101
|
Feng Y, Zhong M, Zeng S, Xiao D, Liu Y. Metachronous triple primary neoplasms with primary prostate cancer, lung cancer, and colon cancer: A case report. Medicine (Baltimore) 2018; 97:e11332. [PMID: 29953024 PMCID: PMC6039669 DOI: 10.1097/md.0000000000011332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Multiple primary neoplasms (MPNs) are rare. Most MPNs are double, and triple primary neoplasms are extremely rarer. Here, we describe a case of a 66-year-old man diagnosed with metachronous triple primary neoplasms with primary prostate cancer, lung cancer and colon cancer. PATIENT CONCERNS The patient complained of dysuria in January 2015, and he underwent transurethral resection of the prostate. The pathological results showed acinar adenocarcinoma of prostate with a Gleason score of 3+3. In January 2017, he complained of lower abdominal pain, then he took an enteroscopy examination, found a mass in the sigmoid colon, and positron emission tomography/computed tomography examination showed masses in the sigmoid colon and right upper lobe of the lung. Biopsy of the colon showed moderately differentiated adenocarcinoma with Kirsten rat sarcoma viral oncogene homolog exon 2 mutation, and biopsy of the lung showed moderately differentiated adenocarcinoma with epidermal rowth factor receptor exon 21 mutation. DIAGNOSES Metachronous triple primary neoplasms with primary prostate cancer, lung cancer and colon cancer. INTERVENTIONS The patient underwent surgical resection of the right upper lobe of the lung, postoperative stage was T1bN0M0 (stage IA). After 8 cycles of chemotherapy with modified FOLFOX6 regimen (oxaliplatin 85 mg/m, leucovorin 400 mg/m, 5-fluorouracil 400 mg/m on day 1, followed by 5-fluorouracil 2400 mg/m intravenous infusion over 46 hours every 2 weeks), the patient underwent radical resection of colon cancer, and he finished the remaining 4 cycles of modified FOLFOX6 regimen chemotherapy in November 2017. OUTCOMES The patient takes examination every three months, and the results show no recurrence. LESSONS When considering MPNs, thorough surveillance by new screening methods is required to detect a second or even third neoplasm at an early stage.
Collapse
Affiliation(s)
| | | | | | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | | |
Collapse
|
102
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
103
|
Terc is dispensable for most of the short-term HPV16 oncogene-mediated phenotypes in mice. PLoS One 2018; 13:e0196604. [PMID: 29698462 PMCID: PMC5919663 DOI: 10.1371/journal.pone.0196604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
High-risk human papillomaviruses (HPVs) have been shown in vitro to impinge on telomere homeostasis in a number of ways. However, the in vivo interaction of viruses with the telomere homeostasis apparatus has not been previously explored. Since E6 and E7 are the main viral oncogenes and key for viral replication, we have explored here the short-term phenotypes of the genes in the context of defective telomere homeostasis. We examined the short-term phenotypes of E6 and E7 in a context where the Terc component of the telomerase holoenzyme was knocked out. We determined that Terc was dispensable for most oncogene-mediated phenotypes. Surprisingly, E7-mediated reduction of label retaining cells was found to be in part dependent on the presence of Terc. Under the conditions examined here, there appears to be no compelling evidence Terc is required for most short-term viral oncogene mediated phenotypes. Further studies will elucidate its role in longer-term phenotypes.
Collapse
|
104
|
Liu Z, Zhao J, Zhang R, Han G, Zhang C, Liu B, Zhang Z, Han MY, Gao X. Cross-Platform Cancer Cell Identification Using Telomerase-Specific Spherical Nucleic Acids. ACS NANO 2018; 12:3629-3637. [PMID: 29595962 DOI: 10.1021/acsnano.8b00743] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Distinguishing tumor cells from normal cells holds the key to precision diagnosis and effective intervention of cancers. The fundamental difficulties, however, are the heterogeneity of tumor cells and the lack of truly specific and ideally universal cancer biomarkers. Here, we report a concept of tumor cell detection, bypassing the specific genotypic and phenotypic features of different tumor cell types and directly going toward the hallmark of cancer, uncontrollable growth. Combining spherical nucleic acids (SNAs) with exquisitely engineered molecular beacons (SNA beacons, dubbed SNAB technology) is capable of identifying tumor cells from normal cells based on the molecular phenotype of telomerase activity, largely bypassing the heterogeneity problem of cancers. Owing to the cell-entry capability of SNAs, the SNAB probe readily achieves tumor cell detection across multiple platforms, ranging from solution-based assay, to single cell imaging and in vivo solid tumor imaging (unlike PCR that is restricted to cell lysates). We envision the SNAB technology will impact cancer diagnosis, therapeutic response assessment, and image-guided surgery.
Collapse
Affiliation(s)
- Zhengjie Liu
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jun Zhao
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering , Anhui University , Hefei , Anhui 230601 , China
| | - Guangmei Han
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Cheng Zhang
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Bianhua Liu
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Zhongping Zhang
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
- School of Chemistry and Chemical Engineering , Anhui University , Hefei , Anhui 230601 , China
| | - Ming-Yong Han
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
- Institute of Materials Research and Engineering , A-STAR , 3 Research Link , Singapore 117602
| | - Xiaohu Gao
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
105
|
Annunziata C, Pezzuto F, Greggi S, Ionna F, Losito S, Botti G, Buonaguro L, Buonaguro FM, Tornesello ML. Distinct profiles of TERT
promoter mutations and telomerase expression in head and neck cancer and cervical carcinoma. Int J Cancer 2018; 143:1153-1161. [PMID: 29603728 DOI: 10.1002/ijc.31412] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Stefano Greggi
- Gynecology Oncology Unit; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Franco Ionna
- Maxillofacial and Ear Nose and Throat Surgery Department; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Simona Losito
- Department of Pathology; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Gerardo Botti
- Department of Pathology; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit; Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”; Napoli 80131 Italy
| |
Collapse
|
106
|
Giunco S, Petrara MR, Zangrossi M, Celeghin A, De Rossi A. Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications. Infect Agent Cancer 2018; 13:14. [PMID: 29643934 PMCID: PMC5892012 DOI: 10.1186/s13027-018-0186-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus causally linked to a broad spectrum of both lymphoid and epithelial malignancies. In order to maintain its persistence in host cells and promote tumorigenesis, EBV must restrict its lytic cycle, which would ultimately lead to cell death, selectively express latent viral proteins, and establish an unlimited proliferative potential. The latter step depends on the maintenance of telomere length provided by telomerase. The viral oncoprotein LMP-1 activates TERT, the catalytic component of telomerase. In addition to its canonical role in stabilizing telomeres, TERT may promote EBV-driven tumorigenesis through extra-telomeric functions. TERT contributes toward preserving EBV latency; in fact, through the NOTCH2/BATF pathway, TERT negatively affects the expression of BZLF1, the master regulator of the EBV lytic cycle. In contrast, TERT inhibition triggers a complete EBV lytic cycle, leading to the death of EBV-infected cells. Interestingly, short-term TERT inhibition causes cell cycle arrest and apoptosis, partly by inducing telomere-independent activation of the ATM/ATR/TP53 pathway. Importantly, TERT inhibition also sensitizes EBV-positive tumor cells to antiviral therapy and enhances the pro-apoptotic effects of chemotherapeutic agents. We provide here an overview on how the extra-telomeric functions of TERT contribute to EBV-driven tumorigenesis. We also discuss the potential therapeutic approach of TERT inhibition in EBV-driven malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- 1Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - Maria Raffaella Petrara
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Manuela Zangrossi
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Andrea Celeghin
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Anita De Rossi
- 1Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy.,2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| |
Collapse
|
107
|
Liu Z, Wang T, Wu Z, Zhang K, Li W, Yang J, Chen C, Chen L, Xing J. Association between TERT rs2853669 polymorphism and cancer risk: A meta-analysis of 9,157 cases and 11,073 controls. PLoS One 2018. [PMID: 29534075 PMCID: PMC5849304 DOI: 10.1371/journal.pone.0191560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background It has been reported that the functional telomerase reverse transcriptase (TERT) rs2853669 polymorphism might contribute to different types of human cancer. However, the association of this mutation with cancer remains controversial. Here, we conducted a meta-analysis to characterize this relationship. Materials and methods/Main results A systematic search of studies on the association of TERT rs2853669 polymorphism with all types of cancer was conducted in PubMed, Embase and Cochrane Library. The summary odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were used to pool the effect size in a fixed-effects model or a random-effects model where appropriate. A total of 13 articles and 15 case-control studies, including 9,157 cases and 11,073 controls, were included in this meta-analysis. Overall, the pooled results indicated that the rs2853669 polymorphism was significantly associated with increased cancer risk in a homozygote comparison model (CT vs. TT: OR = 1.085, 95% CI: 1.015–1.159, P = 0.016). In the stratified analyses, a significant increased cancer risk was observed in Asian, but not Caucasian patients. A subgroup analysis by cancer type also revealed a significant increase in the risk of lung cancer, but not breast cancer. Conclusions The results of this meta-analysis suggest that the TERT rs2853669 polymorphism is associated with a significantly increased risk of cancer, particularly lung cancer, in Asian populations.
Collapse
Affiliation(s)
- Zhengsheng Liu
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhun Wu
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Kaiyan Zhang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jianbin Yang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chenxi Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lei Chen
- Zhuxi People Hospital, Hubei, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
108
|
Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci 2018. [PMID: 29526163 PMCID: PMC5846307 DOI: 10.1186/s12929-018-0422-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.
Collapse
Affiliation(s)
- Ricardo Leão
- Division of Urology, Department of Surgery Princess Margaret Cancer Centre, University Health Network, 610 University Ave 3-130, Toronto, ON, M5G 2M9, Canada. .,Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Faculty of Medicine, University of Coimbra, R. Larga, 3004-504, Coimbra, Coimbra, Portugal. .,Department of Urology, Coimbra University Hospital, Coimbra, Portugal.
| | - Joana Dias Apolónio
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Edifício 2 - Ala Norte, 8005-139, Faro, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Algarve Biomedical Center, Campus Gambelas, Faro, Portugal
| | - Donghyun Lee
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Arnaldo Figueiredo
- Faculty of Medicine, University of Coimbra, R. Larga, 3004-504, Coimbra, Coimbra, Portugal.,Department of Urology, Coimbra University Hospital, Coimbra, Portugal
| | - Uri Tabori
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8ON, Canada
| | - Pedro Castelo-Branco
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Edifício 2 - Ala Norte, 8005-139, Faro, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Algarve Biomedical Center, Campus Gambelas, Faro, Portugal
| |
Collapse
|
109
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
110
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
111
|
Cleal K, Norris K, Baird D. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture. Int J Mol Sci 2018; 19:E482. [PMID: 29415479 PMCID: PMC5855704 DOI: 10.3390/ijms19020482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB) repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage-fusion-bridge (BFB) cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT) pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Kevin Norris
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| | - Duncan Baird
- Division of Cancer and Genetics, School of Medicine, UHW Main Building, Cardiff CF14 4XN, UK.
| |
Collapse
|
112
|
Eitsuka T, Nakagawa K, Kato S, Ito J, Otoki Y, Takasu S, Shimizu N, Takahashi T, Miyazawa T. Modulation of Telomerase Activity in Cancer Cells by Dietary Compounds: A Review. Int J Mol Sci 2018; 19:E478. [PMID: 29415465 PMCID: PMC5855700 DOI: 10.3390/ijms19020478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase is expressed in ~90% of human cancer cell lines and tumor specimens, whereas its enzymatic activity is not detectable in most human somatic cells, suggesting that telomerase represents a highly attractive target for selective cancer treatment. Accordingly, various classes of telomerase inhibitors have been screened and developed in recent years. We and other researchers have successfully found that some dietary compounds can modulate telomerase activity in cancer cells. Telomerase inhibitors derived from food are subdivided into two groups: one group directly blocks the enzymatic activity of telomerase (e.g., catechin and sulfoquinovosyldiacylglycerol), and the other downregulates the expression of human telomerase reverse transcriptase (hTERT), the catalytic subunit of human telomerase, via signal transduction pathways (e.g., retinoic acid and tocotrienol). In contrast, a few dietary components, including genistein and glycated lipid, induce cellular telomerase activity in several types of cancer cells, suggesting that they may be involved in tumor progression. This review summarizes the current knowledge about the effects of dietary factors on telomerase regulation in cancer cells and discusses their molecular mechanisms of action.
Collapse
Affiliation(s)
- Takahiro Eitsuka
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Kiyotaka Nakagawa
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Shunji Kato
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Junya Ito
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Yurika Otoki
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Soo Takasu
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Naoki Shimizu
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Takumi Takahashi
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan.
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| |
Collapse
|
113
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
114
|
Lujan DA, Ochoa JL, Hartley RS. Cold-inducible RNA binding protein in cancer and inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9. [PMID: 29322631 DOI: 10.1002/wrna.1462] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022]
Abstract
RNA binding proteins (RBPs) play key roles in RNA dynamics, including subcellular localization, translational efficiency and metabolism. Cold-inducible RNA binding protein (CIRP) is a stress-induced protein that was initially described as a DNA damage-induced transcript (A18 hnRNP), as well as a cold-shock domain containing cold-stress response protein (CIRBP) that alters the translational efficiency of its target messenger RNAs (mRNAs). This review summarizes recent work on the roles of CIRP in the context of inflammation and cancer. The function of CIRP in cancer appeared to be solely driven though its functions as an RBP that targeted cancer-associated mRNAs, but it is increasingly clear that CIRP also modulates inflammation. Several recent studies highlight roles for CIRP in immune responses, ranging from sepsis to wound healing and tumor-promoting inflammation. While modulating inflammation is an established role for RBPs that target cytokine mRNAs, CIRP appears to modulate inflammation by several different mechanisms. CIRP has been found in serum, where it binds the TLR4-MD2 complex, acting as a Damage-associated molecular pattern (DAMP). CIRP activates the NF-κB pathway, increasing phosphorylation of Iκκ and IκBα, and stabilizes mRNAs encoding pro-inflammatory cytokines. While CIRP promotes higher levels of pro-inflammatory cytokines in certain cancers, it also decreases inflammation to accelerate wound healing. This dichotomy suggests that the influence of CIRP on inflammation is context dependent and highlights the importance of detailing the mechanisms by which CIRP modulates inflammation. WIREs RNA 2018, 9:e1462. doi: 10.1002/wrna.1462 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Daniel A Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine and University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Joey L Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine and University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Rebecca S Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine and University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
115
|
Zhang X, Feng Y, Ding WF, Li X, Xie SC. Establishment of an embryonic cell line from the American cockroach Periplaneta americana (Blattaria: Blattidae) and a preliminary study of telomerase activity changes during the culturing process. In Vitro Cell Dev Biol Anim 2018; 54:129-135. [PMID: 29313222 DOI: 10.1007/s11626-017-0223-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Despite the pest status and medicinal value of the American cockroach Periplaneta americana, few attempts have been made to establish cell lines from this insect owing to the difficulty of culturing Blattarian cells. Here, we describe the establishment of the RIRI-PA1 line from P. americana embryo tissue following primary culture in modified Grace's medium containing 20% fetal bovine serum. RIRI-PA1 was found to primarily consist of attached spindle-shaped and giant cells, which attach themselves to their container. The population-doubling time of 40th-passage cells was approximately 84.8 h. The average chromosome number at the 30th passage was 42, with 40% of cells demonstrating substantial variations, with the highest number of variations of 78 and lowest of 24. The identity of RIRI-PA1 was confirmed by comparing the COI gene of these cells to that of P. americana embryo tissue. Telomerase activity decreased in primary cells after 7 d of culture and 5th-passage cells in comparison to embryo tissues; however, compared to the other cultured cells tested, the telomerase activity significantly increased at the 20th passage. We propose that the stagnation periods and cessation of proliferation observed relate to cellular telomerase activity, but the relationship between insect cell proliferation and telomerase as well as the regulatory mechanism involved remains to be elucidated.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| | - Ying Feng
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China.
| | - Wei-Feng Ding
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| | - Xian Li
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| | - Si-Cong Xie
- The Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, 650224, China
| |
Collapse
|
116
|
Schwaederle M, Krishnamurthy N, Daniels GA, Piccioni DE, Kesari S, Fanta PT, Schwab RB, Patel SP, Parker BA, Kurzrock R. Telomerase reverse transcriptase promoter alterations across cancer types as detected by next-generation sequencing: A clinical and molecular analysis of 423 patients. Cancer 2017; 124:1288-1296. [PMID: 29211306 PMCID: PMC5839978 DOI: 10.1002/cncr.31175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) promoter mutations that may affect telomerase activity have recently been described in human malignancies. The purpose of this study was to investigate the clinical correlates of TERT promoter abnormalities in a large cohort of patients with diverse cancers. METHODS This study analyzed TERT promoter alterations and clinical characteristics of 423 consecutive patients for whom molecular testing by next-generation sequencing was performed between August 2014 and July 2015. RESULTS Of the 423 patients, 61 (14.4%) had TERT promoter mutations, and this placed TERT promoter alterations among the most prevalent aberrations after tumor protein 53 (TP53; 39%) and KRAS and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) alterations (15% each) in this population. TERT promoter alterations were more frequent in men (P = .031) and were associated with brain cancers (P = .001), skin cancers/melanoma (P = .001), and a higher number of aberrations (P = .0001). A co-alteration analysis found that TERT promoter alterations were significantly correlated with CDKN2A/B (P = .001) and BRAF abnormalities (P = .0003). Patients harboring TERT promoter alterations or TP53 or CDKN2A/B alterations and those with 4 or more alterations demonstrated shorter survival (hazard ratio for normal TERT promoters vs aberrant ones, 0.44; P = .017). However, only a higher number of alterations remained significant in the multivariate analysis. CONCLUSIONS Overall, TERT promoter alterations were among the most prevalent aberrations in this population, with very high rates in brain cancers (48% of patients) and melanomas (56% of patients). These aberrations frequently coexist with a high number of other aberrations, with the latter feature also significantly associated with poorer overall survival. Therapeutic options for targeting tumors with TERT promoter mutations are currently limited, although a variety of novel approaches are under development. Cancer 2018;124:1288-96. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Maria Schwaederle
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Nithya Krishnamurthy
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Gregory A Daniels
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - David E Piccioni
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Paul T Fanta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Richard B Schwab
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Sandip P Patel
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Barbara A Parker
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, California
| |
Collapse
|
117
|
Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC, Hruszkewycz A, Vaghasia A, Yegnasubramanian S, Wheelan SJ, Meeker AK, Heaphy CM, Graham MK, De Marzo AM. MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 2017; 244:11-24. [PMID: 28888037 DOI: 10.1002/path.4980] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate-limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high-grade prostatic intraepithelial neoplasia or PIN) and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in eight cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma and that its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Javier A Baena-Del Valle
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology and Laboratory Medicine, Fundacion Santa Fe De Bogota University Hospital, Bogota, DC, Colombia
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David M Esopi
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Gretchen K Hubbard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maria C Moncaliano
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Hruszkewycz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah J Wheelan
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan K Meeker
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher M Heaphy
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mindy K Graham
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Brady Urological Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
118
|
Lv N, Sun M, Liu C, Li J. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents. Bioorg Med Chem Lett 2017; 27:4578-4581. [DOI: 10.1016/j.bmcl.2017.08.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
|
119
|
Faleiro I, Apolónio JD, Price AJ, De Mello RA, Roberto VP, Tabori U, Castelo-Branco P. The TERT hypermethylated oncologic region predicts recurrence and survival in pancreatic cancer. Future Oncol 2017; 13:2045-2051. [DOI: 10.2217/fon-2017-0167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We explore the biomarker potential of the TERT hypermethylated oncologic region (THOR) in pancreatic cancer. Materials & methods: We assessed the methylation status of THOR using the cancer genome atlas data on the cohort of pancreatic cancer (n = 193 patients). Results: THOR was significantly hypermethylated in pancreatic tumor tissue when compared with the normal tissue used as control (p < 0.0001). Also, THOR hypermethylation could distinguish early stage I disease from normal tissue and was associated with worse prognosis. Discussion: We found that THOR is hypermethylated in pancreatic tumor tissue when compared with normal tissue and that THOR methylation correlates with TERT expression in tumor samples. Conclusion: Our preliminary findings support the diagnostic and prognostic values of THOR in pancreatic cancer.
Collapse
Affiliation(s)
- Inês Faleiro
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Joana Dias Apolónio
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Aryeh J Price
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ramon Andrade De Mello
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Vânia Palma Roberto
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Uri Tabori
- Arthur & Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences & Medicine, University of Algarve, Campus de Gambelas, Edifício 2, 8005–139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005–139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| |
Collapse
|
120
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
121
|
KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway. Cell Death Dis 2017; 8:e2940. [PMID: 28726783 PMCID: PMC5550845 DOI: 10.1038/cddis.2017.285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma.
Collapse
|
122
|
Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Dhople V, Ummanni R, Chowdhury S. Epigenetic suppression of human telomerase ( hTERT) is mediated by the metastasis suppressor NME2 in a G-quadruplex-dependent fashion. J Biol Chem 2017; 292:15205-15215. [PMID: 28717007 PMCID: PMC5602382 DOI: 10.1074/jbc.m117.792077] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
Transcriptional activation of the human telomerase reverse transcriptase (hTERT) gene, which remains repressed in adult somatic cells, is critical during tumorigenesis. Several transcription factors and the epigenetic state of the hTERT promoter are known to be important for tight control of hTERT in normal tissues, but the molecular mechanisms leading to hTERT reactivation in cancer are not well-understood. Surprisingly, here we found occupancy of the metastasis suppressor non-metastatic 2 (NME2) within the hTERT core promoter in HT1080 fibrosarcoma cells and HCT116 colon cancer cells and NME2-mediated transcriptional repression of hTERT in these cells. We also report that loss of NME2 results in up-regulated hTERT expression. Mechanistically, additional results indicated that the RE1-silencing transcription factor (REST)–lysine-specific histone demethylase 1 (LSD1) co-repressor complex associates with the hTERT promoter in an NME2-dependent way and that this assembly is required for maintaining repressive chromatin at the hTERT promoter. Interestingly, a G-quadruplex motif at the hTERT promoter was essential for occupancy of NME2 and the REST repressor complex on the hTERT promoter. In light of this mechanistic insight, we studied the effects of G-quadruplex–binding ligands on hTERT expression and observed that several of these ligands repressed hTERT expression. Together, our results support a mechanism of hTERT epigenetic control involving a G-quadruplex promoter motif, which potentially can be targeted by tailored small molecules.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- From the Genomics and Molecular Medicine Unit.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mathura Road, New Delhi 110025, India and
| | - Ankita Singh
- From the Genomics and Molecular Medicine Unit.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mathura Road, New Delhi 110025, India and
| | | | | | | | - Anirban Kar
- From the Genomics and Molecular Medicine Unit
| | - Parashar Dhapola
- G.N.R. Knowledge Centre for Genome Informatics, and.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mathura Road, New Delhi 110025, India and
| | - Vishnu Dhople
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ramesh Ummanni
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Shantanu Chowdhury
- From the Genomics and Molecular Medicine Unit, .,G.N.R. Knowledge Centre for Genome Informatics, and.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mathura Road, New Delhi 110025, India and
| |
Collapse
|
123
|
Aamli Gagnat A, Gjerdevik M, Gallefoss F, Coxson HO, Gulsvik A, Bakke P. Incidence of non-pulmonary cancer and lung cancer by amount of emphysema and airway wall thickness: a community-based cohort. Eur Respir J 2017; 49:49/5/1601162. [PMID: 28495686 DOI: 10.1183/13993003.01162-2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/28/2017] [Indexed: 11/05/2022]
Abstract
There is limited knowledge about the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness in cancer.The aim of this study was to investigate if using CT to quantitatively assess the amount of emphysema and airway wall thickness independently predicts the subsequent incidence of non-pulmonary cancer and lung cancer.In the GenKOLS study of 2003-2005, 947 ever-smokers performed spirometry and underwent CT examination. The main predictors were the amount of emphysema measured by the percentage of low attenuation areas (%LAA) on CT and standardised measures of airway wall thickness (AWT-PI10). Cancer data from 2003-2013 were obtained from the Norwegian Cancer Register. The hazard ratio associated with emphysema and airway wall thickness was assessed using Cox proportional hazards regression for cancer diagnoses.During 10 years of follow-up, non-pulmonary cancer was diagnosed in 11% of the subjects with LAA <3%, in 19% of subjects with LAA 3-10%, and in 17% of subjects with LAA ≥10%. Corresponding numbers for lung cancer were 2%, 3% and 11%, respectively. After adjustment, the baseline amount of emphysema remained a significant predictor of the incidence of non-pulmonary cancer and lung cancer. Airway wall thickness did not predict cancer independently.This study offers a strong argument that emphysema is an independent risk factor for both non-pulmonary cancer and lung cancer.
Collapse
Affiliation(s)
| | - Miriam Gjerdevik
- Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Dept of Thoracic Medicine, Norwegian Registry for Chronic Obstructive Pulmonary Disease and Norwegian Registry for Long-Term Mechanical Ventilation, Haukeland University Hospital, Bergen, Norway
| | - Frode Gallefoss
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Harvey O Coxson
- Dept of Radiology and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Amund Gulsvik
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| | - Per Bakke
- Dept of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
124
|
Martí-Centelles R, Murga J, Falomir E, Carda M, Marco JA. Synthesis and Biological Evaluation of Imines Structurally Related to Resveratrol as Dual Inhibitors of VEGF Protein Secretion and hTERT Gene Expression 1. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A group of 28 N-benzylidene aniline derivatives structurally related to the natural stilbene resveratrol has been prepared through condensation of anilines with the corresponding aldehydes. The ability of these imines to inhibit proliferation of two tumor cell lines (HT-29 and MCF-7) and one non-tumor cell line (HEK-293) was first determined. Subsequently, we determined the ability of some of the most cytotoxic compounds to inhibit the secretion of the VEGF-A factor in HT-29 cells and to downregulate the expression of the VEGF and hTERT genes, the latter one being involved in the activation of telomerase.
Collapse
Affiliation(s)
| | - Juan Murga
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Eva Falomir
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - Miguel Carda
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071 Castellón, Spain
| | - J. Alberto Marco
- Depart. de Q. Orgánica, Univ. de Valencia, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
125
|
Pereira SS, Máximo V, Coelho R, Batista R, Soares P, Guerreiro SG, Sobrinho-Simões M, Monteiro MP, Pignatelli D. Telomerase and N-Cadherin Differential Importance in Adrenocortical Cancers and Adenomas. J Cell Biochem 2017; 118:2064-2071. [PMID: 27886397 DOI: 10.1002/jcb.25811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Adrenocortical carcinomas (ACC) are most frequently highly aggressive tumors. We assessed the telomerase reverse transcriptase (TERT) and N-cadherin role in the biology of ACC and their potential utility as molecular biomarkers, in different types of tumoral adrenocortical tissue. A total of 48 adrenal cortex samples (39 tumoral and 9 normal adrenal glands) were studied. TERT promoter mutations were searched by PCR and Sanger sequencing in two hotspots positions (-124 and -146). Also, telomerase and N-cadherin expression were evaluated by immunohistochemistry. TERT promoter mutations were not detected in any of the samples either malignant or benign. Telomerase nuclear expression was present in 26.6% of ACC and in 45.5% of non-functioning adenomas. It was absent in benign Cushing's lesions and in normal adrenal glands. Contrarily, N-cadherin was always expressed in the cellular membranes of benign adenomas or normal adrenals but no expression was detected in the majority of ACC. Nuclear telomerase and membrane N-cadherin expression were positively correlated in ACCs. We conclude that in ACC, the loss of N-cadherin is a frequent phenomenon while the existence of TERT promoter mutations is not and nuclear telomerase expression is present in only a minority of cases. Since the loss of N-cadherin expression was identified in both high and low proliferative ACC, this marker should be considered important for diagnostic application. Our study also suggests the existence of a TERT non-canonical function in cell adhesion. J. Cell. Biochem. 118: 2064-2071, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Department of Anatomy and UMIB (Unit for Multidisciplinary Research in Biomedicine) of ICBAS, University of Porto, R. de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Medical Faculty, Department of Pathology and Oncology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Coelho
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Rui Batista
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Medical Faculty, Department of Pathology and Oncology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Susana G Guerreiro
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Medical Faculty, Department of Pathology and Oncology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.,Department of Pathology, Hospital S. João, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Mariana P Monteiro
- Department of Anatomy and UMIB (Unit for Multidisciplinary Research in Biomedicine) of ICBAS, University of Porto, R. de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S) da Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal.,Department of Endocrinology, Hospital S. João, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
126
|
Kumar A, Nilednu P, Kumar A, Sharma NK. Epigenetic perturbation driving asleep telomerase reverse transcriptase: Possible therapeutic avenues in carcinoma. Tumour Biol 2017; 39:1010428317695951. [PMID: 28347254 DOI: 10.1177/1010428317695951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
Abstract
In the last decade, implications of human telomerase reverse transcriptase (hTERT), a component of ribonucleoprotein telomerase in aging, senescence, and stem cell are highly evident. Besides, the activation of hTERT is also being documented several cancer types including carcinoma. The awakening of telomerase during carcinoma initiation and development is being seen with different perspectives including genetic and epigenetic tools and events. In view of several tumor progenitors genes (also referred as epigenetic mediators), telomerase is placed as key enzyme to achieve the carcinoma phenotype and sustain during the progression. It is true that swaying of telomerase in carcinoma could be facilitated with dedicated set of epigenetic modulators and modifiers players. These epigenetic alterations are heritable, potentially reversible, and seen as the epigenetic signature of carcinoma. Several papers converge to suggest that DNA methylation, histone modification, and small non-coding RNAs are the widely appreciated epigenetic changes towards hTERT modulation. In this review, we summarize the contribution of epigenetic factors in the telomerase activation and discuss potential avenues to achieve therapeutic intervention in carcinoma.
Collapse
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Pritish Nilednu
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Azad Kumar
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Pune, India
| |
Collapse
|
127
|
Khattar E, Tergaonkar V. Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Front Cell Dev Biol 2017; 5:1. [PMID: 28184371 PMCID: PMC5266692 DOI: 10.3389/fcell.2017.00001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Telomerase elongates telomeres and is crucial for maintaining genomic stability. While stem cells and cancer cells display high telomerase activity, normal somatic cells lack telomerase activity primarily due to transcriptional repression of telomerase reverse transcriptase (TERT), the catalytic component of telomerase. Transcription factor binding, chromatin status as well as epigenetic modifications at the TERT promoter regulates TERT transcription. Myc is an important transcriptional regulator of TERT that directly controls its expression by promoter binding and associating with other transcription factors. In this review, we discuss the current understanding of the molecular mechanisms behind regulation of TERT transcription by Myc. We also discuss future perspectives in investigating the regulation of Myc at TERT promoter during cancer development.
Collapse
Affiliation(s)
- Ekta Khattar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology, ASTAR Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology, ASTARSingapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore; Centre for Cancer Biology, University of South Australia and SA PathologyAdelaide, SA, Australia
| |
Collapse
|
128
|
Boscolo-Rizzo P, Da Mosto MC, Rampazzo E, Giunco S, Del Mistro A, Menegaldo A, Baboci L, Mantovani M, Tirelli G, De Rossi A. Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications. Cancer Metastasis Rev 2017; 35:457-74. [PMID: 27501725 PMCID: PMC5035656 DOI: 10.1007/s10555-016-9633-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Strongly associated with tobacco use, heavy alcohol consumption, and with high-risk human papillomavirus (HPV) infection, head and neck squamous cell carcinoma (HNSCC) is a frequently lethal, heterogeneous disease whose pathogenesis is a multistep and multifactorial process involving genetic and epigenetic events. The majority of HNSCC patients present with locoregional advanced stage disease and are treated with combined modality strategies that can markedly impair quality of life and elicit unpredictable results. A large fraction of those who undergo locoregional treatment and achieve a complete response later develop locoregional recurrences or second field tumors. Biomarkers that are thus able to stratify risk and enable clinicians to tailor treatment plans and to personalize post-therapeutic surveillance strategies are highly desirable. To date, only HPV status is considered a reliable independent predictor of treatment response and survival in patients with HNSCC arising from the oropharyngeal site. Recent studies suggest that telomere attrition, which may be an early event in human carcinogenesis, and telomerase activation, which is detected in up to 90 % of malignancies, could be potential markers of cancer risk and disease outcome. This review examines the current state of knowledge on and discusses the implications linked to telomere dysfunction and telomerase activation in the development and clinical outcome of HNSCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genetic Variation
- Genomic Instability
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/mortality
- Head and Neck Neoplasms/pathology
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Mice
- Prognosis
- Squamous Cell Carcinoma of Head and Neck
- Telomerase/metabolism
- Telomere/genetics
- Telomere Homeostasis
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Section of Otolaryngology and Regional Centre for Head and Neck Cancer, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Maria Cristina Da Mosto
- Section of Otolaryngology and Regional Centre for Head and Neck Cancer, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Enrica Rampazzo
- Section of Oncology and Immunology, Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, via Gattamelata 64, 35128, Padova, Italy
| | - Silvia Giunco
- Section of Oncology and Immunology, Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, via Gattamelata 64, 35128, Padova, Italy
| | - Annarosa Del Mistro
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto-IRCCS, Padova, Italy
| | - Anna Menegaldo
- Section of Otolaryngology and Regional Centre for Head and Neck Cancer, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Lorena Baboci
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto-IRCCS, Padova, Italy
| | - Monica Mantovani
- Section of Otolaryngology and Regional Centre for Head and Neck Cancer, Department of Neurosciences, University of Padova, Treviso, Italy
| | - Giancarlo Tirelli
- Department of Otorhinolaryngology and Head and Neck Surgery, University of Trieste, Trieste, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, via Gattamelata 64, 35128, Padova, Italy.
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto-IRCCS, Padova, Italy.
| |
Collapse
|
129
|
Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 771:15-31. [PMID: 28342451 DOI: 10.1016/j.mrrev.2016.11.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Telomere repeats at chromosomal ends, critical to genome integrity, are maintained through an elaborate network of proteins and pathways. Shelterin complex proteins shield telomeres from induction of DNA damage response to overcome end protection problem. A specialized ribonucleic protein, telomerase, maintains telomere homeostasis through repeat addition to counter intrinsic shortcomings of DNA replication that leads to gradual sequence shortening in successive mitoses. The biogenesis and recruitment of telomerase composed of telomerase reverse transcriptase (TERT) subunit and an RNA component, takes place through the intricate machinery that involves an elaborate number of molecules. The synthesis of telomeres remains a controlled and limited process. Inherited mutations in the molecules involved in the process directly or indirectly cause telomeropathies. Telomerase, while present in stem cells, is deactivated due to epigenetic silencing of the rate-limiting TERT upon differentiation in most of somatic cells with a few exceptions. However, in most of the cancer cells telomerase reactivation remains a ubiquitous process and constitutes one of the major hallmarks. Discovery of mutations within the core promoter of the TERT gene that create de novo binding sites for E-twenty-six (ETS) transcription factors provided a mechanism for cancer-specific telomerase reactivation. The TERT promoter mutations occur mainly in tumors from tissues with low rates of self-renewal. In melanoma, glioma, hepatocellular carcinoma, urothelial carcinoma and others, the promoter mutations have been shown to define subsets of patients with adverse disease outcomes, associate with increased transcription of TERT, telomerase reactivation and affect telomere length; in stem cells the mutations inhibit TERT silencing following differentiation into adult cells. The TERT promoter mutations cause an epigenetic switch on the mutant allele along with recruitment of pol II following the binding of GABPA/B1 complex that leads to mono-allelic expression. Thus, the TERT promoter mutations hold potential as biomarkers as well as future therapeutic targets.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
130
|
Activation of mutant TERT promoter by RAS-ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas. Proc Natl Acad Sci U S A 2016; 113:14402-14407. [PMID: 27911794 DOI: 10.1073/pnas.1611106113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although activating BRAF/NRAS mutations are frequently seen in melanomas, they are not sufficient to drive malignant transformation and require additional events. Frequent co-occurrence of mutations in the promoter for telomerase reverse transcriptase (TERT), along with BRAF alterations, has recently been noted and correlated with poorer prognosis, implicating a functional link between BRAF signaling and telomerase reactivation in melanomas. Here, we report that RAS-ERK signaling in BRAF mutant melanomas is critical for regulating active chromatin state and recruitment of RNA polymerase II at mutant TERT promoters. Our study provides evidence that the mutant TERT promoter is a key substrate downstream of the RAS-ERK pathway. Reactivating TERT and hence reconstituting telomerase is an important step in melanoma progression from nonmalignant nevi with BRAF mutations. Hence, combined targeting of RAS-ERK and TERT promoter remodeling is a promising avenue to limit long-term survival of a majority of melanomas that harbor these two mutations.
Collapse
|
131
|
Su X, Jiang X, Wang W, Wang H, Xu X, Lin A, Teng X, Wu H, Teng L. Association of telomerase reverse transcriptase promoter mutations with clinicopathological features and prognosis of thyroid cancer: a meta-analysis. Onco Targets Ther 2016; 9:6965-6976. [PMID: 27956840 PMCID: PMC5113912 DOI: 10.2147/ott.s116594] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The clinicopathological and prognostic significance of telomerase reverse transcriptase (TERT) promoter mutations have been widely investigated in thyroid cancer; however, the results are still discrepant. Systematic searches were performed in PubMed, Web of Science, Scopus, Ovid, and the Cochran Library databases for relevant articles prior to April 2016. Mutation rates were synthesized by R statistical software. The odds ratio or standardized mean difference with 95% confidence interval was pooled by Stata. A total of 22 studies with 4,907 cases were included in this meta-analysis. TERT promoter mutations tended to present in aggressive histological types including poorly differentiated thyroid cancer (33.37%), anaplastic thyroid cancer (38.69%), and tall-cell variant papillary thyroid cancer (30.23%). These promoter mutations were likely to exist in older patients and males and were well associated with larger tumor size, extrathyroidal extension, vascular invasion, lymph node metastasis, distant metastasis, advanced tumor stage, disease recurrence/persistence, and mortality. In addition, TERT promoter mutations (especially C228T) tended to coexist with BRAFV600E mutation, which indicated more aggressive tumor behavior. Therefore, TERT promoter mutations may be promising biomarkers for early diagnosis, risk stratification, prognostic prediction, and management of thyroid cancer.
Collapse
Affiliation(s)
| | | | | | | | - Xin Xu
- Department of Medical Oncology
| | | | | | - Huiling Wu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | |
Collapse
|
132
|
Niu ZS, Niu XJ, Wang WH. Genetic alterations in hepatocellular carcinoma: An update. World J Gastroenterol 2016; 22:9069-9095. [PMID: 27895396 PMCID: PMC5107590 DOI: 10.3748/wjg.v22.i41.9069] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genomic Instability
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Diagnostic Techniques
- Molecular Targeted Therapy
- Mutation
- Patient Selection
- Phenotype
- Polymorphism, Single Nucleotide
- Precision Medicine
- Predictive Value of Tests
- Signal Transduction
Collapse
|
133
|
Han MH, Lee DS, Jeong JW, Hong SH, Choi IW, Cha HJ, Kim S, Kim HS, Park C, Kim GY, Moon SK, Kim WJ, Hyun Choi Y. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev Res 2016; 78:37-48. [PMID: 27654302 DOI: 10.1002/ddr.21367] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Preclinical Research Fucoidan, a sulfated polysaccharide, is a compound found in various species of seaweed that has anti-viral, anti-bacterial, anti-oxidant, anti-inflammatory, and immunomodulatory activities; however, the underlying relationship between apoptosis and anti-telomerase activity has not been investigated. Here, we report that fucoidan-induced apoptosis in 5637 human bladder cancer cells was associated with an increase in the Bax/Bcl-2 ratio, the dissipation of the mitochondrial membrane potential (MMP, Δψm), and cytosolic release of cytochrome c from the mitochondria. Under the same experimental conditions, fucoidan-treatment decreased hTERT (human telomerase reverse transcriptase) expression and the transcription factors, c-myc and Sp1. This was accompanied by decreased telomerase activity. Fucoidan-treatment also suppressed activation of the PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling enhanced fucoidan-induced apoptosis and anti-telomerase activity. Meanwhile, fucoidan treatment increased the generation of intracellular ROS, whereas the over-elimination of ROS by N-acetylcysteine, an anti-oxidant, attenuated fucoidan-induced apoptosis, inhibition of hTERT, c-myc, and Sp1 expression, and reversed fucoidan-induced inactivation of the PI3K/Akt signaling pathway. Collectively, these data indicate that the induction of apoptosis and the inhibition of telomerase activity by fucoidan are mediated via ROS-dependent inactivation of the PI3K/Akt pathway. Drug Dev Res 78 : 37-48, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Min Ho Han
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea
| | - Dae-Sung Lee
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea
| | - Jin-Woo Jeong
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 614-052, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 608-756, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 602-702, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan, 614-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yung Hyun Choi
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, 614-714, Republic of Korea.,Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 614-052, Republic of Korea
| |
Collapse
|
134
|
Akıncılar SC, Khattar E, Boon PLS, Unal B, Fullwood MJ, Tergaonkar V. Long-Range Chromatin Interactions Drive Mutant TERT Promoter Activation. Cancer Discov 2016; 6:1276-1291. [PMID: 27650951 DOI: 10.1158/2159-8290.cd-16-0177] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Abstract
Cancer-specific TERT promoter mutations (-146C>T and -124C>T) have been linked to reactivation of the epigenetically silenced telomerase reverse transcriptase gene (TERT). Understanding how these single-nucleotide alterations drive TERT reactivation is a fundamental unanswered question and is key for making successful therapeutics. We show that unlike wild-type promoters, recruitment of the transcription factor GABPA specifically to mutant TERT promoters mediates long-range chromatin interaction and enrichment of active histone marks, and hence drives TERT transcription. CRISPR-mediated reversal of mutant TERT promoters, or deletion of its long-range interacting chromatin, abrogates GABPA binding and long-range interactions, leading to depletion of active histone marks, loss of POL2 recruitment, and suppression of TERT transcription. In contrast, de novo introduction of a TERT promoter mutation enables GABPA binding and upregulation of TERT via long-range interactions, acquisition of active histone marks, and subsequent POL2 recruitment. This study provides a unifying mechanistic insight into activation of mutant TERT promoters across various human cancers. SIGNIFICANCE This study identifies a key mechanism by which cancer-specific mutant TERT promoters cause reactivation of TERT Because the mechanism uncovered here is not utilized by promoters that drive TERT in normal cells, this mechanism could be exploited to make inhibitors which have the potential to block telomerase function and hence the progression of up to 90% of human cancers. Cancer Discov; 6(11); 1276-91. ©2016 AACR.See related commentary by Min and Shay, p. 1212This article is highlighted in the In This Issue feature, p. 1197.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Ekta Khattar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | | | - Bilal Unal
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | | | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
135
|
Ropio J, Merlio JP, Soares P, Chevret E. Telomerase Activation in Hematological Malignancies. Genes (Basel) 2016; 7:genes7090061. [PMID: 27618103 PMCID: PMC5039560 DOI: 10.3390/genes7090061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Telomerase expression and telomere maintenance are critical for cell proliferation and survival, and they play important roles in development and cancer, including hematological malignancies. Transcriptional regulation of the rate-limiting subunit of human telomerase reverse transcriptase gen (hTERT) is a complex process, and unveiling the mechanisms behind its reactivation is an important step for the development of diagnostic and therapeutic applications. Here, we review the main mechanisms of telomerase activation and the associated hematologic malignancies.
Collapse
Affiliation(s)
- Joana Ropio
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
- Institute of Biomedical Sciences of Abel Salazar, University of Porto, Porto 4050-313, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)-Cancer Biology, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Jean-Philippe Merlio
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
- Tumor Bank and Tumor Biology Laboratory, University Hospital Center Bordeaux, Pessac 33604, France.
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup)-Cancer Biology, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- Department of Pathology and Oncology, Medical Faculty of Porto University, Porto 4200-319, Portugal.
| | - Edith Chevret
- Cutaneous Lymphoma Oncogenesis Team INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, Bordeaux 33076, France.
| |
Collapse
|
136
|
Abstract
Poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are aggressive thyroid tumors associated with a high mortality rate of 38-57 % and almost 100 % respectively. Several recent studies utilizing next generation sequencing techniques have shed lights on the molecular pathogenesis of these tumors, providing evidence to support a stepwise tumoral progression from well-differentiated to poorly differentiated, and finally to anaplastic thyroid carcinomas. While BRAF (V600E) and RAS mutations remain the main drivers in aggressive thyroid carcinoma, PDTC and ATC gains additional mutations, e.g., TERT promoter mutation, TP53 mutation, as well as frequent alterations in PIK3CA-PTEN-AKT-mTOR pathway, SWI-SNF complex, histomethyltransferases, and mismatch repair genes. RAS-mutated PDTCs are commonly associated with a histologic phenotype defined by Turin proposal, high frequency of distant metastasis, high thyroid differentiation score, and a RAS-like gene expression profile, whereas BRAF-mutated PDTCs are usually defined solely by the Memorial Sloan Kettering Cancer Center (MSKCC) criteria with a propensity for nodal metastasis and are less differentiated with a BRAF-like expression signature. Such demarcation is largely lost in ATC which is characterized by genomic complexity, heavy mutation burden, and profound undifferentiation. Additionally, several molecular events, e.g., EIF1AX mutation, mutation burden, and chromosome 1q gain in PDTCs, as well as EIF1AX mutation, chromosome 13q loss, and 20q gains in ATCs, may serve as adverse prognostic markers predicting poor clinical outcome.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
137
|
Telomerase: The Devil Inside. Genes (Basel) 2016; 7:genes7080043. [PMID: 27483324 PMCID: PMC4999831 DOI: 10.3390/genes7080043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in a telomerase positive stem/progenitor cell, or rely in alternative lengthening of telomeres, a telomerase-independent telomere-length maintenance mechanism. In this review, we will focus on the telomerase positive tumors. In this context, the recent findings that telomerase reverse transcriptase (TERT) promoter mutations represent the most common non-coding mutations in human cancer have flared up the long-standing discussion whether cancer originates from telomerase positive stem cells or telomerase reactivation is a final step in cellular transformation. Here, we will discuss the pros and cons of both concepts in the context of telomere length-dependent and telomere length-independent functions of telomerase. Together, these observations may provoke a re-evaluation of telomere and telomerase based therapies, both in telomerase inhibition for cancer therapy and telomerase activation for tissue regeneration and anti-ageing strategies.
Collapse
|
138
|
Zhang F, Cheng D, Wang S, Zhu J. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene. Genes (Basel) 2016; 7:genes7070030. [PMID: 27367732 PMCID: PMC4962000 DOI: 10.3390/genes7070030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT), is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - De Cheng
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| |
Collapse
|
139
|
Abstract
Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.
Collapse
|
140
|
Durand MJ, Zinkevich NS, Riedel M, Gutterman DD, Nasci VL, Salato VK, Hijjawi JB, Reuben CF, North PE, Beyer AM. Vascular Actions of Angiotensin 1-7 in the Human Microcirculation: Novel Role for Telomerase. Arterioscler Thromb Vasc Biol 2016; 36:1254-62. [PMID: 27079876 DOI: 10.1161/atvbaha.116.307518] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study examined vascular actions of angiotensin 1-7 (ANG 1-7) in human atrial and adipose arterioles. APPROACH AND RESULTS The endothelium-derived hyperpolarizing factor of flow-mediated dilation (FMD) switches from antiproliferative nitric oxide (NO) to proatherosclerotic hydrogen peroxide in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1-7, we tested the hypothesis that overnight ANG 1-7 treatment restores the NO component of FMD in arterioles from patients with CAD. Endothelial telomerase activity is essential for preserving the NO component of vasodilation in the human microcirculation; thus, we also tested whether telomerase activity was necessary for ANG 1-7-mediated vasoprotection by treating separate arterioles with ANG 1-7±the telomerase inhibitor 2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid. ANG 1-7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from patients with CAD. In atrial arterioles from patients with CAD incubated with ANG 1-7 overnight, the NO synthase inhibitor NG-nitro-l-arginine methyl ester abolished FMD, whereas the hydrogen peroxide scavenger polyethylene glycol catalase had no effect. Conversely, in vessels incubated with ANG 1-7+2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid, NG-nitro-l-arginine methyl ester had no effect on FMD, but polyethylene glycol catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1-7 significantly increased telomerase activity. These results indicate that ANG 1-7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Furthermore, ANG 1-7 treatment is sufficient to restore the NO component of FMD in arterioles from patients with CAD in a telomerase-dependent manner. CONCLUSIONS ANG 1-7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity.
Collapse
Affiliation(s)
- Matthew J Durand
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Natalya S Zinkevich
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Michael Riedel
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - David D Gutterman
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Victoria L Nasci
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Valerie K Salato
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - John B Hijjawi
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Charles F Reuben
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Paula E North
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.)
| | - Andreas M Beyer
- From the Department of Physical Medicine and Rehabilitation (M.J.D.), Department of Medicine, Cardiovascular Center (M.J.D., N.S.Z., M.R., D.D.G., V.L.N., A.M.B.), Department of Pathology, Division of Pediatric Pathology (V.K.S., P.E.N.), Department of Plastic Surgery (J.B.H.), Department of Cardiothoracic Surgery (C.F.R.), and Department of Physiology (A.M.B.), Medical College of Wisconsin, Milwaukee; and Department of Health and Medicine, Carroll University, Waukesha, WI (N.S.Z.).
| |
Collapse
|
141
|
Li Y, Tergaonkar V. Telomerase reactivation in cancers: Mechanisms that govern transcriptional activation of the wild-type vs. mutant TERT promoters. Transcription 2016; 7:44-9. [PMID: 27028424 DOI: 10.1080/21541264.2016.1160173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcriptional activation of telomerase reverse transcriptase (TERT) gene is a rate-limiting determinant in the reactivation of telomerase expression in cancers. TERT promoter mutations represent one of the fundamental mechanisms of TERT reactivation in cancer development. We review recent studies that elucidate the molecular mechanisms underscoring activation of mutant TERT promoters.
Collapse
Affiliation(s)
- Yinghui Li
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Singapore
| | - Vinay Tergaonkar
- a Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research) , Singapore , Singapore.,b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore (NUS) , Singapore , Singapore.,c Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide , Australia
| |
Collapse
|