101
|
|
102
|
Das N, Tripathi N, Basu S, Bose C, Maitra S, Khurana S. Progress in the development of gelling agents for improved culturability of microorganisms. Front Microbiol 2015; 6:698. [PMID: 26257708 PMCID: PMC4511835 DOI: 10.3389/fmicb.2015.00698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/26/2015] [Indexed: 11/21/2022] Open
Abstract
Gelling agents are required for formulating both solid and semisolid media, vital for the isolation of microorganisms. Gelatin was the first gelling agent to be discovered but it soon paved the way for agar, which has far superior material qualities. Source depletion, issues with polymerase-chain-reaction and inability to sustain extermophiles etc., necessitate the need of other gelling agents. Many new gelling agents, such as xantham gum, gellan gum, carrageenan, isubgol, and guar gum have been formulated, raising the hopes for the growth of previously unculturable microorganisms. We evaluate the progress in the development of gelling agents, with the hope that our synthesis would help accelerate research in the field.
Collapse
Affiliation(s)
- Nabajit Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Naveen Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Srijoni Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Chandra Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Susmit Maitra
- School of Biotechnology, Kalinga Institute of Industrial Technology UniversityBhubaneswar, India
| | - Sukant Khurana
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| |
Collapse
|
103
|
Becker A. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol 2015. [PMID: 26217319 PMCID: PMC4496566 DOI: 10.3389/fmicb.2015.00687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Because of their rheological properties various microbial polysaccharides are applied as thickeners and viscosifiers both in food and non-food industries. A broad variety of microorganisms secrete structurally diverse exopolysaccharides (EPS) that contribute to their surface attachment, protection against abiotic or biotic stress factors, and nutrient gathering. Theoretically, a massive number of EPS structures are possible through variations in monosaccharide sequences, condensation linkages and non-sugar decorations. Given the already-high diversity of EPS structures, taken together with the principal of combinatorial biosynthetic pathways, microbial polysaccharides are an attractive class of macromolecules with which to generate novel structures via synthetic biology approaches. However, previous manipulations primarily focused on increasing polysaccharide yield, with structural modifications restricted to removal of side chains or non-sugar decorations. This article outlines the biosynthetic pathways of the bacterial heteroexopolysaccharides xanthan and succinoglycan, which are used as thickening and stabilizing agents in food and non-food industries. Challenges and perspectives of combining synthetic biology approaches with directed evolution to overcome obstacles in assembly of novel EPS biosynthesis pathways are discussed.
Collapse
Affiliation(s)
- Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University of Marburg , Marburg, Germany
| |
Collapse
|
104
|
Surface characterization and drug release from porous microparticles based on methacrylic monomers and xanthan. Carbohydr Polym 2015; 125:323-33. [DOI: 10.1016/j.carbpol.2015.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 11/18/2022]
|
105
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
106
|
Vasanthakumari DS, Harikumar S, Beena DJ, Pandey A, Nampoothiri KM. Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria. Appl Biochem Biotechnol 2015; 176:440-53. [DOI: 10.1007/s12010-015-1586-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
|
107
|
Schmid J, Sieber V. Enzymatic Transformations Involved in the Biosynthesis of Microbial Exo-polysaccharides Based on the Assembly of Repeat Units. Chembiochem 2015; 16:1141-7. [DOI: 10.1002/cbic.201500035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Indexed: 12/12/2022]
|
108
|
Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:347-53. [DOI: 10.1016/j.msec.2014.12.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 12/07/2014] [Indexed: 01/01/2023]
|
109
|
Petri DFS. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.42035] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Denise F. S. Petri
- Departamento de Química Fundamental; Instituto de Química, Universidade de São Paulo; São Paulo 05513-970 Brazil
| |
Collapse
|
110
|
Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries. INT J POLYM SCI 2015. [DOI: 10.1155/2015/326745] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Earth buildings are still a common type of residence for one-third of the world’s population. However, these buildings are not durable or resistant against earthquakes and floods, and this amplifies their potential harm to humans. Earthen construction without soil binders (e.g., cement) is known to result in poor strength and durability performance of earth buildings. Failure to use construction binders is related to the imbalance in binder prices in different countries. In particular, the price of cement in Africa, Middle East, and Southwest Asia countries is extremely high relative to the global trend of consumer goods and accounts for the limited usage of cement in those regions. Moreover, environmental concerns regarding cement usage have recently risen due to high CO2emissions. Meanwhile, biopolymers have been introduced as an alternative binder for soil strengthening. Previous studies and feasibility attempts in this area show that the mechanical properties (i.e., compressive strength) of biopolymer mixed soil blocks (i.e, both 1% xanthan gum and 1% gellan gum) satisfied the international criteria for binders used in earthen structures. Economic and market analyses have demonstrated that the biopolymer binder has high potential as a self-sufficient local construction binder for earth buildings where the usage of ordinary cement is restricted.
Collapse
|
111
|
Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. FRONTIERS IN PLANT SCIENCE 2015; 6:431. [PMID: 26136759 PMCID: PMC4468381 DOI: 10.3389/fpls.2015.00431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 05/05/2023]
Abstract
Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors.
Collapse
Affiliation(s)
- Jonathan M. Jacobs
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
| | - Céline Pesce
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
- Department of Applied Microbiology, Earth and Life Institute, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Pierre Lefeuvre
- Pôle de Protection des Plantes, Cirad, UMR Peuplements Végétaux et Bioagresseurs en Milieu TropicalSaint-Pierre, Ile de la Réunion, France
| | - Ralf Koebnik
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
- *Correspondence: Ralf Koebnik, Institut de Recherche pour le Développement, UMR Interactions – Plantes – Microorganismes – Environnement, Génomique et Transcriptomique des Interactions Plantes-Procaryotes, 921 avenue Agropolis, 34394 Montpellier, France
| |
Collapse
|
112
|
Akabanda F, Owusu-Kwarteng J, Tano-Debrah K, Parkouda C, Jespersen L. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2014; 2014:721067. [PMID: 26904646 PMCID: PMC4745485 DOI: 10.1155/2014/721067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022]
Abstract
Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures.
Collapse
Affiliation(s)
- Fortune Akabanda
- Department of Nutrition and Food Science, University of Ghana, P.O. Box LG 25, Legon, Ghana
- Department of Applied Biology, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, P.O. Box 24, Navrongo, Ghana
| | - James Owusu-Kwarteng
- Department of Applied Biology, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, P.O. Box 24, Navrongo, Ghana
| | - Kwaku Tano-Debrah
- Department of Nutrition and Food Science, University of Ghana, P.O. Box LG 25, Legon, Ghana
| | - Charles Parkouda
- Food Technology Department (DTA/IRSAT/CNRST), BP 7074, Ouagadougou 03, Burkina Faso
| | - Lene Jespersen
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| |
Collapse
|
113
|
Li O, Liu A, Lu C, Zheng DQ, Qian CD, Wang PM, Jiang XH, Wu XC. Increasing viscosity and yields of bacterial exopolysaccharides by repeatedly exposing strains to ampicillin. Carbohydr Polym 2014; 110:203-8. [DOI: 10.1016/j.carbpol.2014.03.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 03/03/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
114
|
Real-time stability testing of air-dried primers and fluorogenic hydrolysis probes stabilized by trehalose and xanthan. Biotechniques 2014; 57:151-5. [PMID: 25209050 DOI: 10.2144/000114207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022] Open
Abstract
A method for conserving primers and differently labeled fluorogenic hydrolysis (i.e., TaqMan) probes at ambient conditions is presented. Primers and hydrolysis probes with four different fluorophore-quencher combinations (6- FAM-BHQ1, HEX-BHQ1, ROX-BHQ650, and Cy5-BHQ2) were mixed with trehalose and xanthan at final concentrations of 56 mM and 2.78 mM, respectively. Mixtures were air-dried at 23°C for 30 min on strips composed of cyclo olefin polymer (COP), a material widely used in the manufacturing of in vitro diagnostic (IVD) test carriers. After one year of storage, the functionality of the primers and fluorophore-quencher combinations was validated by real-time polymerase chain reaction (real-time PCR), confirming their stability when stored in the presence of stabilizers, with the best results achieved using trehalose. This approach could be of great benefit for manufacturing IVD systems, for example, for genotyping applications based on multiplexing using different fluorescent dyes.
Collapse
|
115
|
Maiti S, Mukherjee S. Controlled drug delivery attributes of co-polymer micelles and xanthan-O-carboxymethyl hydrogel particles. Int J Biol Macromol 2014; 70:37-43. [DOI: 10.1016/j.ijbiomac.2014.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/05/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
|
116
|
Brunchi CE, Morariu S, Bercea M. Intrinsic viscosity and conformational parameters of xanthan in aqueous solutions: salt addition effect. Colloids Surf B Biointerfaces 2014; 122:512-519. [PMID: 25108480 DOI: 10.1016/j.colsurfb.2014.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Abstract
The intrinsic viscosity and conformational parameters of xanthan in aqueous solutions were investigated at 25°C as a function of salt nature (NaCl and KCl) and concentration (up to 3×10(-1)mol/L). The viscometric parameters were evaluated by applying semi-empirical equations proposed by Rao and Wolf. The results show that the new model proposed by Wolf provides accurate intrinsic viscosity values comparable with those obtained by using traditional methods. The experimental data were modeled with Boltzmann sigmoidal equation. The stiffness parameter, hydrodynamic volume and viscometric expansion factor were determined and discussed. With increasing salt concentration, the hydrodynamic volume and the viscometric expansion factor decrease and the critical overlap concentration increases, reaching limiting values above a given salt concentration. The high Huggins constant values suggest the existence of aggregates for salt concentrations above 5×10(-2) and 3×10(-3)mol/L for NaCl and KCl, respectively. Stiffness parameter was determined by Smidsrød and Haug method as being 5.45×10(-3), indicating a rigid conformation for xanthan macromolecules in solution.
Collapse
Affiliation(s)
- Cristina-Eliza Brunchi
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Simona Morariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| |
Collapse
|
117
|
Bianco MI, Jacobs M, Salinas SR, Salvay AG, Ielmini MV, Ielpi L. Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris. Protein Expr Purif 2014; 101:42-53. [PMID: 24927643 DOI: 10.1016/j.pep.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 11/18/2022]
Abstract
This study investigated the structural and biophysical characteristics of GumB and GumC, two Xanthomonas campestris membrane proteins that are involved in xanthan biosynthesis. Xanthan is an exopolysaccharide that is thought to be a virulence factor that contributes to bacterial in planta growth. It also is one of the most important industrial biopolymers. The first steps of xanthan biosynthesis are well understood, but the polymerization and export mechanisms remain unclear. For this reason, the key proteins must be characterized to better understand these processes. Here we characterized, by biochemical and biophysical techniques, GumB, the outer membrane polysaccharide export protein, and GumC, the polysaccharide co-polymerase protein of the xanthan biosynthesis system. Our results suggested that recombinant GumB is a tetrameric protein in solution. On the other hand, we observed that both native and recombinant GumC present oligomeric conformation consistent with dimers and higher-order oligomers. The transmembrane segments of GumC are required for GumC expression and/or stability. These initial results provide a starting point for additional studies that will clarify the roles of GumB and GumC in the xanthan polymerization and export processes and further elucidate their functions and mechanisms of action.
Collapse
Affiliation(s)
- M I Bianco
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-CONICET (C1405BWE) Ciudad de Buenos Aires, Argentina
| | - M Jacobs
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-CONICET (C1405BWE) Ciudad de Buenos Aires, Argentina
| | - S R Salinas
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-CONICET (C1405BWE) Ciudad de Buenos Aires, Argentina
| | - A G Salvay
- Institute of Physics of Liquids and Biological Systems, Universidad Nacional de La Plata, La Plata (B1900BTE) Buenos Aires, Argentina; Department of Science and Technology, Universidad Nacional de Quilmes, Bernal (B1876BXD) Buenos Aires, Argentina
| | - M V Ielmini
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-CONICET (C1405BWE) Ciudad de Buenos Aires, Argentina
| | - L Ielpi
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-CONICET (C1405BWE) Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
118
|
Sun ML, Liu SB, Qiao LP, Chen XL, Pang X, Shi M, Zhang XY, Qin QL, Zhou BC, Zhang YZ, Xie BB. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl Microbiol Biotechnol 2014; 98:7437-45. [PMID: 24872221 DOI: 10.1007/s00253-014-5839-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
Abstract
Many marine microorganisms can secrete exopolysaccharides (EPSs) which have important applications in biotechnology. We have purified a novel EPS from deep-sea bacterium Zunongwangia profunda SM-A87, identified its glycosyl composition and linkage, and optimized its production to 8.9 g/l in previous studies. To reduce the fermentation cost, an economical fermentation medium containing 60.9 % whey, 10 g/l soybean meal, and 2.9 % NaCl was developed. The EPS yield of batch fermentation in this medium reached 12.1 ± 0.3 g/l. Fed-batch fermentation was conducted and led to an EPS yield of 17.2 ± 0.4 g/l, which represents the highest EPS yield ever reported for a marine bacterium. The EPS was extracted and it displayed good rheological properties, moisture-retention ability, and antioxidant activity. Particularly, its moisture-retention ability is superior to that of other marine bacterial EPSs reported to date. SM-A87 EPS also showed high antioxidant activity. These results suggest that SM-A87 EPS has promising potentials in biotechnology.
Collapse
Affiliation(s)
- Mei-Ling Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Characterization and Expression Analysis of the Exopolysaccharide Gene Cluster inLactobacillus fermentumTDS030603. Biosci Biotechnol Biochem 2014; 73:2656-64. [DOI: 10.1271/bbb.90502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
120
|
Amico C, Tornetta T, Scifo C, Blanco AR. Antioxidant effect of 0.2% xanthan gum in ocular surface corneal epithelial cells. Curr Eye Res 2014; 40:72-6. [PMID: 24832134 DOI: 10.3109/02713683.2014.914542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Oxidative damage and inflammation are expected to be involved in age-related functional decline of lachrymal gland, that induces lachrymal dysfunction; this resulting in dry eye disease. Therefore, we investigated the potential antioxidant effect of 0.2% xanthan gum (XNT) in human corneal epithelial cells (HCE), in comparison with other widely used tear substitute polymers, such as 0.2% hydroxyethylcellulose (HEC), 0.2% hyaluronic acid (HA) and 0.5% carboxymethylcellulose (CMC). METHODS Subconfluent (80%) HCE (Human Corneal Epithelial) cultures were treated with the different polysaccharides at the above reported concentrations. The effect of every polymer was investigated with and without 0.5 mM H2O2 In detail, hydrogen peroxide was added 1 hour after the addition of polysaccharides. Twelve hours later, reactive oxygen species (ROS) production (dichlorofluorescein diacetate spectrofluorimetric test) was assessed and their values were normalized versus protein content. Morphological analysis was performed by optical microscopy. RESULTS No morphological differences in HCE compared to control cells (CTRL, cells treated with the buffer used for polymer solubilization) were observed in any of the tested polymers, whereas, in the presence of 0.5 mM H2O2 HCE clearly showed signs of cytotoxicity. Polymers did protect cultures from oxidative stress with XNT>HA = HEC>CMC, as evidenced by microscopic analysis. These results were confirmed from ROS measurements, which showed XNT as the only polysaccharide to restore the levels of ROS comparable to CTRL, in presence of H2O2. CONCLUSIONS 0.2% xanthan gum was able to protect HCE by oxidative stress, bringing the ROS level down to CTRL values. Considering that in dry eye syndrome oxidative stress sustains inflammation and apoptotic cell death, the use of xanthan gum in ophthalmic preparations could be beneficial.
Collapse
Affiliation(s)
- Carla Amico
- Research & Development of S.I.F.I. SpA , Aci S. Antonio (CT) , Italy
| | | | | | | |
Collapse
|
121
|
Shi T, Aryantini NPD, Uchida K, Urashima T, Fukuda K. Enhancement of Exopolysaccharide Production of Lactobacillus fermentum TDS030603 by Modifying Culture Conditions. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2014; 33:85-90. [PMID: 25003022 PMCID: PMC4081186 DOI: 10.12938/bmfh.33.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/12/2013] [Indexed: 11/05/2022]
Abstract
To optimize culture conditions that enhance production of a highly viscous exopolysaccharide of Lactobacillus fermentum TDS030603, a chemically defined medium was examined. The best yield was found to be 199 ± 23 mg/l when 48-hr cultivation was microaerobically performed at 30°C in the chemically defined medium supplemented with 5% glucose and 1% ammonium citrate without pH control. In response to the optimized exopolysaccharide production, the mRNA expression levels of epsB, epsE, and epsG elevated significantly. Our results indicated that the optimal C/N ratio and/or microaerobic condition can alter the expression levels of several exopolysaccharide biosynthesis-related genes promoting the exopolysaccharide production yield.
Collapse
Affiliation(s)
- Tala Shi
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ni Putu Desy Aryantini
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Kenji Uchida
- Research Center, Yotsuba Milk Products Co., Ltd., 465-1 Wako, Kitahiroshima, Hokkaido 061-1264, Japan
| | - Tadasu Urashima
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Kenji Fukuda
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
122
|
Zimaro T, Thomas L, Marondedze C, Sgro GG, Garofalo CG, Ficarra FA, Gehring C, Ottado J, Gottig N. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation. BMC Microbiol 2014; 14:96. [PMID: 24742141 PMCID: PMC4021560 DOI: 10.1186/1471-2180-14-96] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
123
|
ZnO nanoparticles induced exopolysaccharide production by B. subtilis strain JCT1 for arid soil applications. Int J Biol Macromol 2014; 65:362-8. [DOI: 10.1016/j.ijbiomac.2014.01.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/24/2022]
|
124
|
de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014; 67-68:15-34. [PMID: 24270009 DOI: 10.1016/j.addr.2013.11.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.
Collapse
|
125
|
Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris. Arch Biochem Biophys 2014; 546:53-63. [DOI: 10.1016/j.abb.2014.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/23/2014] [Accepted: 01/26/2014] [Indexed: 01/01/2023]
|
126
|
Ferstl M, Drechsler M, Rachel R, Rischer M, Engel J, Backofen M, Goepferich A. The Impact of Polyelectrolyte Structure on the Shape of Nanoassemblies with Cationic Peptides. J Pharm Sci 2013; 102:2599-607. [DOI: 10.1002/jps.23619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/07/2022]
|
127
|
Wichmann F, Vorhölter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölliker R. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. MOLECULAR PLANT PATHOLOGY 2013; 14:576-88. [PMID: 23578314 PMCID: PMC6638798 DOI: 10.1111/mpp.12030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Xanthomonas translucens pv. graminis (Xtg) is a gammaproteobacterium that causes bacterial wilt on a wide range of forage grasses. To gain insight into the host-pathogen interaction and to identify the virulence factors of Xtg, we compared a draft genome sequence of one isolate (Xtg29) with other Xanthomonas spp. with sequenced genomes. The type III secretion system (T3SS) encoding a protein transport system for type III effector (T3E) proteins represents one of the most important virulence factors of Xanthomonas spp. In contrast with other Xanthomonas spp. assigned to clade 1 on the basis of phylogenetic analyses, we identified an hrp (hypersensitive response and pathogenicity) gene cluster encoding T3SS components and a representative set of 35 genes encoding putative T3Es in the genome of Xtg29. The T3SS was shown to be divergent from the hrp gene clusters of other sequenced Xanthomonas spp. Xtg mutants deficient in T3SS regulating and structural genes were constructed to clarify the role of the T3SS in forage grass colonization. Italian ryegrass infection with these mutants led to significantly reduced symptoms (P < 0.05) relative to plants infected with the wild-type strain. This showed that the T3SS is required for symptom evocation. In planta multiplication of the T3SS mutants was not impaired significantly relative to the wild-type, indicating that the T3SS is not required for survival until 14 days post-infection. This study represents the first major step to understanding the bacterial colonization strategies deployed by Xtg and may assist in the identification of resistance (R) genes in forage grasses.
Collapse
Affiliation(s)
- Fabienne Wichmann
- Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, 8046 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Nam JY, Kim HI, Lee CS, Park YJ. A mutation in the Xanthomonas oryzae pv. oryzae wxoD gene affects xanthan production and chemotaxis. Biotechnol Lett 2013; 35:1913-8. [PMID: 23881323 DOI: 10.1007/s10529-013-1285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/21/2013] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae causes bacterial blight in rice (Oryza sativa L.). The effect of a mutation in the wxoD gene, that encodes a putative O-antigen acetylase, on xanthan production as well as bacterial chemotaxis was investigated. The mutation increased xanthan production by 52 %. The mutant strain was non-motile on semi-solid agar swarm plates. In addition, several genes involved in chemotaxis, including the cheW, cheV, cheR, and cheD genes, were down-regulated by a mutation in the wxoD gene. Thus, the mutation in the wxoD gene affects xanthan production as well as bacterial chemotaxis. However, the wxoD gene is not essential for the virulence of X. oryzae.
Collapse
Affiliation(s)
- Jae-Young Nam
- Department of Biomedical Chemistry, Konkuk University, Chung-Ju, 380-701, Republic of Korea,
| | | | | | | |
Collapse
|
129
|
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 2013; 167:111-22. [PMID: 23792782 DOI: 10.1016/j.jbiotec.2013.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) synthesizes huge amounts of the exopolysaccharide xanthan and is a plant pathogen affecting Brassicaceae, among them the model plant Arabidopsis thaliana. Xanthan is produced as a thickening agent at industrial scale by fermentation of Xcc. In an approach based on 2D gel electrophoresis, protein samples from different growth phases were characterized to initialize analysis of the Xanthomonas phosphoproteome. The 2D gels were stained with Pro-Q Diamond phosphoprotein stain to identify putatively phosphorylated proteins. Spots of putatively phosphorylated proteins were excised from the gel and analyzed by mass spectrometry. Three proteins were confirmed to be phosphorylated, the phosphoglucomutase/phosphomannomutase XanA that is important for xanthan and lipopolysaccharide biosynthesis, the phosphoenolpyruvate synthase PspA that is involved in gluconeogenesis, and an anti-sigma factor antagonist RsbR that was so far uncharacterized in xanthomonads. The growth phase in which the samples were collected had an influence on protein phosphorylation in Xcc, particular distinct in case of RsbR, which was phosphorylated during the transition from the late exponential growth phase to the stationary phase.
Collapse
|
130
|
Rojas R, Nishidomi S, Nepomuceno R, Oshiro E, de Cassia Café Ferreira R. Glutamate transport and xanthan gum production in the plant pathogen Xanthomonas axonopodis pv. citri. World J Microbiol Biotechnol 2013; 29:2173-80. [PMID: 23719672 DOI: 10.1007/s11274-013-1383-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
L-glutamate plays a central role in nitrogen metabolism in all living organisms. In the genus Xanthomonas, the nitrogen nutrition is an important factor involved in the xanthan gum production, an important exopolysaccharide with various industrial and biotechnological applications. In this report, we demonstrate that the use of L-glutamate by the phytopathogen Xanthomonas axonopodis pv. citri as a nitrogen source in defined medium significantly increases the production of xanthan gum. This increase is dependent on the L-glutamate concentration. In addition, we have also characterized a glutamate transport system that is dependent on a proton gradient and on ATP and is modulated by amino acids that are structurally related to glutamate. This is the first biochemical characterization of an energy substrate transport system observed in a bacterial phytopathogen with a broad economic and industrial impact due to xanthan gum production.
Collapse
Affiliation(s)
- Robert Rojas
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Avenida Lineu Prestes 1374, Cidade Universitária, São Paulo, 05508-900, Brazil,
| | | | | | | | | |
Collapse
|
131
|
Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA. The role of prophage in plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:429-451. [PMID: 23725471 DOI: 10.1146/annurev-phyto-081211-173010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A diverse set of phage lineages is associated with the bacterial plant-pathogen genomes sequenced to date. Analysis of 37 genomes revealed 5,169 potential genes (approximately 4.3 Mbp) of phage origin, and at least 50% had no function assigned or are nonessential to phage biology. Some phytopathogens have transcriptionally active prophage genes under conditions that mimic plant infection, suggesting an association between plant disease and prophage transcriptional modulation. The role of prophages within genomes for cell biology varies. For pathogens such as Pectobacterium, Pseudomonas, Ralstonia, and Streptomyces, involvement of prophage in disease symptoms has been demonstrated. In Xylella and Xanthomonas, prophage activity is associated with genome rearrangements and strain differentiation. For other pathogens, prophage roles are yet to be established. This review integrates available information in a unique interface ( http://propnav.esalq.usp.br ) that may be assessed to improve research in prophage biology and its association with genome evolution and pathogenicity.
Collapse
Affiliation(s)
- Alessandro M Varani
- Departamento de Genética (LGN), Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba/SP, Brazil
| | | | | | | |
Collapse
|
132
|
Vicente JG, Holub EB. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. MOLECULAR PLANT PATHOLOGY 2013; 14:2-18. [PMID: 23051837 PMCID: PMC6638727 DOI: 10.1111/j.1364-3703.2012.00833.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND Xanthomonas campestris pv. campestris (Xcc) (Pammel) Dowson is a Gram-negative bacterium that causes black rot, the most important disease of vegetable brassica crops worldwide. Intensive molecular investigation of Xcc is gaining momentum and several whole genome sequences are available. TAXONOMY Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadacea; Genus Xanthomonas; Species X. campestris. HOST RANGE AND SYMPTOMS Xcc can cause disease in a large number of species of Brassicaceae (ex-Cruciferae), including economically important vegetable Brassica crops and a number of other cruciferous crops, ornamentals and weeds, including the model plant Arabidopsis thaliana. Black rot is a systemic vascular disease. Typical disease symptoms include V-shaped yellow lesions starting from the leaf margins and blackening of the veins. RACE STRUCTURE, PATHOGENESIS AND EPIDEMIOLOGY Collections of Xcc isolates have been differentiated into physiological races based on the response of several brassica species lines. Black rot is a seed-borne disease. The disease is favoured by warm, humid conditions and can spread rapidly from rain dispersal and irrigation water. DISEASE CONTROL The control of black rot is difficult and relies on the use of pathogen-free planting material and the elimination of other potential inoculum sources (infected crop debris and cruciferous weeds). Major gene resistance is very rare in B. oleracea (brassica C genome). Resistance is more readily available in other species, including potentially useful sources of broad-spectrum resistance in B. rapa and B. carinata (A and BC genomes, respectively) and in the wild relative A. thaliana. GENOME The reference genomes of three isolates have been released. The genome consists of a single chromosome of approximately 5 100 000 bp, with a GC content of approximately 65% and an average predicted number of coding DNA sequences (CDS) of 4308. IMPORTANT GENES IDENTIFIED Three different secretion systems have been identified and studied in Xcc. The gene clusters xps and xcs encode a type II secretion system and xps genes have been linked to pathogenicity. The role of the type IV secretion system in pathogenicity is still uncertain. The hrp gene cluster encodes a type III secretion system that is associated with pathogenicity. An inventory of candidate effector genes has been assembled based on homology with known effectors. A range of other genes have been associated with virulence and pathogenicity, including the rpf, gum and wxc genes involved in the regulation of the synthesis of extracellular degrading enzymes, xanthan gum and lipopolysaccharides. USEFUL WEBSITE http://www.xanthomonas.org/
Collapse
Affiliation(s)
- Joana G Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | | |
Collapse
|
133
|
Kreyenschulte D, Krull R, Margaritis A. Recent Advances in Microbial Biopolymer Production and Purification. Crit Rev Biotechnol 2012. [DOI: 10.3109/07388551.2012.743501] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
134
|
Genome sequence of Xanthomonas campestris JX, an industrially productive strain for Xanthan gum. J Bacteriol 2012; 194:4755-6. [PMID: 22887662 DOI: 10.1128/jb.00965-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas campestris JX, a soil bacterium, is an industrially productive strain for xanthan gum. Here we present a 5.0-Mb assembly of its genome sequence. We have annotated 12 coding sequences (CDSs) responsible for xanthan gum biosynthesis, 346 CDSs encoding carbohydrate metabolism, and 69 CDSs related to virulence, defense, and plant disease.
Collapse
|
135
|
Dionísio M, Grenha A. Locust bean gum: Exploring its potential for biopharmaceutical applications. J Pharm Bioallied Sci 2012; 4:175-85. [PMID: 22923958 PMCID: PMC3425165 DOI: 10.4103/0975-7406.99013] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/21/2012] [Accepted: 04/24/2012] [Indexed: 12/21/2022] Open
Abstract
Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Marita Dionísio
- CBME - Centre for Molecular and Structural Biomedicine/IBB - Institute for Biotechnology and Bioengineering, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | |
Collapse
|
136
|
Zhang X, Abreu JG, Yokota C, MacDonald BT, Singh S, Coburn KLA, Cheong SM, Zhang MM, Ye QZ, Hang HC, Steen H, He X. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 2012; 149:1565-77. [PMID: 22726442 DOI: 10.1016/j.cell.2012.04.039] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/17/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Secreted Wnt morphogens are signaling molecules essential for embryogenesis, pathogenesis, and regeneration and require distinct modifications for secretion, gradient formation, and activity. Whether Wnt proteins can be posttranslationally inactivated during development and homeostasis is unknown. Here we identify, through functional cDNA screening, a transmembrane protein Tiki1 that is expressed specifically in the dorsal Spemann-Mangold Organizer and is required for anterior development during Xenopus embryogenesis. Tiki1 antagonizes Wnt function in embryos and human cells via a TIKI homology domain that is conserved from bacteria to mammals and acts likely as a protease to cleave eight amino-terminal residues of a Wnt protein, resulting in oxidized Wnt oligomers that exhibit normal secretion but minimized receptor-binding capability. Our findings identify a Wnt-specific protease that controls head formation, reveal a mechanism for morphogen inactivation through proteolysis-induced oxidation-oligomerization, and suggest a role of the Wnt amino terminus in evasion of oxidizing inactivation. TIKI proteins may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Xinjun Zhang
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Characterization of bacterial polysaccharide capsules and detection in the presence of deliquescent water by atomic force microscopy. Appl Environ Microbiol 2012; 78:3476-9. [PMID: 22344657 DOI: 10.1128/aem.00207-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We detected polysaccharide capsules from Zunongwangia profunda SM-A87 with atomic force microscopy (AFM). The molecular organization of the capsules at the single-polysaccharide-chain level was reported. Furthermore, we found that with ScanAsyst mode the polysaccharide capsules could be detected even in the presence of deliquescent water covering the capsule.
Collapse
|
138
|
Matsuzawa T, Ohashi T, Nakase M, Yoritsune KI, Takegawa K. Galactose-Specific Recognition System in the Fission Yeast Schizosaccharomyces pombe. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tomohiko Matsuzawa
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takao Ohashi
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Mai Nakase
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Ken-ichi Yoritsune
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
139
|
|
140
|
Zabot GL, Mecca J, Mesomo M, Silva MF, Prá VD, de Oliveira D, Oliveira JV, Castilhos F, Treichel H, Mazutti MA. Hybrid modeling of xanthan gum bioproduction in batch bioreactor. Bioprocess Biosyst Eng 2011; 34:975-86. [DOI: 10.1007/s00449-011-0548-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
141
|
Sun S, Zhang Z, Luo Y, Zhong W, Xiao M, Yi W, Yu L, Fu P. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery. BIORESOURCE TECHNOLOGY 2011; 102:6153-6158. [PMID: 21444201 DOI: 10.1016/j.biortech.2011.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 05/30/2023]
Abstract
Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.
Collapse
Affiliation(s)
- Shanshan Sun
- State Key Laboratory of Heavy Oil Processing, Faculty of Chemical Engineering, China University of Petroleum, Beijing 102249, PR China
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be "mixed-and-matched" to create a designer organism.
Collapse
Affiliation(s)
- Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, MC 2530, Room 308C, 1700 4 Street, (415) 514-9435
| | - Christopher A. Voigt
- Department of Pharmaceutical Chemistry, University of California – San Francisco, MC 2540, Room 408C, 1700 4 Street, San Francisco, CA 94158, (415) 502-7050
| |
Collapse
|
143
|
Seviour RJ, McNeil B, Fazenda ML, Harvey LM. Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 2010; 31:170-85. [DOI: 10.3109/07388551.2010.505909] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
144
|
Allan-Wojtas P, Hildebrand PD, Braun PG, Smith-King HL, Carbyn S, Renderos WE. Low temperature and anhydrous electron microscopy techniques to observe the infection process of the bacterial pathogen Xanthomonas fragariae on strawberry leaves. J Microsc 2010; 239:249-58. [PMID: 20701664 DOI: 10.1111/j.1365-2818.2010.03373.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preserving the structural arrangement of the components of a bacterial infection process within a plant for microscopy study is a technical challenge because of the different requirements of each component for optimal preservation and visualization. We used low temperature scanning electron microscopy (cryo-SEM), anhydrous fixation at ambient temperature and freeze-substitution for transmission electron microscopy to examine fractured and sectioned strawberry leaves infected with Xanthomonas fragariae. Cryo-SEM images of fractured samples showed the bacterial colonization of mesophyll air spaces in the leaf, limited by the vascular bundles and the orientation and packing of bacteria in extracellular polysaccharide. Transmission electron microscopy of samples fixed using osmium tetroxide dissolved in FC-72 solvent at ambient temperature showed that the entire plant/bacteria/extracellular polysaccharide system was preserved in situ, and showed plasmolysis of mesophyll cells and disruption of organelles. In freeze-substitution samples, osmium tetroxide in FC-72 solvent gave superior preservation of the extracellular polysaccharide as compared to a conventional cocktail. In addition, strands believed to be xanthan were preferentially contrasted to show their density and orientation around the bacterial cells. We conclude that anhydrous fixation using osmium tetroxide in FC-72 at ambient temperature gave the best preservation of the entire system, and freeze-substitution using this same fixative enhanced the visualization of strands in the biofilm.
Collapse
Affiliation(s)
- P Allan-Wojtas
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, Kentville, Nova Scotia, Canada B4N 1J5.
| | | | | | | | | | | |
Collapse
|
145
|
Chen CH, Lin NT, Hsiao YM, Yang CY, Tseng YH. Two non-consensus Clp binding sites are involved in upregulation of the gum operon involved in xanthan polysaccharide synthesis in Xanthomonas campestris pv. campestris. Res Microbiol 2010; 161:583-9. [DOI: 10.1016/j.resmic.2010.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/27/2022]
|
146
|
|
147
|
Chen YY, Wu CH, Lin JW, Weng SF, Tseng YH. Mutation of the gene encoding a major outer-membrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity. MICROBIOLOGY-SGM 2010; 156:2842-2854. [PMID: 20522496 DOI: 10.1099/mic.0.039420-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the phytopathogen that causes black rot in crucifers. The xanthan polysaccharide and extracellular enzymes produced by this organism are virulence factors, the expression of which is upregulated by Clp (CRP-like protein) and DSF (diffusible signal factor), which is synthesized by RpfF. It is also known that biofilm formation/dispersal, regulated by the effect of controlled synthesis of DSF on cell-cell signalling, is required for virulence. Furthermore, a deficiency in DSF causes cell aggregation with concomitant production of a gum-like substance that can be dispersed by addition of DSF or digested by exogenous endo-beta-1,4-mannanase expressed by Xcc. In this study, Western blotting of proteins from a mopB mutant (XcMopB) showed Xcc MopB to be the major outer-membrane protein (OMP); Xcc MopB shared over 97 % identity with homologues from other members of Xanthomonas. Similarly to the rpfF mutant, XcMopB formed aggregates with simultaneous production of a gummy substance, but these aggregates could not be dispersed by DSF or endo-beta-1,4-mannanase, indicating that different mechanisms were involved in aggregation. In addition, XcMopB showed surface deformation, altered OMP composition, impaired xanthan production, increased sensitivity to stressful conditions including SDS, elevated temperature and changes in pH, reduced adhesion and motility and defects in pathogenesis. The finding that the major OMP is required for pathogenicity is unprecedented in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Yih-Yuan Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Chieh-Hao Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Juey-Wen Lin
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Shu-Fen Weng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Yi-Hsiung Tseng
- Institute of Microbiology, Immunology and Molecular Medicine, Tzu Chi University, Hualien 907, Taiwan, ROC
| |
Collapse
|
148
|
Takeuchi A, Kamiryou Y, Yamada H, Eto M, Shibata K, Haruna K, Naito S, Yoshikai Y. Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4. Int Immunopharmacol 2009; 9:1562-7. [DOI: 10.1016/j.intimp.2009.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 10/20/2022]
|
149
|
Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2009; 1:116-31. [PMID: 21326937 DOI: 10.4161/bbug.1.2.10484] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.
Collapse
Affiliation(s)
- Jose-Luis Adrio
- NeuronBioPharma, S.A., Parque Tecnologico de Ciencias de la Salud, Edificio BIC, Armilla, Granada, Spain
| | | |
Collapse
|
150
|
Abstract
Plant pathogenic bacteria of the genus Xanthomonas cause a variety of diseases in economically important monocotyledonous and dicotyledonous crop plants worldwide. Successful infection and bacterial multiplication in the host tissue often depend on the virulence factors secreted including adhesins, polysaccharides, LPS and degradative enzymes. One of the key pathogenicity factors is the type III secretion system, which injects effector proteins into the host cell cytosol to manipulate plant cellular processes such as basal defense to the benefit of the pathogen. The coordinated expression of bacterial virulence factors is orchestrated by quorum-sensing pathways, multiple two-component systems and transcriptional regulators such as Clp, Zur, FhrR, HrpX and HpaR. Furthermore, virulence gene expression is post-transcriptionally controlled by the RNA-binding protein RsmA. In this review, we summarize the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | | |
Collapse
|