(s)
- Fanlu Jia
- School of Education and Psychology, University of Jinan, Jinan 250022, Shandong, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518107, China
| | - Chun Yin Liu
- Department of Linguistics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Li Hai Tan
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518107, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Shenzhen 518020, China.,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266071, Shandong, China
| | - Wai Ting Siok
- Department of Linguistics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
137
|
Wang Y, Wu R, Li L, Ma J, Yang W, Dai Z. Common and distinct neural substrates of the compassionate and uncompassionate self-responding dimensions of self-compassion. Brain Imaging Behav 2022; 16:2667-2680. [DOI: 10.1007/s11682-022-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
138
|
Chen Y, Cao Z, Mao M, Sun W, Song Q, Mao D. Increased cortical activation and enhanced functional connectivity in the prefrontal cortex ensure dynamic postural balance during dual-task obstacle negotiation in the older adults: A fNIRS study. Brain Cogn 2022; 163:105904. [PMID: 36063567 DOI: 10.1016/j.bandc.2022.105904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE By analyzing the cortical activation and functional connectivity of the prefrontal cortex (PFC) during dual-task obstacle negotiation in the older adults, cognitive resources allocation and neural regulatory mechanisms of aging brain were shed light on in complex walking conditions. METHODS Twenty-eight healthy right-handed subjects participated in the study, including 15 men and 13 women (age: 68.6 ± 4.1 years, height: 162.96 ± 6.05 cm, weight: 63.63 ± 9.64 kg). There were four tasks: Normal Walk (NW), Obstacle Negotiation during Normal Walk (NW + ON), Walk while performing Cognitive Task (WCT), and Obstacle Negotiation during Walk while performing Cognitive Task (WCT + ON). Participants wore functional near-infrared spectroscopy (fNIRS) to collect hemodynamic signals from various regions of interest (ROIs) in the PFC, while the three-dimensional motion capture system was used to test the gait velocity. Cognitive task data was recorded. RESULTS In WCT + ON, the HbO2 concentration change value (△HbO2) of the left dorsolateral prefrontal cortex was significantly greater than that in the other three tasks (p < 0.05), and the△HbO2 of the right dorsolateral prefrontal cortex was significantly greater than that in NW + ON (p < 0.05). The gait velocities in the four tasks were significantly different (p < 0.05) (NW > WCT > NW + ON > WCT + ON). There was no significant difference in cognitive performance between in the WCT and WCT + ON (p > 0.05). In WCT + ON, the left and right dorsolateral prefrontal areas had strong functional connectivity and the left frontal pole was most widely connected to the other ROIs. Compared to that in NW, the functional connectivity of the left prefrontal lobe was significantly enhanced in WCT + ON (p < 0.05). CONCLUSIONS As walking difficulty increased, the PFC activation in the older adults changed from right-sided to bilateral activation, indicating that the left PFC cognitive resources compensated for the right PFC in dual-task obstacle negotiation. The cognitive resources recruitment in dual-task obstacle negotiation might be achieved by synchronization and coordination of associated brain areas in the PFC, primarily to maintain dynamic postural balance when walking.
Collapse
Affiliation(s)
- Yan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China.
| | - Zhenjing Cao
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Min Mao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Sun
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Qipeng Song
- College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China
| | - Dewei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; College of Sport and Health, Shandong Sport University, Jinan, Shandong 250102, China.
| |
Collapse
|
139
|
Bagattini C, Esposito M, Ferrari C, Mazza V, Brignani D. Connectivity alterations underlying the breakdown of pseudoneglect: New insights from healthy and pathological aging. Front Aging Neurosci 2022; 14:930877. [PMID: 36118681 PMCID: PMC9475001 DOI: 10.3389/fnagi.2022.930877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
A right-hemisphere dominance for visuospatial attention has been invoked as the most prominent neural feature of pseudoneglect (i.e., the leftward visuospatial bias exhibited in neurologically healthy individuals) but the neurophysiological underpinnings of such advantage are still controversial. Previous studies investigating visuospatial bias in multiple-objects visual enumeration reported that pseudoneglect is maintained in healthy elderly and amnesic mild cognitive impairment (aMCI), but not in Alzheimer’s disease (AD). In this study, we aimed at investigating the neurophysiological correlates sustaining the rearrangements of the visuospatial bias along the progression from normal to pathological aging. To this aim, we recorded EEG activity during an enumeration task and analyzed intra-hemispheric fronto-parietal and inter-hemispheric effective connectivity adopting indexes from graph theory in patients with mild AD, patients with aMCI, and healthy elderly controls (HC). Results revealed that HC showed the leftward bias and stronger fronto-parietal effective connectivity in the right as compared to the left hemisphere. A breakdown of pseudoneglect in patients with AD was associated with both the loss of the fronto-parietal asymmetry and the reduction of inter-hemispheric parietal interactions. In aMCI, initial alterations of the attentional bias were associated with a reduction of parietal inter-hemispheric communication, but not with modulations of the right fronto-parietal connectivity advantage, which remained intact. These data provide support to the involvement of fronto-parietal and inter-parietal pathways in the leftward spatial bias, extending these notions to the complex neurophysiological alterations characterizing pathological aging.
Collapse
Affiliation(s)
- Chiara Bagattini
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- *Correspondence: Chiara Bagattini,
| | - Marco Esposito
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Clarissa Ferrari
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy
| | - Debora Brignani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
140
|
Integrated cognitive and physical fitness training enhances attention abilities in older adults. NPJ AGING 2022; 8:12. [PMID: 36042247 PMCID: PMC9427998 DOI: 10.1038/s41514-022-00093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Preserving attention abilities is of great concern to older adults who are motivated to maintain their quality of life. Both cognitive and physical fitness interventions have been utilized in intervention studies to assess maintenance and enhancement of attention abilities in seniors, and a coupling of these approaches is a compelling strategy to buttress both cognitive and physical health in a time- and resource-effective manner. With this perspective, we created a closed-loop, motion-capture video game (Body-Brain Trainer: BBT) that adapts a player’s cognitive and physical demands in an integrated approach, thus creating a personalized and cohesive experience across both domains. Older adults who engaged in two months of BBT improved on both physical fitness (measures of blood pressure and balance) and attention (behavioral and neural metrics of attention on a continuous performance task) outcome measures beyond that of an expectancy matched, active, placebo control group, with maintenance of improved attention performance evidenced 1 year later. Following training, the BBT group’s improvement on the attention outcome measure exceeded performance levels attained by an untrained group of 20-year olds, and showed age-equilibration of a neural signature of attention shown to decline with age: midline frontal theta power. These findings highlight the potential benefits of an integrated, cognitive-physical, closed-loop training platform as a powerful tool for both cognitive and physical enhancement in older adults.
Collapse
|
141
|
Resting-state functional connectivity does not predict individual differences in the effects of emotion on memory. Sci Rep 2022; 12:14481. [PMID: 36008438 PMCID: PMC9411155 DOI: 10.1038/s41598-022-18543-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Emotion-laden events and objects are typically better remembered than neutral ones. This is usually explained by stronger functional coupling in the brain evoked by emotional content. However, most research on this issue has focused on functional connectivity evoked during or after learning. The effect of an individual’s functional connectivity at rest is unknown. Our pre-registered study addresses this issue by analysing a large database, the Cambridge Centre for Ageing and Neuroscience, which includes resting-state data and emotional memory scores from 303 participants aged 18–87 years. We applied regularised regression to select the relevant connections and replicated previous findings that whole-brain resting-state functional connectivity can predict age and intelligence in younger adults. However, whole-brain functional connectivity predicted neither an emotional enhancement effect (i.e., the degree to which emotionally positive or negative events are remembered better than neutral events) nor a positivity bias effect (i.e., the degree to which emotionally positive events are remembered better than negative events), failing to support our pre-registered hypotheses. These results imply a small or no association between individual differences in functional connectivity at rest and emotional memory, and support recent notions that resting-state functional connectivity is not always useful in predicting individual differences in behavioural measures.
Collapse
|
142
|
Motion, Relation, and Passion in Brain Physiological and Cognitive Aging. Brain Sci 2022; 12:brainsci12091122. [PMID: 36138858 PMCID: PMC9496869 DOI: 10.3390/brainsci12091122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current paper was to present important factors for keeping the basic structures of a person’s brain function, i.e., the grey and white matter, intact. Several lines of evidence have shown that motion, relation, and passion are central factors for preserving the neural system in the grey and white matter during ageing. An active lifestyle has shown to contribute to the development of the central nervous system and to contrast brain ageing. Interpersonal relationships, and interactions, have shown to contribute to complex biological factors that benefit the cognitive resilience to decline. Furthermore, the current scientific literature suggests that passion, strong interest, could be the driving factor motivating individuals to learn new things, thus influencing the development and maintenance of the neural functional network over time. The present theoretical perspective paper aims to convey several key messages: (1) brain development is critically affected by lifestyle; (2) physical training allows one to develop and maintain brain structures during ageing, and may be one of the keys for good quality of life as an older person; (3) diverse stimuli are a key factor in maintaining brain structures; (4) motion, relation, and passion are key elements for contrasting the loss of the grey and white matter of the brain.
Collapse
|
143
|
Are self-management abilities beneficial for frail older people's cognitive functioning? BMC Geriatr 2022; 22:694. [PMID: 35996078 PMCID: PMC9396755 DOI: 10.1186/s12877-022-03353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Self-management abilities seem to be important for the cognitive functioning of older people, especially those who are frail. We investigated relationships between broad self-management abilities (initiative taking, investment behavior, resource variety, resource multifunctionality, self-efficacy, and positive frame of mind) and cognitive functioning among frail older people while controlling for background characteristics (sex, age, marital status, and educational level). Method Survey data were collected from mid-2014 to mid-2015 from community-dwelling frail older people residing in North Brabant, the Netherlands. We measured cognitive functioning with the 12-item Mini-Mental State Examination (MMSE-12) and self-management abilities with the short version of the Self-Management Ability Scale (SMAS-S). Results In total, 588 of 834 potential participants were willing to participate (70.5% response rate). The mean age was 82.33 ± 5.19 and the majority (68.5%) of respondents were female. About one-third (38.4%) of respondents had low educational levels and 61.7% lived alone. Mean MMSE-12 and SMAS-S scores were 9.68 ± 2.10 and 3.70 ± 0.88, respectively. Bivariate analyses showed that all six self-management abilities were related positively to cognitive functioning. Multivariate analyses with adjustment for background characteristics (sex, age, marital status, and educational level) showed that cognitive functioning was associated positively with initiative taking (β = 0.23, p = 0.030) and investment behavior (β = 0.24, p = 0.030) among community-dwelling frail older people. Conclusions This study clearly showed that a repertoire of broad self-management abilities is related to cognitive functioning among community-dwelling frail older people. Initiative taking and investment behavior seem to be especially important. These findings are of interest in a time of populational aging and an increasing number of older people dealing with cognitive problems. Preventive investments in (older) people’s self-management abilities are expected to be beneficial for their cognitive functioning in the long term. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-03353-4.
Collapse
|
144
|
Magnon V, Vallet GT, Benson A, Mermillod M, Chausse P, Lacroix A, Bouillon-Minois JB, Dutheil F. Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex 2022; 155:218-236. [DOI: 10.1016/j.cortex.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022]
|
145
|
Sood P, Chatterjee SA, Skinner JW, Lysne PE, Sumonthee C, Wu SS, Cohen RA, Rose DK, Woods AJ, Clark DJ. Somatosensory impairment of the feet is associated with higher activation of prefrontal cortex during walking in older adults. Exp Gerontol 2022; 165:111845. [PMID: 35644417 PMCID: PMC9892701 DOI: 10.1016/j.exger.2022.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/18/2021] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Over-activation of prefrontal cortex during walking has been reported in older adults versus young adults. Heighted activity in prefrontal cortex suggests a shift toward an executive control strategy to control walking. A potential contributing factor is degraded functioning of pattern-generating locomotor circuits in the central nervous system that are important to walking coordination. Somatosensory information is a crucial input to these circuits, so age-related impairment of somatosensation would be expected to compromise the neural control of walking. The present study tested the hypothesis that poorer somatosensation in the feet of older adults will be associated with greater recruitment of the prefrontal cortex during walking. This study also examines the extent to which somatosensory function and prefrontal activity are associated with performance on walking and balance assessments. METHODS Forty seven older adults (age 74.6 ± 6.8 years; 32 female) participated in walking assessments (typical walking and obstacle negotiation) and Berg Balance Test. During walking, prefrontal activity was measured with functional near infrared spectroscopy (fNIRS). Participants also underwent somatosensory testing with Semmes-Weinstein monofilaments. RESULTS The primary findings is that worse somatosensory monofilament level was associated with greater prefrontal cortical activity during typical walking (r = 0.38, p = 0.008) and obstacle negotiation (r = 0.40, p = 0.006). For the obstacle negotiation task, greater prefrontal activity was associated with faster walking speed (p = 0.004). Poorer somatosensation was associated with slower typical walking speed (p = 0.07) and obstacles walking speed (p < 0.001), as well as poorer balance scores (p = 0.03). CONCLUSIONS The study findings are consistent with a compensation strategy of recruiting prefrontal/executive control resources to overcome loss of somatosensory input to the central nervous system. Future research should further establish the mechanisms by which somatosensory impairments are linked to the neural control and performance of walking tasks, as well as develop intervention approaches.
Collapse
Affiliation(s)
- Pallavi Sood
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Sudeshna A. Chatterjee
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jared W. Skinner
- Geriatric Research, Education, and Clinical Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Paige E. Lysne
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chanoan Sumonthee
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Samuel S. Wu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Ronald A. Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Dorian K. Rose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Adam J. Woods
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - David J. Clark
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
146
|
Engemann DA, Mellot A, Höchenberger R, Banville H, Sabbagh D, Gemein L, Ball T, Gramfort A. A reusable benchmark of brain-age prediction from M/EEG resting-state signals. Neuroimage 2022; 262:119521. [PMID: 35905809 DOI: 10.1016/j.neuroimage.2022.119521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 01/02/2023] Open
Abstract
Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints.
Collapse
Affiliation(s)
- Denis A Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; Université Paris-Saclay, Inria, CEA, Palaiseau, France; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany.
| | | | | | - Hubert Banville
- Université Paris-Saclay, Inria, CEA, Palaiseau, France; Inserm, UMRS-942, Paris Diderot University, Paris, France
| | - David Sabbagh
- Université Paris-Saclay, Inria, CEA, Palaiseau, France; Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Engelbergerstr. 21, 79106, Freiburg, Germany
| | - Lukas Gemein
- Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Neurorobotics Lab, Computer Science Department - University of Freiburg, Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, Germany; InteraXon Inc., Toronto, Canada
| | | |
Collapse
|
147
|
Kljajevic V. Older and Wiser: Interpretation of Proverbs in the Face of Age-Related Cortical Atrophy. Front Aging Neurosci 2022; 14:919470. [PMID: 35860671 PMCID: PMC9289440 DOI: 10.3389/fnagi.2022.919470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
In the present study, we investigated whether interpretation of proverbs differs across the lifespan and if so, whether it is associated with age-related fronto-temporal atrophy. Using a sample of 333 healthy individuals aged 18–89 years, we found a significant effect of age on proverb interpretation [H(2) = 12.001, p = 0.002]: old adults (OA) were better than young adults (YA) (p = 0.002), and so were middle-aged-adults (MA) (p = 0.005). OA and MA had significantly less grey matter (GM) than YA in frontal and temporal lobes bilaterally, and OA less than MA in the right temporal lobe. GM volumes in these regions did not moderate the effect of age on the proverbs scores. The whole-brain analysis of groups’ GM maps revealed that the proverbs scores were associated with more GM in YA relative to OA in the right middle temporal gyrus, which is consistent with evidence on the role of this area in processing of unfamiliar proverbs. Overall, our data suggest that interpretation of proverbs is well preserved in late adulthood, despite considerable age-related cortical atrophy.
Collapse
|
148
|
Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ. Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun 2022; 4:fcac162. [PMID: 35813880 PMCID: PMC9263888 DOI: 10.1093/braincomms/fcac162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
The posterior cingulate cortex, a key hub of the default mode network, underlies autobiographical memory retrieval and displays hypometabolic changes early in Alzheimer disease. To obtain an unbiased understanding of the molecular pathobiology of the aged posterior cingulate cortex, we performed RNA sequencing (RNA-seq) on tissue obtained from 26 participants of the Rush Religious Orders Study (11 males/15 females; aged 76-96 years) with a pre-mortem clinical diagnosis of no cognitive impairment and post-mortem neurofibrillary tangle Braak Stages I/II, III, and IV. Transcriptomic data were gathered using next-generation sequencing of RNA extracted from posterior cingulate cortex generating an average of 60 million paired reads per subject. Normalized expression of RNA-seq data was calculated using a global gene annotation and a microRNA profile. Differential expression (DESeq2, edgeR) using Braak staging as the comparison structure isolated genes for dimensional scaling, associative network building and functional clustering. Curated genes were correlated with the Mini-Mental State Examination and semantic, working and episodic memory, visuospatial ability, and a composite Global Cognitive Score. Regulatory mechanisms were determined by co-expression networks with microRNAs and an overlap of transcription factor binding sites. Analysis revealed 750 genes and 12 microRNAs significantly differentially expressed between Braak Stages I/II and III/IV and an associated six groups of transcription factor binding sites. Inputting significantly different gene/network data into a functional annotation clustering model revealed elevated presynaptic, postsynaptic and ATP-related expression in Braak Stages III and IV compared with Stages I/II, suggesting these pathways are integral for cognitive resilience seen in unimpaired elderly subjects. Principal component analysis and Kruskal-Wallis testing did not associate Braak stage with cognitive function. However, Spearman correlations between genes and cognitive test scores followed by network analysis revealed upregulation of classes of synaptic genes positively associated with performance on the visuospatial perceptual orientation domain. Upregulation of key synaptic genes suggests a role for these transcripts and associated synaptic pathways in cognitive resilience seen in elders despite Alzheimer disease pathology and dementia.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
- Department of Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
149
|
Oishi K, Soldan A, Pettigrew C, Hsu J, Mori S, Albert M, Oishi K. Changes in pairwise functional connectivity associated with changes in cognitive performance in cognitively normal older individuals: A two-year observational study. Neurosci Lett 2022; 781:136618. [PMID: 35398188 PMCID: PMC9990522 DOI: 10.1016/j.neulet.2022.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Neurobiological substrates of cognitive decline in cognitively normal older individuals have been investigated by resting-state functional magnetic resonance imaging, but little is known about the relationship between longitudinal changes in the whole brain. In this study, we examined two-year changes in functional connectivity among 80 gray matter areas and investigated the relationship to two-year changes in cognitive performance. A cross-validated permutation variable importance measure was applied to select features related to a change in cognitive performance. Age-corrected changes in eleven pairs of functional connections were selected as important features, all related to brain areas that belong to the default mode network. A linear regression model with cross-validation demonstrated a mean correlation coefficient of 0.55 between measured and predicted changes in the cognitive composite score. These results suggest that intra- and inter-network connections in the default mode network are associated with cognitive changes over two years among cognitively normal individuals.
Collapse
Affiliation(s)
- Kumiko Oishi
- Center for Imaging Science, The Johns Hopkins University, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johnny Hsu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
150
|
Bernard JA. Don't forget the little brain: A framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev 2022; 137:104639. [PMID: 35346747 PMCID: PMC9119942 DOI: 10.1016/j.neubiorev.2022.104639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
With the rapidly growing population of older adults, an improved understanding of brain and cognitive aging is critical, given the impacts on health, independence, and quality of life. To this point, we have a well-developed literature on the cortical contributions to cognition in advanced age. However, while this work has been foundational for our understanding of brain and behavior in older adults, subcortical contributions, particularly those from the cerebellum, have not been integrated into these models and frameworks. Incorporating the cerebellum into models of cognitive aging is an important step for moving the field forward. There has also been recent interest in this structure in Alzheimer's dementia, indicating that such work may be beneficial to our understanding of neurodegenerative disease. Here, I provide an updated overview of the cerebellum in advanced age and propose that it serves as a critical source of scaffolding or reserve for cortical function. Age-related impacts on cerebellar function further impact cortical processing, perhaps resulting in many of the activation patterns commonly seen in aging.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, USA; Texas A&M Institute for Neuroscience, Texas A&M University, USA.
| |
Collapse
|