101
|
Harada K, Aoyama S, Matsugami A, Kumar PKR, Katahira M, Kato N, Ohkanda J. RNA-directed amino acid coupling as a model reaction for primitive coded translation. Chembiochem 2014; 15:794-8. [PMID: 24591237 DOI: 10.1002/cbic.201400029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Indexed: 11/09/2022]
Abstract
The stereochemical theory claims that primitive coded translation initially occurred in the RNA world by RNA-directed amino acid coupling. In this study, we show that the HIV Tat aptamer RNA is capable of recognizing two consecutive arginine residues within the Tat peptide, thus demonstrating how RNA might be able to position two amino acids for sequence-specific coupling. We also show that this RNA can act as a template to accelerate the coupling of a single arginine residue to the N-terminal arginine residue of a peptide primer. The results might have implications for our understanding of the origin of translation.
Collapse
Affiliation(s)
- Kazuo Harada
- Department of Life Sciences, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501 (Japan).
| | | | | | | | | | | | | |
Collapse
|
102
|
Pereira P, Sousa Â, Queiroz J, Correia I, Figueiras A, Sousa F. Purification of pre-miR-29 by arginine-affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:16-23. [DOI: 10.1016/j.jchromb.2014.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 11/26/2022]
|
103
|
Abstract
Evolutionary origin of translation represents one of the key questions that Carl Woese addressed in his work. Here we give a personal account of his results in this area and the effect they have had on the field.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology; Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| |
Collapse
|
104
|
Nahalka J. Protein-RNA recognition: cracking the code. J Theor Biol 2013; 343:9-15. [PMID: 24269806 DOI: 10.1016/j.jtbi.2013.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/04/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023]
Abstract
In early papers, the intent was to find a simple protein-RNA/DNA recognition code. Many people expected a one-to-one correspondence between amino acids and nucleic bases, similar to the code that specifies how one DNA base pairs with another. Despite the lack of such a code, which was evident in the first crystal structures, researchers were indeed unwilling to give up on the idea. Despite the intense interest, a simple one-to-one correspondence has not materialised. The work presented here revisits this theme, and reports a general trend in which four elementary amino acids - G, A, V, and D - have a specific selectivity for four basic nucleotides - g, c, u, and a. During the evolution, as amino acid alphabets increased, new amino acids substituted G, A, V, D amino acids in way to keep hydropathic similarity and the selectivity to minimise errors in established RNA-protein interactions, 1-letter code was created. Additionally, the first nucleotide in codons is used for a 2-letter code. Protein-RNA recognition, visualised by these two code principles, uses a rotation of sensing and anti-sensing sequences in architecture of recognising peptides.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovak Republic; Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovak Republic.
| |
Collapse
|
105
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
106
|
The protein invasion: a broad review on the origin of the translational system. J Mol Evol 2013; 77:185-96. [PMID: 24145863 DOI: 10.1007/s00239-013-9592-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/12/2013] [Indexed: 12/25/2022]
Abstract
Translation, coded peptide synthesis, arguably exists at the heart of modern cellular life. By orchestrating an incredibly complex interaction between tRNAs, mRNAs, aaRSs, the ribosome, and numerous other small molecules, the translational system allows the interpretation of data in the form of DNA to create massively complex proteins which control and enact almost every cellular function. A natural question then, is how did this system evolve? Here we present a broad review of the existing theories of the last two decades on the origin of the translational system. We attempt to synthesize the wide variety of ideas as well as organize them into modular components, addressing the evolution of the peptide-RNA interaction, tRNA, mRNA, the ribosome, and the first proteins separately. We hope to provide both a comprehensive overview of the literature as well as a framework for future discussions and novel theories.
Collapse
|
107
|
Di Giulio M. The Origin of the Genetic Code: Matter of Metabolism or Physicochemical Determinism? J Mol Evol 2013; 77:131-3. [DOI: 10.1007/s00239-013-9593-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/27/2022]
|
108
|
New approach in RNA quantification using arginine-affinity chromatography: potential application in eukaryotic and chemically synthesized RNA. Anal Bioanal Chem 2013; 405:8849-58. [DOI: 10.1007/s00216-013-7334-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
|
109
|
Polyansky AA, Hlevnjak M, Zagrovic B. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code. RNA Biol 2013; 10:1248-54. [PMID: 23945356 PMCID: PMC3817144 DOI: 10.4161/rna.25977] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite more than 50 years of effort, the origin of the genetic code remains enigmatic. Among different theories, the stereochemical hypothesis suggests that the code evolved as a consequence of direct interactions between amino acids and appropriate bases. If indeed true, such physicochemical foundation of the mRNA/protein relationship could also potentially lead to novel principles of protein-mRNA interactions in general. Inspired by this promise, we have recently explored the connection between the physicochemical properties of mRNAs and their cognate proteins at the proteome level. Using experimentally and computationally derived measures of solubility of amino acids in aqueous solutions of pyrimidine analogs together with knowledge-based interaction preferences of amino acids for different nucleobases, we have revealed a statistically significant matching between the composition of mRNA coding sequences and the base-binding preferences of their cognate protein sequences. Our findings provide strong support for the stereochemical hypothesis of genetic code's origin and suggest the possibility of direct complementary interactions between mRNAs and cognate proteins even in present-day cells.
Collapse
Affiliation(s)
- Anton A Polyansky
- Department of Structural and Computational Biology; Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| | | | | |
Collapse
|
110
|
A realistic model under which the genetic code is optimal. J Mol Evol 2013; 77:170-84. [PMID: 23877342 DOI: 10.1007/s00239-013-9571-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/27/2013] [Indexed: 01/23/2023]
Abstract
The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid-RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.
Collapse
|
111
|
Polyansky AA, Zagrovic B. Evidence of direct complementary interactions between messenger RNAs and their cognate proteins. Nucleic Acids Res 2013; 41:8434-43. [PMID: 23868089 PMCID: PMC3794581 DOI: 10.1093/nar/gkt618] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, the ability to interact with messenger RNA (mRNA) has been reported for a number of known RNA-binding proteins, but surprisingly also for different proteins without recognizable RNA binding domains including several transcription factors and metabolic enzymes. Moreover, direct binding to cognate mRNAs has been detected for multiple proteins, thus creating a strong impetus to search for functional significance and basic physico-chemical principles behind such interactions. Here, we derive interaction preferences between amino acids and RNA bases by analyzing binding interfaces in the known 3D structures of protein-RNA complexes. By applying this tool to human proteome, we reveal statistically significant matching between the composition of mRNA sequences and base-binding preferences of protein sequences they code for. For example, purine density profiles of mRNA sequences mirror guanine affinity profiles of cognate protein sequences with quantitative accuracy (median Pearson correlation coefficient R = -0.80 across the entire human proteome). Notably, statistically significant anti-matching is seen only in the case of adenine. Our results provide strong evidence for the stereo-chemical foundation of the genetic code and suggest that mRNAs and cognate proteins may in general be directly complementary to each other and associate, especially if unstructured.
Collapse
Affiliation(s)
- Anton A Polyansky
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | | |
Collapse
|
112
|
Francis BR. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J Mol Evol 2013; 77:134-58. [PMID: 23743924 DOI: 10.1007/s00239-013-9567-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids-valine, alanine, aspartic acid, and glycine-were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-3944, USA,
| |
Collapse
|
113
|
Abstract
The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is more polarizable than benzene but a decidedly poorer cation binder. Many studies have documented cation-π interactions in protein structures, where lysine or arginine side chains interact with phenylalanine, tyrosine, or tryptophan. In addition, countless studies have established the importance of the cation-π interaction in a range of biological processes. Our work has focused on molecular neurobiology, and we have shown that neurotransmitters generally use a cation-π interaction to bind to their receptors. We have also shown that many drug-receptor interactions involve cation-π interactions. A cation-π interaction plays a critical role in the binding of nicotine to ACh receptors in the brain, an especially significant case. Other researchers have established important cation-π interactions in the recognition of the "histone code," in terpene biosynthesis, in chemical catalysis, and in many other systems.
Collapse
Affiliation(s)
- Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
114
|
Anjana R, Vaishnavi MK, Sherlin D, Kumar SP, Naveen K, Kanth PS, Sekar K. Aromatic-aromatic interactions in structures of proteins and protein-DNA complexes: a study based on orientation and distance. Bioinformation 2012; 8:1220-4. [PMID: 23275723 PMCID: PMC3530875 DOI: 10.6026/97320630081220] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/23/2022] Open
Abstract
Interactions between the aromatic amino acid residues have a significant influence on the protein structures and protein-DNA complexes. These interactions individually provide little stability to the structure; however, together they contribute significantly to the conformational stability of the protein structure. In this study, we focus on the four aromatic amino acid residues and their interactions with one another and their individual interactions with the four nucleotide bases. These are analyzed in order to determine the extent to which their orientation and the number of interactions contribute to the protein and protein-DNA complex structures.
Collapse
Affiliation(s)
- Ramnath Anjana
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|
115
|
Martins R, Maia CJ, Queiroz JA, Sousa F. A new strategy for RNA isolation from eukaryotic cells using arginine affinity chromatography. J Sep Sci 2012; 35:3217-26. [DOI: 10.1002/jssc.201200338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/28/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Rita Martins
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - João A. Queiroz
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Fani Sousa
- CICS-UBI-Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
116
|
Hlevnjak M, Polyansky AA, Zagrovic B. Sequence signatures of direct complementarity between mRNAs and cognate proteins on multiple levels. Nucleic Acids Res 2012; 40:8874-82. [PMID: 22844092 PMCID: PMC3467073 DOI: 10.1093/nar/gks679] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A potential connection between physico-chemical properties of mRNAs and cognate proteins, with implications concerning both the origin of the genetic code and mRNA–protein interactions, is unexplored. We compare pyrimidine content of naturally occurring mRNA coding sequences with the propensity of cognate protein sequences to interact with pyrimidines. The latter is captured by polar requirement, a measure of solubility of amino acids in aqueous solutions of pyridines, heterocycles closely related to pyrimidines. We find that the higher the pyrimidine content of an mRNA, the stronger the average propensity of its cognate protein’s amino acids to interact with pyridines. Moreover, window-averaged pyrimidine profiles of individual mRNAs strongly mirror polar-requirement profiles of cognate protein sequences. For example, 4953 human proteins exhibit a correlation between the two with |R| > 0.8. In other words, pyrimidine-rich mRNA regions quantitatively correspond to regions in cognate proteins containing residues soluble in pyrimidine mimetics and vice versa. Finally, by studying randomized genetic code variants we show that the universal genetic code is highly optimized to preserve these correlations. Overall, our findings redefine the stereo-chemical hypothesis concerning code’s origin and provide evidence of direct complementary interactions between mRNAs and cognate proteins before development of ribosomal decoding, but also presently, especially if both are unstructured.
Collapse
Affiliation(s)
- Mario Hlevnjak
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | | | | |
Collapse
|
117
|
Zenkin N. Hypothesis: Emergence of Translation as a Result of RNA Helicase Evolution. J Mol Evol 2012; 74:249-56. [DOI: 10.1007/s00239-012-9503-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
118
|
Turk-Macleod RM, Puthenvedu D, Majerfeld I, Yarus M. The plausibility of RNA-templated peptides: simultaneous RNA affinity for adjacent peptide side chains. J Mol Evol 2012; 74:217-25. [PMID: 22538927 PMCID: PMC3346935 DOI: 10.1007/s00239-012-9501-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/05/2012] [Indexed: 01/11/2023]
Abstract
According to the RNA world hypothesis, coded peptide synthesis (translation) must have been first catalyzed by RNAs. Here, we show that small RNA sequences can simultaneously bind the dissimilar amino acids His and Phe in peptide linkage. We used in vitro counterselection/selection to isolate a pool of RNAs that bind the dipeptide NH2-His-Phe-COOH with KD ranging from 36 to 480 μM. These sites contact both side chains, usually including the protonated imidazole of His, but bind-free l-His and l-Phe with much lower, sometimes undetectable, affinities. The most frequent His–Phe sites do not usually contain previously isolated sites for individual amino acids, and are only ≈35 % larger than previously known separate His and Phe sites. Nonetheless, His–Phe sites appear enriched in His anticodons, as previous l-His sites also were. Accordingly, these data add to existing experimental evidence for a stereochemical genetic code. In these peptide sites, bound amino acids approach each other to a proximity that allows a covalent peptide linkage. Isolation of several RNAs embracing two amino acids with a linking peptide bond supports the idea that a direct-RNA-template could encode primordial peptides, though crucial experiments remain.
Collapse
Affiliation(s)
- Rebecca M Turk-Macleod
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
119
|
de Vladar HP. Amino acid fermentation at the origin of the genetic code. Biol Direct 2012; 7:6. [PMID: 22325238 PMCID: PMC3376031 DOI: 10.1186/1745-6150-7-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/10/2012] [Indexed: 01/15/2023] Open
Abstract
There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors. Reviewers: this article was reviewed by Prof. William Martin, Prof. Eörs Szathmáry (nominated by Dr. Gáspár Jékely) and Dr. Ádám Kun (nominated by Dr. Sandor Pongor)
Collapse
|
120
|
Theobald DL. On universal common ancestry, sequence similarity, and phylogenetic structure: the sins of P-values and the virtues of Bayesian evidence. Biol Direct 2011; 6:60. [PMID: 22114984 PMCID: PMC3314578 DOI: 10.1186/1745-6150-6-60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022] Open
Abstract
Background The universal common ancestry (UCA) of all known life is a fundamental component of modern evolutionary theory, supported by a wide range of qualitative molecular evidence. Nevertheless, recently both the status and nature of UCA has been questioned. In earlier work I presented a formal, quantitative test of UCA in which model selection criteria overwhelmingly choose common ancestry over independent ancestry, based on a dataset of universally conserved proteins. These model-based tests are founded in likelihoodist and Bayesian probability theory, in opposition to classical frequentist null hypothesis tests such as Karlin-Altschul E-values for sequence similarity. In a recent comment, Koonin and Wolf (K&W) claim that the model preference for UCA is "a trivial consequence of significant sequence similarity". They support this claim with a computational simulation, derived from universally conserved proteins, which produces similar sequences lacking phylogenetic structure. The model selection tests prefer common ancestry for this artificial data set. Results For the real universal protein sequences, hierarchical phylogenetic structure (induced by genealogical history) is the overriding reason for why the tests choose UCA; sequence similarity is a relatively minor factor. First, for cases of conflicting phylogenetic structure, the tests choose independent ancestry even with highly similar sequences. Second, certain models, like star trees and K&W's profile model (corresponding to their simulation), readily explain sequence similarity yet lack phylogenetic structure. However, these are extremely poor models for the real proteins, even worse than independent ancestry models, though they explain K&W's artificial data well. Finally, K&W's simulation is an implementation of a well-known phylogenetic model, and it produces sequences that mimic homologous proteins. Therefore the model selection tests work appropriately with the artificial data. Conclusions For K&W's artificial protein data, sequence similarity is the predominant factor influencing the preference for common ancestry. In contrast, for the real proteins, model selection tests show that phylogenetic structure is much more important than sequence similarity. Hence, the model selection tests demonstrate that real universally conserved proteins are homologous, a conclusion based primarily on the specific nested patterns of correlations induced in genetically related protein sequences. Reviewers This article was reviewed by Rob Knight, Robert Beiko (nominated by Peter Gogarten), and Michael Gilchrist.
Collapse
|
121
|
Mutuality in Discrete and Compositional Information: Perspectives for Synthetic Genetic Codes. Cognit Comput 2011. [DOI: 10.1007/s12559-011-9116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
122
|
Dunn IS. RNA templating of molecular assembly and covalent modification patterning in early molecular evolution and modern biosystems. J Theor Biol 2011; 284:32-41. [PMID: 21703277 DOI: 10.1016/j.jtbi.2011.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
The Direct RNA Template (DRT) hypothesis proposes that an early stage of genetic code evolution involved RNA molecules acting as stereochemical recognition templates for assembly of specific amino acids in sequence-ordered arrays, providing a framework for directed covalent peptide bond formation. It is hypothesized here that modern biological precedents may exist for RNA-based structural templating with functional analogies to hypothetical DRT systems. Beyond covalent molecular assembly, an extension of the DRT concept can include RNA molecules acting as dynamic structural template guides for the specific non-covalent assembly of multi-subunit complexes, equivalent to structural assembly chaperones. However, despite numerous precedents for RNA molecules acting as scaffolds for protein complexes, true RNA-mediated assembly chaperoning appears to be absent in modern biosystems. Another level of function with parallels to a DRT system is possible if RNA structural motifs dynamically guided specific patterns of catalytic modifications within multiple target sites in a pre-formed polymer or macromolecular complex. It is suggested that this type of structural RNA templating could logically play a functional role in certain areas of biology, one of which is the glycome of complex organisms. If any such RNA templating processes are shown to exist, they would share no necessary evolutionary relationships with events during early molecular evolution, but may promote understanding of the practical limits of biological RNA functions now and in the ancient RNA World. Awareness of these formal possibilities may also assist in the current search for functions of extensive non-coding RNAs in complex organisms, or for efforts towards artificial rendering of DRT systems.
Collapse
Affiliation(s)
- Ian S Dunn
- CytoCure LLC, 100 Cummings Center, Beverly, MA 01915, USA.
| |
Collapse
|
123
|
Erives A. A model of proto-anti-codon RNA enzymes requiring L-amino acid homochirality. J Mol Evol 2011; 73:10-22. [PMID: 21779963 PMCID: PMC3223571 DOI: 10.1007/s00239-011-9453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/07/2011] [Indexed: 01/26/2023]
Abstract
All living organisms encode the 20 natural amino acid units of polypeptides using a universal scheme of triplet nucleotide "codons". Disparate features of this codon scheme are potentially informative of early molecular evolution: (i) the absence of any codons for D-amino acids; (ii) the odd combination of alternate codon patterns for some amino acids; (iii) the confinement of synonymous positions to a codon's third nucleotide; (iv) the use of 20 specific amino acids rather than a number closer to the full coding potential of 64; and (v) the evolutionary relationship of patterns in stop codons to amino acid codons. Here I propose a model for an ancestral proto-anti-codon RNA (pacRNA) auto-aminoacylation system and show that pacRNAs would naturally manifest features of the codon table. I show that pacRNAs could implement all the steps for auto-aminoacylation: amino acid coordination, intermediate activation of the amino acid by the 5'-end of the pacRNA, and 3'-aminoacylation of the pacRNA. The anti-codon cradles of pacRNAs would have been able to recognize and coordinate only a small number of L-amino acids via hydrogen bonding. A need for proper spatial coordination would have limited the number of chargeable amino acids for all anti-codon sequences, in addition to making some anti-codon sequences unsuitable. Thus, the pacRNA model implies that the idiosyncrasies of the anti-codon table and L-amino acid homochirality co-evolved during a single evolutionary period. These results further imply that early life consisted of an aminoacylated RNA world with a richer enzymatic potential than ribonucleotides alone.
Collapse
Affiliation(s)
- Albert Erives
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
124
|
Yarus M. Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003590. [PMID: 20719875 DOI: 10.1101/cshperspect.a003590] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A little-noted result of the confirmation of multiple premises of the RNA-world hypothesis is that we now know something about the dawn organisms that followed the origin of life, perhaps over 4 billion years ago. We are therefore in an improved position to reason about the biota just before RNA times, during the era of the first replicators, the first Darwinian creatures on Earth. An RNA congener still prominent in modern biology is a plausible descendent of these first replicators.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|
125
|
Rodin AS, Szathmáry E, Rodin SN. On origin of genetic code and tRNA before translation. Biol Direct 2011; 6:14. [PMID: 21342520 PMCID: PMC3050877 DOI: 10.1186/1745-6150-6-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/22/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids. RESULTS The aa-binding sites of arginine, isoleucine and tyrosine contain both their cognate triplets, anticodons and codons. We have noticed that these cases might be associated with palindrome-dinucleotides. For example, one-base shift to the left brings arginine codons CGN, with CG at 1-2 positions, to the respective anticodons NCG, with CG at 2-3 positions. Formally, the concomitant presence of codons and anticodons is also expected in the reverse situation, with codons containing palindrome-dinucleotides at their 2-3 positions, and anticodons exhibiting them at 1-2 positions. A closer analysis reveals that, surprisingly, RNA binding sites for Arg, Ile and Tyr "prefer" (exactly as in the actual genetic code) the anticodon(2-3)/codon(1-2) tetramers to their anticodon(1-2)/codon(2-3) counterparts, despite the seemingly perfect symmetry of the latter. However, since in vitro selection of aa-specific RNA aptamers apparently had nothing to do with translation, this striking preference provides a new strong support to the notion of the genetic code emerging before translation, in response to catalytic (and possibly other) needs of ancient RNA life. Consistently with the pre-translation origin of the code, we propose here a new model of tRNA origin by the gradual, Fibonacci process-like, elongation of a tRNA molecule from a primordial coding triplet and 5'DCCA3' quadruplet (D is a base-determinator) to the eventual 76 base-long cloverleaf-shaped molecule. CONCLUSION Taken together, our findings necessarily imply that primordial tRNAs, tRNA aminoacylating ribozymes, and (later) the translation machinery in general have been co-evolving to ''fit'' the (likely already defined) genetic code, rather than the opposite way around. Coding triplets in this primal pre-translational code were likely similar to the anticodons, with second and third nucleotides being more important than the less specific first one. Later, when the code was expanding in co-evolution with the translation apparatus, the importance of 2-3 nucleotides of coding triplets "transferred" to the 1-2 nucleotides of their complements, thus distinguishing anticodons from codons. This evolutionary primacy of anticodons in genetic coding makes the hypothesis of primal stereo-chemical affinity between amino acids and cognate triplets, the hypothesis of coding coenzyme handles for amino acids, the hypothesis of tRNA-like genomic 3' tags suggesting that tRNAs originated in replication, and the hypothesis of ancient ribozymes-mediated operational code of tRNA aminoacylation not mutually contradicting but rather co-existing in harmony.
Collapse
Affiliation(s)
- Andrei S Rodin
- Human Genetics Center, School of Public Health, University of Texas, Houston, TX 77225, USA
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
| | - Eörs Szathmáry
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
- Parmenides Center for the Study of Thinking, Kirchplatz 1, D-82049 Munich/Pullach, Germany
- Institute of Biology, Eötvös University, 1c Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Sergei N Rodin
- Collegium Budapest (Institute for Advanced Study), Szentháromság u. 2, H-1014 Budapest, Hungary
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
126
|
Illangasekare M, Turk R, Peterson GC, Lladser M, Yarus M. Chiral histidine selection by D-ribose RNA. RNA (NEW YORK, N.Y.) 2010; 16:2370-2383. [PMID: 20940341 PMCID: PMC2995399 DOI: 10.1261/rna.2385310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/27/2010] [Indexed: 05/30/2023]
Abstract
The invariant choice of L-amino acids and D-ribose RNA for biological translation requires explanation. Here we study this chiral choice using mixed, equimolar D-ribose RNAs having 15, 18, 21, 27, 35, and 45 contiguous randomized nucleotides. These are used for simultaneous affinity selection of the smallest bound and eluted RNAs using equal amounts of L- and D-His immobilized on an achiral glass support, with racemic histidine elution. The experiment as a whole therefore determines whether RNA containing D-ribose binds L-histidine or D-histidine more easily (that is, by using a site that is more abundant/requires fewer nucleotides). The most prevalent/smallest RNA sites are reproducibly and repeatedly selected and there is a four- to sixfold greater abundance of L-histidine sites. RNA's chiral D-ribose therefore yields a more frequent fit to L-histidine. Accordingly, a D-ribose RNA site for L-His is smaller by the equivalent of just over one conserved nucleotide. The most prevalent L-His site also performs better than the most frequent D-His site-but rarer D-ribose RNAs can bind D-His with excellent affinity and discrimination. The prevalent L-His site is one we have selected before under very different conditions. Thus, selection is again reproducible, as is the recurrence of cognate coding triplets in these most probable L-His sites. If our selected RNA population were equilibrated with racemic His, we calculate that L-His would participate in seven of eight His:RNA complexes, or more. Thus, if D-ribose RNA were first chosen biologically, translational L-His usage could have followed.
Collapse
Affiliation(s)
- Mali Illangasekare
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
127
|
Ma W. The scenario on the origin of translation in the RNA world: in principle of replication parsimony. Biol Direct 2010; 5:65. [PMID: 21110883 PMCID: PMC3002371 DOI: 10.1186/1745-6150-5-65] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/27/2010] [Indexed: 01/06/2023] Open
Abstract
Background It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT)" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem. Presentation of the hypothesis Here an explanation to this problem is shown considering the principle of "replication parsimony" --- genetic information tends to be utilized in a parsimonious way under selection pressure, due to its replication cost (e.g., in the RNA world, nucleotides and ribozymes for RNA replication). Because a DRT would be quite long even for a short peptide, its replication cost would be great. Thus the diversity and the length of functional peptides synthesized by the DRT mechanism would be seriously limited. Adaptors (proto-tRNAs) would arise to allow a DRT's complementary strand (called "C-DRT" here) to direct the synthesis of the same peptide synthesized by the DRT itself. Because the C-DRT is a necessary part in the DRT's replication, fewer turns of the DRT's replication would be needed to synthesize definite copies of the functional peptide, thus saving the replication cost. Acting through adaptors, C-DRTs could transform into much shorter templates (called "proto-mRNAs" here) and substitute the role of DRTs, thus significantly saving the replication cost. A proto-rRNA corresponding to the small subunit rRNA would then emerge to aid the binding of proto-tRNAs and proto-mRNAs, allowing the reduction of base pairs between them (ultimately resulting in the triplet anticodon/codon pair), thus further saving the replication cost. In this context, the replication cost saved would allow the appearance of more and longer functional peptides and, finally, proteins. The hypothesis could be called "DRT-RP" ("RP" for "replication parsimony"). Testing the hypothesis The scenario described here is open for experimental work at some key scenes, including the compact DRT mechanism, the development of adaptors from aa-aptamers, the synthesis of peptides by proto-tRNAs and proto-mRNAs without the participation of proto-rRNAs, etc. Interestingly, a recent computer simulation study has demonstrated the plausibility of one of the evolving processes driven by replication parsimony in the scenario. Implication of the hypothesis An RNA-based proto-translation system could arise gradually from the DRT mechanism according to the principle of "replication parsimony" --- to save the replication cost of RNA templates for functional peptides. A surprising side deduction along the logic of the hypothesis is that complex, biosynthetic amino acids might have entered the genetic code earlier than simple, prebiotic amino acids, which is opposite to the common sense. Overall, the present discussion clarifies the blurry scenario concerning the origin of translation with a major clue, which shows vividly how life could "manage" to exploit potential chemical resources in nature, eventually in an efficient way over evolution. Reviewers This article was reviewed by Eugene V. Koonin, Juergen Brosius, and Arcady Mushegian.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
128
|
Majerfeld I, Chocholousova J, Malaiya V, Widmann J, McDonald D, Reeder J, Iyer M, Illangasekare M, Yarus M, Knight R. Nucleotides that are essential but not conserved; a sufficient L-tryptophan site in RNA. RNA (NEW YORK, N.Y.) 2010; 16:1915-24. [PMID: 20699302 PMCID: PMC2941100 DOI: 10.1261/rna.2220210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/22/2010] [Indexed: 05/20/2023]
Abstract
Conservation is often used to define essential sequences within RNA sites. However, conservation finds only invariant sequence elements that are necessary for function, rather than finding a set of sequence elements sufficient for function. Biochemical studies in several systems-including the hammerhead ribozyme and the purine riboswitch-find additional elements, such as loop-loop interactions, required for function yet not phylogenetically conserved. Here we define a critical test of sufficiency: We embed a minimal, apparently sufficient motif for binding the amino acid tryptophan in a random-sequence background and ask whether we obtain functional molecules. After a negative result, we use a combination of three-dimensional structural modeling, selection, designed mutations, high-throughput sequencing, and bioinformatics to explore functional insufficiency. This reveals an essential unpaired G in a diverse structural context, varied sequence, and flexible distance from the invariant internal loop binding site identified previously. Addition of the new element yields a sufficient binding site by the insertion criterion, binding tryptophan in 22 out of 23 tries. Random insertion testing for site sufficiency seems likely to be broadly revealing.
Collapse
Affiliation(s)
- Irene Majerfeld
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
The establishment of the genetic code remains elusive nearly five decades after the code was elucidated. The stereochemical hypothesis postulates that the code developed from interactions between nucleotides and amino acids, yet supporting evidence in a biological context is lacking. We show here that anticodons are selectively enriched near their respective amino acids in the ribosome, and that such enrichment is significantly correlated with the canonical code over random codes. Ribosomal anticodon-amino acid enrichment further reveals that specific codons were reassigned during code evolution, and that the code evolved through a two-stage transition from ancient amino acids without anticodon interaction to newer additions with anticodon interaction. The ribosome thus serves as a molecular fossil, preserving biological evidence that anticodon-amino acid interactions shaped the evolution of the genetic code.
Collapse
|
130
|
Bernhardt HS, Tate WP. The transition from noncoded to coded protein synthesis: did coding mRNAs arise from stability-enhancing binding partners to tRNA? Biol Direct 2010; 5:16. [PMID: 20377916 PMCID: PMC2859854 DOI: 10.1186/1745-6150-5-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/09/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the origin of protein synthesis has been notoriously difficult. We have taken as a starting premise Wolf and Koonin's view that "evolution of the translation system is envisaged to occur in a compartmentalized ensemble of replicating, co-selected RNA segments, i.e., in an RNA world containing ribozymes with versatile activities". PRESENTATION OF THE HYPOTHESIS We propose that coded protein synthesis arose from a noncoded process in an RNA world as a natural consequence of the accumulation of a range of early tRNAs and their serendipitous RNA binding partners. We propose that, initially, RNA molecules with 3' CCA termini that could be aminoacylated by ribozymes, together with an ancestral peptidyl transferase ribozyme, produced small peptides with random or repetitive sequences. Our concept is that the first tRNA arose in this context from the ligation of two RNA hairpins and could be similarly aminoacylated at its 3' end to become a substrate for peptidyl transfer catalyzed by the ancestral ribozyme. Within this RNA world we hypothesize that proto-mRNAs appeared first simply as serendipitous binding partners, forming complementary base pair interactions with the anticodon loops of tRNA pairs. Initially this may have enhanced stability of the paired tRNA molecules so they were held together in close proximity, better positioning the 3' CCA termini for peptidyl transfer and enhancing the rate of peptide synthesis. If there were a selective advantage for the ensemble through the peptide products synthesized, it would provide a natural pathway for the evolution of a coding system with the expansion of a cohort of different tRNAs and their binding partners. The whole process could have occurred quite unremarkably for such a profound acquisition. TESTING THE HYPOTHESIS It should be possible to test the different parts of our model using the isolated contemporary 50S ribosomal subunit initially, and then with RNAs transcribed in vitro together with a minimal set of ribosomal proteins that are required today to support protein synthesis. IMPLICATIONS OF THE HYPOTHESIS This model proposes that genetic coding arose de novo from complementary base pair interactions between tRNAs and single-stranded RNAs present in the immediate environment. REVIEWERS This article was reviewed by Eugene Koonin, Rob Knight and Berthold Kastner (nominated by Laura Landweber).
Collapse
Affiliation(s)
- Harold Stephen Bernhardt
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
131
|
Janas T, Widmann JJ, Knight R, Yarus M. Simple, recurring RNA binding sites for L-arginine. RNA (NEW YORK, N.Y.) 2010; 16:805-816. [PMID: 20194519 PMCID: PMC2844627 DOI: 10.1261/rna.1979410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
Seven new arginine binding motifs have been selected from a heterogeneous RNA pool containing 17, 25, and 50mer randomized tracts, yielding 131 independently derived binding sites that are multiply isolated. The shortest 17mer random region is sufficient to build varied arginine binding sites using five different conserved motifs (motifs 1a, 1b, 1c, 2, and 4). Dissociation constants are in the fractional millimolar to millimolar range. Binding sites are amino acid side-chain specific and discriminate moderately between L- and D-stereoisomers of arginine, suggesting a molecular focus on side-chain guanidinium. An arginine coding triplet (codon/anticodon) is highly conserved within the largest family of Arg sites (72% of all sequences), as has also been found in minimal, most prevalent RNA binding sites for Ile, His, and Trp.
Collapse
Affiliation(s)
- Teresa Janas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
132
|
Moura GR, Paredes JA, Santos MA. Development of the genetic code: Insights from a fungal codon reassignment. FEBS Lett 2009; 584:334-41. [DOI: 10.1016/j.febslet.2009.11.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 01/03/2023]
|