101
|
Lebel M, Robinson P, Cyr M. Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases. Can J Neurol Sci 2014; 34:18-29. [PMID: 17352343 DOI: 10.1017/s0317167100005746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dopamine (DA) receptors, which are heavily expressed in the caudate/putamen of the brain, represent the molecular target of several drugs used in the treatment of various neurological disorders, such as Parkinson's disease. Although most of the drugs are very effective in alleviating the symptoms associated with these conditions, their long-term utilization could lead to the development of severe side-effects. In addition to uncovering novel mediators of physiological DA receptor functions, recent research advances are suggesting a role of these receptors in toxic effects on neurons. For instance, accumulating evidence indicates that DA receptors, particularly D1 receptors, are central in the neuronal toxicity induced by elevated synaptic levels of DA. In this review, we will discuss recent findings on DA receptors as regulators of long term neuronal dysfunction and neurodegenerative processes.
Collapse
Affiliation(s)
- Manon Lebel
- Neuroscience Research Group, Université du Québec à Trois-Rivières, Canada
| | | | | |
Collapse
|
102
|
Hong S, Bi M, Wang L, Kang Z, Ling L, Zhao C. CLC-3 channels in cancer (review). Oncol Rep 2014; 33:507-14. [PMID: 25421907 DOI: 10.3892/or.2014.3615] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 11/06/2022] Open
Abstract
Ion channels are involved in regulating cell proliferation and apoptosis (programed cell death). Since increased cellular proliferation and inhibition of apoptosis are characteristic features of tumorigenesis, targeting ion channels is a promising strategy for treating cancer. CLC-3 is a member of the voltage-gated chloride channel superfamily and is expressed in many cancer cells. In the plasma membrane, CLC-3 functions as a chloride channel and is associated with cell proliferation and apoptosis. CLC-3 is also located in intracellular compartments, contributing to their acidity, which increases sequestration of drugs and leads to chemotherapy drug resistance. In this review, we summarize the recent findings concerning the involvement of CLC-3 in cancer and explore its potential in cancer therapy.
Collapse
Affiliation(s)
- Sen Hong
- Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, The China‑Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, P.R. China
| | - Lei Wang
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Zhenhua Kang
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Limian Ling
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Chunyan Zhao
- Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
103
|
Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2532-46. [PMID: 25450339 DOI: 10.1016/j.bbamem.2014.10.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|
104
|
Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol 2014; 22:427-43. [PMID: 25027630 PMCID: PMC5472047 DOI: 10.1016/j.intimp.2014.06.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022]
Abstract
The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.
Collapse
Affiliation(s)
- Lisheng Ge
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Neil T Hoa
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Zechariah Wilson
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | | | - Xiao-Tang Kong
- Department of Neuro-Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin R Jadus
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Pathology and Laboratory Medicine Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA; Pathology and Laboratory Medicine, Med Sci I, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
105
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
106
|
Feng J, Yu J, Pan X, Li Z, Chen Z, Zhang W, Wang B, Yang L, Xu H, Zhang G, Xu Z. HERG1 functions as an oncogene in pancreatic cancer and is downregulated by miR-96. Oncotarget 2014; 5:5832-44. [PMID: 25071021 PMCID: PMC4170607 DOI: 10.18632/oncotarget.2200] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy with an extremely poor prognosis. The human ether-a-go-go-related potassium channel (HERG1) is a human rapid delayed rectifier, which is involved in many crucial cellular events. In this article, we find that HERG1 expression is dramatically increased both in pancreatic cancer tissues and cell lines, and that increased HERG1 expression is significantly related to the development of pancreatic cancer. HERG1 silencing in pancreatic cancer-derived cell lines PANC-1 and CFPAC-1 strongly inhibits their malignant capacity in vitro as well as tumorigenicity and metastasis in nude mice. In addition, HERG1 is identified as a direct target of miR-96, which is downregulated in pancreatic cancer tissues and cell lines. Ectopic expression of miR-96 represses the HERG1 expression in pancreatic cancer and significantly inhibits malignant behavior of pancreatic cancer cells in vitro and in vivo. Collectively, our findings suggest that miR-96 acts as a tumor suppressor in pancreatic cancer and may therefore serve as a useful therapeutic target for the development of new anticancer therapy.
Collapse
Affiliation(s)
- Jin Feng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junbo Yu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaolin Pan
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zengliang Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zheng Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenjie Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoxin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
107
|
Verma P, Tapadia MG. Epithelial immune response in Drosophila malpighian tubules: interplay between Diap2 and ion channels. J Cell Physiol 2014; 229:1078-95. [PMID: 24374974 DOI: 10.1002/jcp.24541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 11/12/2022]
Abstract
Systemic immune response via the Immune deficiency pathway requires Drosophila inhibitor of apoptosis protein 2 to activate the NF-κB transcription factor Relish. Malpighian tubules (MTs), simple epithelial tissue, are the primary excretory organs, performing additional role in providing protection to Drosophila against pathogenic infections. MTs hold a strategic position in Drosophila as one of the larval tissues that are carried over to adults, unlike other larval tissues that are histolysed during pupation. In this paper we show that Diap2 is an important regulator of local epithelial immune response in MTs and depletion of Diap2 from MTs, increases susceptibility of flies to infection. In the absence of Diap2, activation and translocation of Relish to the nucleus is abolished and as a consequence the production of IMD pathway dependent AMPs are reduced. Ion channels, (Na(+)/K(+))-ATPase and V-ATPase, are important for the immune response of MTs and expression of AMPs and the IMD pathway genes are impaired on inhibition of transporters, and they restrict the translocation of Relish into the nucleus. We show that Diap2 could be regulating ion channels, as loss of Diap2 consequently reduces the expression of ion channels and affects the balance of ion concentrations which results in reduced uric acid deposition. Thus Diap2 seems to be a key regulator of epithelial immune response in MTs, perhaps by modulating ion channels.
Collapse
Affiliation(s)
- Puja Verma
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
108
|
Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.2.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
109
|
Tyler SEB. The Work Surfaces of Morphogenesis: The Role of the Morphogenetic Field. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13752-014-0177-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Wei X, Sun H, Yan H, Zhang C, Zhang S, Liu X, Hua N, Ma X, Zheng J. ZC88, a novel 4-amino piperidine analog, inhibits the growth of neuroblastoma cells through blocking hERG potassium channel. Cancer Biol Ther 2014; 14:450-7. [PMID: 23917377 DOI: 10.4161/cbt.24423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many studies have provided convincing evidence for hERG as an important diagnostic and prognostic factor in human cancers, as well as a useful target for antineoplastic therapy. Our previous study also revealed that knockdown of herg gene expression by shRNA interference inhibited the growth of neuroblastoma cells in vitro and in vivo. In the experiment, a novel 4-amino piperidine analog, ZC88, was examined for its effect on hERG potassium channels and its antitumor potency was observed in vitro and in vivo. The results showed that ZC88 could block hERG1 and hERG1b channels expressed in Xenopus oocytes in a concentration-dependent manner. ZC88 displayed significant antiproliferative activity in several tumor cell lines and the tumor cells with higher expression of hERG presented higher sensitivity to ZC88. The mitotic progression of tumor cells was markedly suppressed in the presence of ZC88 through arresting cells in G₀/G₁ phase. ZC88 significantly inhibited the tumor growth in nude mice at a dosage with slight influence on the cardiac QT interval. The antitumor effect of ZC88 was correlated at least partly with its blockage of hERG channels, which implicated a positive role of hERG potassium channel in tumor cell proliferation.
Collapse
Affiliation(s)
- Xiaoli Wei
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Hosseinzadeh Z, Almilaji A, Honisch S, Pakladok T, Liu G, Bhavsar SK, Ruth P, Shumilina E, Lang F. Upregulation of the large conductance voltage- and Ca2+-activated K+ channels by Janus kinase 2. Am J Physiol Cell Physiol 2014; 306:C1041-9. [PMID: 24696148 DOI: 10.1152/ajpcell.00209.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The iberiotoxin-sensitive large conductance voltage- and Ca(2+)-activated potassium (BK) channels (maxi-K(+)-channels) hyperpolarize the cell membrane thus supporting Ca(2+) entry through Ca(2+)-release activated Ca(2+) channels. Janus kinase-2 (JAK2) has been identified as novel regulator of ion transport. To explore whether JAK2 participates in the regulation of BK channels, cRNA encoding Ca(2+)-insensitive BK channels (BK(M513I+Δ899-903)) was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, gain-of-function (V617F)JAK2, or inactive (K882E)JAK2. K(+) conductance was determined by dual electrode voltage clamp and BK-channel protein abundance by confocal microscopy. In A204 alveolar rhabdomyosarcoma cells, iberiotoxin-sensitive K(+) current was determined utilizing whole cell patch clamp. A204 cells were further transfected with JAK2 and BK-channel transcript, and protein abundance was quantified by RT-PCR and Western blotting, respectively. As a result, the K(+) current in BK(M513I+Δ899-903)-expressing oocytes was significantly increased following coexpression of JAK2 or (V617F)JAK2 but not (K882E)JAK2. Coexpression of the BK channel with (V617F)JAK2 but not (K882E)JAK2 enhanced BK-channel protein abundance in the oocyte cell membrane. Exposure of BK-channel and (V617F)JAK2-expressing oocytes to the JAK2 inhibitor AG490 (40 μM) significantly decreased K(+) current. Inhibition of channel insertion by brefeldin A (5 μM) decreased the K(+) current to a similar extent in oocytes expressing the BK channel alone and in oocytes expressing the BK channel and (V617F)JAK2. The iberiotoxin (50 nM)-sensitive K(+) current in rhabdomyosarcoma cells was significantly decreased by AG490 pretreatment (40 μM, 12 h). Moreover, overexpression of JAK2 in A204 cells significantly enhanced BK channel mRNA and protein abundance. In conclusion, JAK2 upregulates BK channels by increasing channel protein abundance in the cell membrane.
Collapse
Affiliation(s)
| | - Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Tatsiana Pakladok
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - GuoXing Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Shefalee K Bhavsar
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Peter Ruth
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| |
Collapse
|
112
|
Etem EO, Bal R, Akağaç AE, Kuloglu T, Tuzcu M, Andrievsky GV, Buran I, Nedzvetsky VS, Baydas G. The effects of hydrated C(60) fullerene on gene expression profile of TRPM2 and TRPM7 in hyperhomocysteinemic mice. J Recept Signal Transduct Res 2014; 34:317-24. [PMID: 24646197 DOI: 10.3109/10799893.2014.896381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is associated with neurodegenerative diseases. Transient receptor potential melastatin (TRPM2) and TRPM7 channels may be activated by oxidative stress. Hydrated C(60) fullerene (C(60)HyFn) have recently gained considerable attention as promising candidates for neurodegenerative states. We aimed to examine the effects on TRPM2 and TRPM7 gene expression of C(60)HyFn due to marked antioxidant activity in HHcy mice. METHODS C57BL/6 J. mice were divided into four groups: (1) Control group, (2) HHcy, (3) HHcy + C(60)HyFn-treated group and (4) C(60)HyFn-treated group. TRPM2 and TRPM7 gene expression in brains of mice were detected by real-time PCR, Western blotting and immunohistochemistry. Apoptosis in brain were assessed by TUNEL staining. RESULTS mRNA expression levels of TRPM2 were significantly increased in HHcy group compared to the control group. C(60)HyFn administration significantly decreased serum levels of homocysteine and TRPM2 mRNA levels in HHcy + C(60)HyFn group. Whereas, HHcy-treatment and C(60)HyFn administration did not change the expression of TRPM7. CONCLUSION Administration of C(60)HyFn in HHcy mice significantly reduces serum homocysteine level, neuronal apoptosis and expression level of TRPM2 gene. Increased expression level of TRPM2 induced by oxidative stress might be involved in the ethiopathogenesis of HHcy related neurologic diseases.
Collapse
Affiliation(s)
- Ebru Onalan Etem
- Department of Medical Biology, Faculty of Medicine, Firat University , Elazig , Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Bortner CD, Cidlowski JA. Ion channels and apoptosis in cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130104. [PMID: 24493752 DOI: 10.1098/rstb.2013.0104] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Humans maintain a constant cell number throughout their lifespan. This equilibrium of cell number is accomplished when cell proliferation and cell death are kept balanced, achieving a steady-state cell number. Abnormalities in cell growth or cell death can lead to an overabundance of cells known as neoplasm or tumours. While the perception of cancer is often that of an uncontrollable rate of cell growth or increased proliferation, a decrease in cell death can also lead to tumour formation. Most cells when detached from their normal tissue die. However, cancer cells evade cell death, tipping the balance to an overabundance of cell number. Therefore, overcoming this resistance to cell death is a decisive factor in the treatment of cancer. Ion channels play a critical role in cancer in regards to cell proliferation, malignant angiogenesis, migration and metastasis. Additionally, ion channels are also known to be critical components of apoptosis. In this review, we discuss the modes of cell death focusing on the ability of cancer cells to evade apoptosis. Specifically, we focus on the role ion channels play in controlling and regulating life/death decisions and how they can be used to overcome resistance to apoptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, , Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
114
|
Lang F, Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130108. [PMID: 24493756 DOI: 10.1098/rstb.2013.0108] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, , Gmelinstrasse 5, Tübingen 72076, Germany
| | | |
Collapse
|
115
|
Turner KL, Sontheimer H. Cl- and K+ channels and their role in primary brain tumour biology. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130095. [PMID: 24493743 DOI: 10.1098/rstb.2013.0095] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Profound cell volume changes occur in primary brain tumours as they proliferate, invade surrounding tissue or undergo apoptosis. These volume changes are regulated by the flux of Cl(-) and K(+) ions and concomitant movement of water across the membrane, making ion channels pivotal to tumour biology. We discuss which specific Cl(-) and K(+) channels are involved in defined aspects of glioma biology and how these channels are regulated. Cl(-) is accumulated to unusually high concentrations in gliomas by the activity of the NKCC1 transporter and serves as an osmolyte and energetic driving force for volume changes. Cell volume condensation is required as cells enter M phase of the cell cycle and this pre-mitotic condensation is caused by channel-mediated ion efflux. Similarly, Cl(-) and K(+) channels dynamically regulate volume in invading glioma cells allowing them to adjust to small extracellular brain spaces. Finally, cell condensation is a hallmark of apoptosis and requires the concerted activation of Cl(-) and Ca(2+)-activated K(+) channels. Given the frequency of mutation and high importance of ion channels in tumour biology, the opportunity exists to target them for treatment.
Collapse
Affiliation(s)
- Kathryn L Turner
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham, , 1719 6th Avenue South, CIRC 410, Birmingham, AL 35294, USA
| | | |
Collapse
|
116
|
Marino G, Kotsias B. Cystic fibrosis transmembrane regulator (CFTR) in human trophoblast BeWo cells and its relation to cell migration. Placenta 2014; 35:92-8. [DOI: 10.1016/j.placenta.2013.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022]
|
117
|
Revermann M, Neofitidou S, Kirschning T, Schloss M, Brandes RP, Hofstetter C. Inhalation of the BK(Ca)-opener NS1619 attenuates right ventricular pressure and improves oxygenation in the rat monocrotaline model of pulmonary hypertension. PLoS One 2014; 9:e86636. [PMID: 24497961 PMCID: PMC3909005 DOI: 10.1371/journal.pone.0086636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/11/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Right heart failure is a fatal consequence of chronic pulmonary hypertension (PH). The development of PH is characterized by increased proliferation of vascular cells, in particular pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells. In the course of PH, an escalated right ventricular (RV) afterload occurs, which leads to increased perioperative morbidity and mortality. BK(Ca) channels are ubiquitously expressed in vascular smooth muscle cells and their opening induces cell membrane hyperpolarization followed by vasodilation. Moreover, BK activation induces anti-proliferative effects in a multitude of cell types. On this basis, we hypothesized that treatment with the nebulized BK channel opener NS1619 might be a therapy option for pulmonary hypertension and tested this in rats. METHODS (1) Rats received monocrotaline injection for PH induction. Twenty-four days later, rats were anesthetized and NS1619 or the solvent was administered by inhalation. Systemic hemodynamic parameters, RV hemodynamic parameters, and blood gas analyses were measured before as well as 30 and 120 minutes after inhalation. (2) Rat PASMCs were stimulated with PDGF-BB in the presence and absence of NS1619. AKT, ERK1 and ERK2 activation were investigated by western blot analyses, and relative cell number was determined 48 hours after stimulation. RESULTS Inhalation of a 12 µM and 100 µM NS1619 solution significantly reduced RV pressure without affecting systemic arterial pressure. Blood gas analyses demonstrated significantly reduced carbon dioxide and improved oxygenation in NS1619-treated animals pointing towards a considerable pulmonary shunt-reducing effect. In PASMC's, NS1619 (100 µM) significantly attenuated PASMC proliferation by a pathway independent of AKT and ERK1/2 activation. CONCLUSION NS1619 inhalation reduces RV pressure and improves oxygen supply and its application inhibits PASMC proliferation in vitro. Hence, BK opening might be a novel option for the treatment of pulmonary hypertension.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Becaplermin
- Benzimidazoles/administration & dosage
- Benzimidazoles/pharmacology
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Hemodynamics/drug effects
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Monocrotaline
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxygen/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Pulmonary Artery/cytology
- Rats
- Rats, Sprague-Dawley
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- Marc Revermann
- Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- Institute for Cardiovascular Physiology, Medical Faculty of the Goethe-University Frankfurt, Frankfurt, Germany
| | - Skevi Neofitidou
- Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Thomas Kirschning
- Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Manuel Schloss
- Institute for Cardiovascular Physiology, Medical Faculty of the Goethe-University Frankfurt, Frankfurt, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Medical Faculty of the Goethe-University Frankfurt, Frankfurt, Germany
| | - Christian Hofstetter
- Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
118
|
Fry CH, Jabr RI. T-type Ca2+ channels and the urinary and male genital tracts. Pflugers Arch 2014; 466:781-9. [PMID: 24463704 DOI: 10.1007/s00424-014-1446-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
T-type Ca(2+) channels are widely expressed throughout the urinary and male genital tracts, generally alongside L-type Ca(2+) channels. The use of pharmacological blockers of these channels has suggested functional roles in all regions, with the possible exception of the ureter. Their functional expression is apparent not just in smooth muscle cells but also in interstitial cells that lie in close proximity to muscle, nerve and epithelial components of these tissues. Thus, T-type Ca(2+) channels can contribute directly to modulation of muscle function and indirectly to changes of epithelial and nerve function. T-type Ca(2+) channel activity modulates phasic contractile activity, especially in conjunction with Ca(2+)-activated K(+) channels, and also to agonist-dependent responses in different tissues. Upregulation of channel density occurs in pathological conditions associated with enhanced contractile responses, e.g. overactive bladder, but it is unclear if this is causal or a response to the pathological state. Moreover, T-type Ca(2+) channels may have a role in the development of prostate tumours regulating the secretion of mitogens from neuroendocrine cells. Although a number of selective channel blockers exist, their relative selectivity over L-type Ca(2+) channels is often low and makes evaluation of T-type Ca(2+) channel function in the whole organism difficult.
Collapse
Affiliation(s)
- C H Fry
- Department of Biochemistry and Physiology, University of Surrey, Guildford, GU2 7XH, UK,
| | | |
Collapse
|
119
|
Chen D, Yu SP, Wei L. Ion channels in regulation of neuronal regenerative activities. Transl Stroke Res 2014; 5:156-62. [PMID: 24399572 DOI: 10.1007/s12975-013-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 02/08/2023]
Abstract
The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system, the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treat neurodegenerative diseases because of the regenerative capability of the stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones, and axon outgrowth after injury.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | | | | |
Collapse
|
120
|
Kito H, Yamamura H, Suzuki Y, Ohya S, Asai K, Imaizumi Y. Membrane Hyperpolarization Induced by Endoplasmic Reticulum Stress Facilitates Ca2+ Influx to Regulate Cell Cycle Progression in Brain Capillary Endothelial Cells. J Pharmacol Sci 2014; 125:227-32. [DOI: 10.1254/jphs.14002sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
121
|
An L, Li Z, Zhang T. Reversible effects of vitamins C and E combination on oxidative stress-induced apoptosis in melamine-treated PC12 cells. Free Radic Res 2013; 48:239-50. [PMID: 24182201 DOI: 10.3109/10715762.2013.861598] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Due to its high nitrogen content, melamine was deliberately added to raw milk for increasing the apparent protein content. Previous studies showed that melamine-induced apoptosis and oxidative damage on PC12 cells and rats' hippocampus. Several evidences suggested that vitamin antioxidant reduced oxidative stress and improved organic function. Whether treatments with antioxidant vitamins C or E, otherwise combination of them can attenuate oxidative stress after melamine administration remains to be elucidated. In this study, the reversible effects of vitamin antioxidants was investigated on melamine-induced neurotoxicity in cultured PC12 cells, an in vitro model of neuronal cells. When comparing vitamin C and E, the combination of both statistically increased PC12 cells viability. The results further showed that vitamin complex has effectively reduced the formation of reaction oxygen species, decreased the level of malondialdehyde, and elevated the activities of antioxidative enzymes. Hoechst 33342 staining and flow cytometric analysis of apoptosis showed that vitamin combination treatment effectively prevented PC12 cells from this melamine-induced apoptosis. It revealed the apoptotic nuclear features of the melamine-induced cell death. Additionally, a combination treatment of vitamins effectively inhibited apoptosis via blocking the increased activation of caspase-3. In summary, the vitamin E and C combination treatment could rescue PC12 cells from the injury induced by melamine through the downregulation of oxidative stress and prevention of melamine-induced apoptosis.
Collapse
Affiliation(s)
- L An
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , P. R. China
| | | | | |
Collapse
|
122
|
Hydrogen sulfide augments the proliferation and survival of human induced pluripotent stem cell–derived mesenchymal stromal cells through inhibition of BKCa. Cytotherapy 2013; 15:1395-405. [DOI: 10.1016/j.jcyt.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/09/2013] [Accepted: 06/16/2013] [Indexed: 01/01/2023]
|
123
|
Williams S, Bateman A, O'Kelly I. Altered expression of two-pore domain potassium (K2P) channels in cancer. PLoS One 2013; 8:e74589. [PMID: 24116006 PMCID: PMC3792113 DOI: 10.1371/journal.pone.0074589] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/03/2013] [Indexed: 01/31/2023] Open
Abstract
Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P) potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and subsequently the electrical activity and behaviour of cells in which they are expressed. The K2P family of channels has 15 mammalian members and already 4 members of this family (K2P2.1, K2P3.1, K2P9.1, K2P5.1) have been implicated in cancer. Here we examine the expression of all 15 members of the K2P family of channels in a range of cancer types. This was achieved using the online cancer microarray database, Oncomine (www.oncomine.org). Each gene was examined across 20 cancer types, comparing mRNA expression in cancer to normal tissue. This analysis revealed all but 3 K2P family members (K2P4.1, K2P16.1, K2P18.1) show altered expression in cancer. Overexpression of K2P channels was observed in a range of cancers including breast, leukaemia and lung while more cancers (brain, colorectal, gastrointestinal, kidney, lung, melanoma, oesophageal) showed underexpression of one or more channels. K2P1.1, K2P3.1, K2P12.1, were overexpressed in a range of cancers. While K2P1.1, K2P3.1, K2P5.1, K2P6.1, K2P7.1 and K2P10.1 showed significant underexpression across the cancer types examined. This analysis supports the view that specific K2P channels may play a role in cancer biology. Their altered expression together with their ability to impact the function of other ion channels and their sensitivity to environmental stimuli (pO2, pH, glucose, stretch) makes understanding the role these channels play in cancer of key importance.
Collapse
Affiliation(s)
- Sarah Williams
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew Bateman
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ita O'Kelly
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail: I.M.O'
| |
Collapse
|
124
|
Gackière F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2013; 2:941-51. [PMID: 24143281 PMCID: PMC3773341 DOI: 10.1242/bio.20135215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022] Open
Abstract
It is strongly suspected that potassium (K+) channels are involved in various aspects of prostate cancer development, such as cell growth. However, the molecular nature of those K+ channels implicated in prostate cancer cell proliferation and the mechanisms through which they control proliferation are still unknown. This study uses pharmacological, biophysical and molecular approaches to show that the main voltage-dependent K+ current in prostate cancer LNCaP cells is carried by large-conductance BK channels. Indeed, most of the voltage-dependent current was inhibited by inhibitors of BK channels (paxillin and iberiotoxin) and by siRNA targeting BK channels. In addition, we reveal that BK channels constitute the main K+ channel family involved in setting the resting membrane potential in LNCaP cells at around −40 mV. This consequently promotes a constitutive calcium entry through T-type Cav3.2 calcium channels. We demonstrate, using single-channel recording, confocal imaging and co-immunoprecipitation approaches, that both channels form macromolecular complexes. Finally, using flow cytometry cell cycle measurements, cell survival assays and Ki67 immunofluorescent staining, we show that both BK and Cav3.2 channels participate in the proliferation of prostate cancer cells.
Collapse
Affiliation(s)
- Florian Gackière
- Laboratoire de Physiologie Cellulaire, INSERM U1003, Bâtiment SN3, Université Lille 1 , 59655 Villeneuve d'Ascq Cédex , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Zheng LY, Li L, Ma MM, Liu Y, Wang GL, Tang YB, Zhou JG, Lv XF, Du YH, Guan YY. Deficiency of volume-regulated ClC-3 chloride channel attenuates cerebrovascular remodelling in DOCA-salt hypertension. Cardiovasc Res 2013; 100:134-42. [DOI: 10.1093/cvr/cvt156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
126
|
Zhong YS, Wang J, Liu WM, Zhu YH. Potassium ion channels in retinal ganglion cells (review). Mol Med Rep 2013; 8:311-9. [PMID: 23732984 DOI: 10.3892/mmr.2013.1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022] Open
Abstract
Retinal ganglion cells (RGCs) consolidate visual processing and constitute the last step prior to the transmission of signals to higher brain centers. RGC death is a major cause of visual impairment in optic neuropathies, including glaucoma, age‑related macular degeneration, diabetic retinopathy, uveoretinitis and vitreoretinopathy. Discharge patterns of RGCs are primarily determined by the presence of ion channels. As the most diverse group of ion channels, potassium (K+) channels play key roles in modulating the electrical properties of RGCs. Biochemical, molecular and pharmacological studies have identified a number of K+ channels in RGCs, including inwardly rectifying K+ (Kir), ATP‑sensitive K+ (KATP), tandem‑pore domain K+ (TASK), voltage‑gated K+ (Kv), ether‑à‑go‑go (Eag) and Ca2+‑activated K+ (KCa) channels. Kir channels are important in the maintenance of the resting membrane potential and controlling RGC excitability. KATP channels are involved in RGC survival and neuroprotection. TASK channels are hypothesized to contribute to the regulation of resting membrane potentials and firing patterns of RGCs. Kv channels are important regulators of cellular excitability, functioning to modulate the amplitude, duration and frequency of action potentials and subthreshold depolarizations, and are also important in RGC development and protection. Eag channels may contribute to dendritic repolarization during excitatory postsynaptic potentials and to the attenuation of the back propagation of action potentials. KCa channels have been observed to contribute to repetitive firing in RGCs. Considering these important roles of K+ channels in RGCs, the study of K+ channels may be beneficial in elucidating the pathophysiology of RGCs and exploring novel RGC protection strategies.
Collapse
Affiliation(s)
- Yi-Sheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | | | |
Collapse
|
127
|
Orlov SN, Platonova AA, Hamet P, Grygorczyk R. Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. Am J Physiol Cell Physiol 2013; 305:C361-72. [PMID: 23615964 DOI: 10.1152/ajpcell.00040.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell death is accompanied by the dissipation of electrochemical gradients of monovalent ions across the plasma membrane that, in turn, affects cell volume via modulation of intracellular osmolyte content. In numerous cell types, apoptotic and necrotic stimuli caused cell shrinkage and swelling, respectively. Thermodynamics predicts a cell type-specific rather than an ubiquitous impact of monovalent ion transporters on volume perturbations in dying cells, suggesting their diverse roles in the cell death machinery. Indeed, recent data showed that apoptotic collapse may occur in the absence of cell volume changes and even follow cell swelling rather than shrinkage. Moreover, side-by-side with cell volume adjustment, monovalent ion transporters contribute to cell death machinery engagement independently of volume regulation via cell type-specific signaling pathways. Thus, inhibition of Na(+)-K(+)-ATPase by cardiotonic steroids (CTS) rescues rat vascular smooth muscle cells from apoptosis via a novel Na(+)i-K(+)i-mediated, Ca(2+)i-independent mechanism of excitation-transcription coupling. In contrast, CTS kill renal epithelial cells independently of Na(+)-K(+)-ATPase inhibition and increased [Na(+)]i/[K(+)]i ratio. The molecular origin of [Na(+)]i/[K(+)]i sensors involved in the inhibition of apoptosis as well as upstream intermediates of Na(+)i/K(+)i-independent death signaling triggered by CTS remain unknown.
Collapse
Affiliation(s)
- Sergei N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
128
|
Cicek MS, Koestler DC, Fridley BL, Kalli KR, Armasu SM, Larson MC, Wang C, Winham SJ, Vierkant RA, Rider DN, Block MS, Klotzle B, Konecny G, Winterhoff BJ, Hamidi H, Shridhar V, Fan JB, Visscher DW, Olson JE, Hartmann LC, Bibikova M, Chien J, Cunningham JM, Goode EL. Epigenome-wide ovarian cancer analysis identifies a methylation profile differentiating clear-cell histology with epigenetic silencing of the HERG K+ channel. Hum Mol Genet 2013; 22:3038-47. [PMID: 23571109 DOI: 10.1093/hmg/ddt160] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer remains the leading cause of death in women with gynecologic malignancies, despite surgical advances and the development of more effective chemotherapeutics. As increasing evidence indicates that clear-cell ovarian cancer may have unique pathogenesis, further understanding of molecular features may enable us to begin to understand the underlying biology and histology-specific information for improved outcomes. To study epigenetics in clear-cell ovarian cancer, fresh frozen tumor DNA (n = 485) was assayed on Illumina Infinium HumanMethylation450 BeadChips. We identified a clear-cell ovarian cancer tumor methylation profile (n = 163) which we validated in two independent replication sets (set 1, n = 163; set 2, n = 159), highlighting 22 CpG loci associated with nine genes (VWA1, FOXP1, FGFRL1, LINC00340, KCNH2, ANK1, ATXN2, NDRG21 and SLC16A11). Nearly all of the differentially methylated CpGs showed a propensity toward hypermethylation among clear-cell cases. Several loci methylation inversely correlated with tumor gene expression, most notably KCNH2 (HERG, a potassium channel) (P = 9.5 × 10(-7)), indicating epigenetic silencing. In addition, a predicted methylation class mainly represented by the clear-cell cases (20 clear cell out of 23 cases) had improved survival time. Although these analyses included only 30 clear-cell carcinomas, results suggest that loss of expression of KCNH2 (HERG) by methylation could be a good prognostic marker, given that overexpression of the potassium (K(+)) channel Eag family members promotes increased proliferation and results in poor prognosis. Validation in a bigger cohort of clear-cell tumors of the ovary is warranted.
Collapse
Affiliation(s)
- Mine S Cicek
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Adams DS, Levin M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 2013; 352:95-122. [PMID: 22350846 PMCID: PMC3869965 DOI: 10.1007/s00441-012-1329-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/12/2012] [Indexed: 01/07/2023]
Abstract
Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.
Collapse
Affiliation(s)
- Dany S Adams
- Department of Biology, and Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
130
|
Di Giusto G, Flamenco P, Rivarola V, Fernández J, Melamud L, Ford P, Capurro C. Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation. J Cell Biochem 2013; 113:3721-9. [PMID: 22786728 DOI: 10.1002/jcb.24246] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously demonstrated that in renal cortical collecting duct cells (RCCD(1)) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT-RCCD(1) (not expressing aquaporins) and AQP2-RCCD(1) (transfected with AQP2). Our results showed that when most RCCD(1) cells are in the G(1)-phase (unsynchronized), the blockage of barium-sensitive K(+) channels implicated in rapid RVD inhibits cell proliferation only in AQP2-RCCD(1) cells. Though cells in the S-phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down-regulation in the rapid RVD response only in AQP2-RCCD(1) cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2-besides increasing water permeability-would play some other role. These observations together with evidence implying a cell-sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G(1), volume tends to increase but it may be efficiently regulated by an AQP2-dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down-regulated when volume needs to be increased in order to proceed into the S-phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2.
Collapse
Affiliation(s)
- Gisela Di Giusto
- Laboratorio de Biomembranas, Facultad de Medicina, Departamento de Fisiología y Biofísica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
131
|
Park JY, Choi HW, Choi DL, Jang SJ, Kim JH, Lee JH, Choo DJ, Kim J, Lee KT, Lee JY. Evaluation of T-Type Calcium Channel Blockers against Human Pancreatic MIA PaCa-2 Carcinoma Xenografts. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.2.482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
132
|
Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal JL, Slomianny C, Delcourt P, Prevarskaya N, Roudbaraki M. Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling. SPRINGERPLUS 2013; 2:54. [PMID: 23450760 PMCID: PMC3581770 DOI: 10.1186/2193-1801-2-54] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
Bisphenol A (BPA), the principal constituent of reusable water bottles, metal cans, and plastic food containers, has been shown to be involved in human prostate cancer (PCa) cell proliferation. The aim of the present study was to explore the effect of BPA on PCa cell migration and the pathways involved in these processes. Using the transwell technique, we clearly show for the first time that the pre-treatment of the cells with BPA (1–10 nM) induces human PCa cell migration. Using a calcium imaging technique, we show that BPA pre-treatment induces an amplification of Store-Operated Calcium Entry (SOCE) in LNCaP cells. RT-PCR and Western blot experiments allowed the identification of the ion channel proteins which are up-regulated by BPA pre-treatments. These include the Orai1 protein, which is known as an important SOCE actor in various cell systems, including human PCa cells. Using a siRNA strategy, we observed that BPA-induced amplification of SOCE was Orai1-dependent. Interestingly, the BPA-induced PCa cell migration was suppressed when the calcium entry was impaired by the use of SOCE inhibitors (SKF96365, BTP2), or when the extracellular calcium was chelated. Taken together, the results presented here show that BPA induces PCa cells migration via a modulation of the ion channel protein expression involved in calcium entry and in cancer cell migration. The present data provide novel insights into the molecular mechanisms involved in the effects of an environmental factor on cancer cells and suggest both the necessity of preventive measures and the possibility of targeting ion channels in the treatment of PCa cell metastasis.
Collapse
Affiliation(s)
- Sandra Derouiche
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France ; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Li X, Dong X, Zheng S, Xiao J. Expression and localization of TASK-1, -2 and -3 channels in MG63 human osteoblast-like cells. Oncol Lett 2012; 5:865-869. [PMID: 23425722 PMCID: PMC3576195 DOI: 10.3892/ol.2012.1088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/12/2012] [Indexed: 11/06/2022] Open
Abstract
It is well known that a number of ion channels are involved in the proliferation, migration and invasion of tumor cells. TASK channels, an acid-sensitive subgroup of the two-pore-domain K+ channel (K2P) family, are expressed in numerous types of tissue and exhibit various physiological functions depending on the cell type. In the present study, we employed RT-PCR and western blot analysis to determine the expression of TASK-1, -2 and -3 at the mRNA and protein levels in MG63 human osteoblast-like cells. Immunofluorescence with specific antibodies against the TASK channels revealed the localization patterns at the plasma membrane and the juxtanuclear compartment. The induced fluctuations in the extracellular pH from 7.4 to 6.9 and to 6.4 significantly reduced the proliferation rate of MG63 cells by 44.3 and 90.1%, respectively. These data revealed the expression of TASK-1, -2 and -3, and the correlation between TASK channels and cell proliferation in MG63 cells, suggesting that these channels may be involved in the tumorigenesis of osteosarcoma.
Collapse
Affiliation(s)
- Xiantao Li
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074
| | | | | | | |
Collapse
|
134
|
Apoptotic Volume Decrease (AVD) Is Independent of Mitochondrial Dysfunction and Initiator Caspase Activation. Cells 2012; 1:1156-67. [PMID: 24710548 PMCID: PMC3901126 DOI: 10.3390/cells1041156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 11/24/2022] Open
Abstract
Persistent cell shrinkage is a major hallmark of apoptotic cell death. The early-phase shrinkage, which starts within 30−120 min after apoptotic stimulation and is called apoptotic volume decrease (AVD), is known to be accomplished by activation of K+ channels and volume-sensitive outwardly rectifying (VSOR) Cl− channels in a manner independent of caspase-3 activation. However, it is controversial whether AVD depends on apoptotic dysfunction of mitochondria and activation of initiator caspases. Here, we observed that AVD is induced not only by a mitochondrial apoptosis inducer, staurosporine (STS), in mouse B lymphoma WEHI-231 cells, but also by ligation of the death receptor Fas in human B lymphoblastoid SKW6.4 cells, which undergo Fas-mediated apoptosis without involving mitochondria. Overexpression of Bcl-2 failed to inhibit the STS-induced AVD in WEHI-231 cells. These results indicate that AVD does not require the mitochondrial pathway of apoptosis. In human epithelial HeLa cells stimulated with anti-Fas antibody or STS, the AVD induction was found to precede activation of caspase-8 and caspase-9 and to be resistant to pan-caspase blockers. Thus, it is concluded that the AVD induction is an early event independent of the mitochondrial apoptotic signaling pathway and initiator caspase activation.
Collapse
|
135
|
Dezaki K, Maeno E, Sato K, Akita T, Okada Y. Early-phase occurrence of K+ and Cl- efflux in addition to Ca 2+ mobilization is a prerequisite to apoptosis in HeLa cells. Apoptosis 2012; 17:821-31. [PMID: 22460504 DOI: 10.1007/s10495-012-0716-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained rise in cytosolic Ca(2+) and cell shrinkage mainly caused by K(+) and Cl(-) efflux are known to be prerequisites to apoptotic cell death. Here, we investigated how the efflux of K(+) and Cl(-) as well as the rise in cytosolic Ca(2+) occur prior to caspase activation and are coupled to each other in apoptotic human epithelial HeLa cells. Caspase-3 activation and DNA laddering induced by staurosporine were abolished by blockers of K(+) and Cl(-) channels or cytosolic Ca(2+) chelation. Staurosporine induced decreases in the intracellular free K(+) and Cl(-) concentrations ([K(+)](i) and [Cl(-)](i)) in an early stage prior to caspase-3 activation. Staurosporine also induced a long-lasting rise in the cytosolic free Ca(2+) concentration. The early-phase decreases in [K(+)](i) and [Cl(-)](i) were completely prevented by a blocker of K(+) or Cl(-) channel, but were not affected by cytosolic Ca(2+) chelation. By contrast, the Ca(2+) response was abolished by a blocker of K(+) or Cl(-) channel. Strong hypertonic stress promptly induced a cytosolic Ca(2+) increase lasting >50 min together with sustained shrinkage and thereafter caspase-3 activation after 4 h. The hypertonic stress induced slight increases in [K(+)](i) and [Cl(-)](i) in the first 50 min, but these increases were much less than the effect of shrinkage-induced condensation, indicating that K(+) and Cl(-) efflux took place. Hypertonicity induced caspase-3 activation that was prevented not only by cytosolic Ca(2+) chelation but also by K(+) and Cl(-) channel blockers. Thus, it is concluded that not only Ca(2+) mobilization but early-phase efflux of K(+) and Cl(-) are required for caspase activation, and Ca(2+) mobilization is a downstream and resultant event of cell shrinkage in both staurosporine- and hypertonicity-induced apoptosis.
Collapse
Affiliation(s)
- Katsuya Dezaki
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
136
|
Kim BJ. Involvement of Transient Receptor Potential Melastatin 7 Channels in Sophorae Radix-induced Apoptosis in Cancer Cells: Sophorae Radix and TRPM7. J Pharmacopuncture 2012; 15:31-8. [PMID: 25780645 PMCID: PMC4331944 DOI: 10.3831/kpi.2012.15.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/10/2012] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Sophorae Radix (SR) plays a role in a number of physiologic and pharmacologic functions in many organs. OBJECTIVE The aim of this study was to clarify the potential role for transient receptor potential melastatin 7 (TRPM7) channels in SR-inhibited growth and survival of AGS and MCF-7 cells, the most common human gastric and breast adenocarcinoma cell lines. METHODS The AGS and the MCF-7 cells were treated with varying concentrations of SR. Analyses of the caspase-3 and - 9 activity, the mitochondrial depolarization and the poly (ADPribose) polymerase (PARP) cleavage were conducted to determine if AGS and MCF-7 cell death occured by apoptosis. TRPM7 channel blockers (Gd(3+) or 2-APB) and small interfering RNA (siRNA) were used in this study to confirm the role of TRPM7 channels. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK) 293 cells to identify the role of TRPM7 channels in AGS and MCF-7 cell growth and survival. RESULTS The addition of SR to a culture medium inhibited AGS and MCF-7 cell growth and survival. Experimental results showed that the caspase-3 and -9 activity, the mitochondrial depolarization, and the degree of PARP cleavage was increased. TRPM7 channel blockade, either by Gd(3+) or 2-APB or by suppressing TRPM7 expression with small interfering RNA, blocked the SR-induced inhibition of cell growth and survival. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SR-induced cell death. CONCLUSIONS These findings indicate that SR inhibits the growth and survival of gastric and breast cancer cells due to a blockade of the TRPM7 channel activity. Therefore, TRPM7 channels may play an important role in the survival of patients with gastric and breast cancer.
Collapse
Affiliation(s)
- Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
| |
Collapse
|
137
|
Abstract
KCNMA1 encodes the α-subunit of the large conductance, voltage and Ca2+-activated (BK) potassium channel and has been reported as a target gene of genomic amplification at 10q22 in prostate cancer. To investigate the prevalence of the amplification in other human cancers, the copy number of KCNMA1 was analyzed by fluorescence-in-situ-hybridization (FISH) in 2,445 tumors across 118 different tumor types. Amplification of KCNMA1 was restricted to a small but distinct fraction of breast, ovarian and endometrial cancer with the highest prevalence in invasive ductal breast cancers and serous carcinoma of ovary and endometrium (3–7%). We performed an extensive analysis on breast cancer tissue microarrays (TMA) of 1,200 tumors linked to prognosis. KCNMA1 amplification was significantly associated with high tumor stage, high grade, high tumor cell proliferation, and poor prognosis. Immunofluorescence revealed moderate or strong KCNMA1 protein expression in 8 out of 9 human breast cancers and in the breast cancer cell line MFM223. KCNMA1-function in breast cancer cell lines was confirmed by whole-cell patch clamp recordings and proliferation assays, using siRNA-knockdown, BK channel activators such as 17ß-estradiol and the BK-channel blocker paxilline. Our findings revealed that enhanced expression of KCNMA1 correlates with and contributes to high proliferation rate and malignancy of breast cancer.
Collapse
|
138
|
Inhibition of Ca(2+)-activated Cl(-) channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma. Cancer Lett 2012; 326:41-51. [PMID: 22820160 DOI: 10.1016/j.canlet.2012.07.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 11/21/2022]
Abstract
The etiology of prostatic adenocarcinoma remains unclear. Prostate cancer cells of varying metastatic potential and apoptotic resistance show altered expression of plasma membrane ion channels and unbalanced Ca2+ homeostasis. Ca(2+)-activated Cl(-) channels (CaCCs) are robustly expressed in epithelial cells and function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis in proliferation, differentiation and apoptosis. ANO1/TMEM16A was recently identified as a CaCC, and it is of interest to determine whether ANO1 plays a role in development and metastasis of prostate carcinoma. Here we show that ANO1 mRNA and protein are highly expressed in human metastatic prostate cancer LNCaP and PC-3 cells by quantitative analysis of real-time PCR and Western blot. These findings were confirmed by whole-cell patch clamp recording of LNCaP and PC-3 cells with increased current density of ANO1 channels. Immunohistochemistry staining further revealed overexpression of ANO1 in human prostate cancer tissues, which correlated with the clinical TNM stage and Gleason score. Experiments with small hairpin RNAs (shRNAs) targeting human ANO1 resulted in a significant reduction of proliferation, metastasis and invasion of PC-3 cells using WST-8, colony formation, wound-healing and transwell assays. Moreover, intratumoral injection of ANO1 shRNA completely inhibited established tumor growth and survival in orthotopic nude mice implanted with PC-3 cells. Our findings provide compelling evidence that upregulation of CaCC ANO1 is involved in the proliferation, progression and pathogenesis of metastatic prostate cancer. Membrane ANO1 protein may therefore serve as a biomarker, and inhibition of overexpressed ANO1 has potential for use in prostate cancer therapy.
Collapse
|
139
|
Zhang J, Chan YC, Ho JCY, Siu CW, Lian Q, Tse HF. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol 2012; 303:C115-25. [DOI: 10.1152/ajpcell.00326.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K+, Na+, Ca2+, and Cl− was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca2+-activated K+ current (BKCa), delayed rectifier K+ current ( IKDR), inwardly rectifying K+ current ( IKir), Ca2+-activated K+ current ( IKCa), and chloride current ( ICl)] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BKCa, IKDR, IKir, and IKCa) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IKDR with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.
Collapse
Affiliation(s)
- Jiao Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Jenny Chung-Yee Ho
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Qizhou Lian
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
- Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| |
Collapse
|
140
|
Li J, Liu N, Wang Y, Wang R, Guo D, Zhang C. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons. Neurosci Lett 2012; 518:92-5. [PMID: 22580205 DOI: 10.1016/j.neulet.2012.04.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 12/31/2022]
Abstract
Hippocampal CA1 pyramidal neurons are sensitive to ischemic damage. However, the cellular and molecular mechanisms underlying neuronal cell death caused by ischemia-reperfusion (I/R) are not completely clear. Here, we report that the ephrinA/EphA cell-cell interaction signaling pathway plays an important role in the apoptosis of hippocampal CA1 pyramidal neurons induced by I/R. We found that the expression of ephrinA3 and EphA4 is increased in the CA1 region following transient forebrain ischemia. Blocking ephrinA3/EphA4 interaction by EphA4-Fc, an inhibitor of EphA4, attenuated apoptotic neuronal cell death, likely through the inhibition of caspase-3 activation. These results reveal a novel function of ephrin/Eph signaling in the regulation of apoptosis in CA1 pyramidal neurons after I/R.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | | | |
Collapse
|
141
|
Hur CG, Kim EJ, Cho SK, Cho YW, Yoon SY, Tak HM, Kim CW, Choe C, Han J, Kang D. K+ efflux through two-pore domain K+ channels is required for mouse embryonic development. Reproduction 2012; 143:625-36. [DOI: 10.1530/rep-11-0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies have suggested that K+ channels regulate a wide range of physiological processes in mammalian cells. However, little is known about the specific function of K+ channels in germ cells. In this study, mouse zygotes were cultured in a medium containing K+ channel blockers to identify the functional role of K+ channels in mouse embryonic development. Voltage-dependent K+ channel blockers, such as tetraethylammonium and BaCl2, had no effect on embryonic development to the blastocyst stage, whereas K2P channel blockers, such as quinine, selective serotonin reuptake inhibitors (fluoxetine, paroxetine, and citalopram), gadolinium trichloride, anandamide, ruthenium red, and zinc chloride, significantly decreased blastocyst formation (P<0.05). RT-PCR data showed that members of the K2P channel family, specifically KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9, were expressed in mouse oocytes and embryos. In addition, their mRNA expression levels, except Kcnk3, were up-regulated by above ninefold in morula-stage embryos compared with 2-cell stage embryos (2-cells). Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed in the membrane of oocytes, 2-cells, and blastocysts. Each siRNA injection targeted at Kcnk2, Kcnk10, Kcnk4, Kcnk3, and Kcnk9 significantly decreased blastocyst formation by ∼38% compared with scrambled siRNA injection (P<0.05). The blockade of K2P channels acidified the intracellular pH and depolarized the membrane potential. These results suggest that K2P channels could improve mouse embryonic development through the modulation of gating by activators.
Collapse
|
142
|
Fuchs K, Kukuk D, Reischl G, Föller M, Eichner M, Reutershan J, Lang F, Röcken M, Pichler BJ, Kneilling M. Oxygen Breathing Affects 3′-Deoxy-3′-18F-Fluorothymidine Uptake in Mouse Models of Arthritis and Cancer. J Nucl Med 2012; 53:823-30. [DOI: 10.2967/jnumed.111.101808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
143
|
Mergler S, Garreis F, Sahlmüller M, Lyras EM, Reinach PS, Dwarakanath A, Paulsen F, Pleyer U. Calcium regulation by thermo- and osmosensing transient receptor potential vanilloid channels (TRPVs) in human conjunctival epithelial cells. Histochem Cell Biol 2012; 137:743-61. [PMID: 22327830 DOI: 10.1007/s00418-012-0924-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 11/28/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels respond to polymodal stresses to induce pain, inflammation and tissue fibrosis. In this study, we probed for their functional expression in human conjunctival epithelial (HCjE) cells and ex vivo human conjunctivas. Notably, patients suffering from dry eye syndrome experience the same type of symptomology induced by TRPV channel activation in other ocular tissues. TRPV gene and protein expression were determined by RT-PCR and immunohistochemistry in HCjE cells and human conjunctivas (body donors). The planar patch-clamp technique was used to record nonselective cation channel currents. Ca(2+) transients were monitored in fura-2 loaded cells. Cultivated HCjE cells and human conjunctiva express TRPV1, TRPV2, and TRPV4 mRNA. TRPV1 and TRPV4 localization was identified in human conjunctiva. Whereas the TRPV1 agonist capsaicin (CAP) (5-20 μM) -induced Ca(2+) transients were blocked by capsazepine (CPZ) (10 μM), the TRPV4 activator 4α-PDD (10 μM) -induced Ca(2+) increases were reduced by ruthenium-red (RuR) (20 μM). Different heating (<40°C or >43°C) led to Ca(2+) increases, which were also reduced by RuR. Hypotonic challenges of either 25 or 50% induced Ca(2+) transients and nonselective cation channel currents. In conclusion, conjunctiva express TRPV1, TRPV2, and TRPV4 channels which may provide novel drug targets for dry eye therapeutics. Their usage may have fewer side effects than those currently encountered with less selective drugs.
Collapse
Affiliation(s)
- Stefan Mergler
- Department of Ophthalmology, Campus Virchow-Clinic, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
|
145
|
|
146
|
Levin M, Stevenson CG. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng 2012; 14:295-323. [PMID: 22809139 PMCID: PMC10472538 DOI: 10.1146/annurev-bioeng-071811-150114] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
147
|
Dubois JM, Rouzaire-Dubois B. Roles of cell volume in molecular and cellular biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:93-7. [PMID: 22192789 DOI: 10.1016/j.pbiomolbio.2011.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/17/2023]
Abstract
Extracellular tonicity and volume regulation control a great number of molecular and cellular functions including: cell proliferation, apoptosis, migration, hormone and neuromediator release, gene expression, ion channel and transporter activity and metabolism. The aim of this review is to describe these effects and to determine if they are direct or are secondarily the result of the activity of second messengers.
Collapse
Affiliation(s)
- Jean-Marc Dubois
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette F-91198, France.
| | | |
Collapse
|
148
|
Switch of voltage-gated K+ channel expression in the plasma membrane of chondrogenic cells affects cytosolic Ca2+-oscillations and cartilage formation. PLoS One 2011; 6:e27957. [PMID: 22132179 PMCID: PMC3221679 DOI: 10.1371/journal.pone.0027957] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/28/2011] [Indexed: 01/11/2023] Open
Abstract
Background Understanding the key elements of signaling of chondroprogenitor cells at the earliest steps of differentiation may substantially improve our opportunities for the application of mesenchymal stem cells in cartilage tissue engineering, which is a promising approach of regenerative therapy of joint diseases. Ion channels, membrane potential and Ca2+-signaling are important regulators of cell proliferation and differentiation. Our aim was to identify such plasma membrane ion channels involved in signaling during chondrogenesis, which may serve as specific molecular targets for influencing chondrogenic differentiation and ultimately cartilage formation. Methodology/Principal Findings Using patch-clamp, RT-PCR and Western-blot experiments, we found that chondrogenic cells in primary micromass cell cultures obtained from embryonic chicken limb buds expressed voltage-gated NaV1.4, KV1.1, KV1.3 and KV4.1 channels, although KV1.3 was not detectable in the plasma membrane. Tetrodotoxin (TTX), the inhibitor of NaV1.4 channels, had no effect on cartilage formation. In contrast, presence of 20 mM of the K+ channel blocker tetraethyl-ammonium (TEA) during the time-window of the final commitment of chondrogenic cells reduced KV currents (to 27±3% of control), cell proliferation (thymidine incorporation: to 39±4.4% of control), expression of cartilage-specific genes and consequently, cartilage formation (metachromasia: to 18.0±6.4% of control) and also depolarized the membrane potential (by 9.3±2.1 mV). High-frequency Ca2+-oscillations were also suppressed by 10 mM TEA (confocal microscopy: frequency to 8.5±2.6% of the control). Peak expression of TEA-sensitive KV1.1 in the plasma membrane overlapped with this period. Application of TEA to differentiated chondrocytes, mainly expressing the TEA-insensitive KV4.1 did not affect cartilage formation. Conclusions/Significance These data demonstrate that the differentiation and proliferation of chondrogenic cells depend on rapid Ca2+-oscillations, which are modulated by KV-driven membrane potential changes. KV1.1 function seems especially critical during the final commitment period. We show the critical role of voltage-gated cation channels in the differentiation of non-excitable cells with potential therapeutic use.
Collapse
|
149
|
Yamada T, Ishida Y, Nakamura Y, Shimada S. Bile-acid-induced calcium signaling in mouse esophageal epithelial cells. Biochem Biophys Res Commun 2011; 414:789-94. [DOI: 10.1016/j.bbrc.2011.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
150
|
Lehen'kyi V, Shapovalov G, Skryma R, Prevarskaya N. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am J Physiol Cell Physiol 2011; 301:C1281-9. [PMID: 21940667 DOI: 10.1152/ajpcell.00249.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. The involvement of ion channels in regulation of programmed cell death, or apoptosis, has been known for at least three decades based on observation that classical blockers of ion channels can influence cell death rates, prolonging or shortening cell survival. Identification of the central role of these channels in regulation of cell cycle and apoptosis as well as the recent discovery that the expression of ion channels is not limited solely to the plasma membrane, but may also include membranes of internal compartments, has led researchers to appreciate the pivotal role of ion channels plays in development of cancer. This review focuses on the aspects of programmed cell death influenced by various ion channels and how dysfunctions and misregulations of these channels may affect the development and progression of different cancers.
Collapse
Affiliation(s)
- V'yacheslav Lehen'kyi
- Laboratory of Cell Physiology, INSERM U1003, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|