101
|
Chen S, Li B, Grundke-Iqbal I, Iqbal K. I1PP2A affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. J Biol Chem 2008; 283:10513-21. [PMID: 18245083 DOI: 10.1074/jbc.m709852200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In Alzheimer disease (AD) brain, the level of I (1)(PP2A), a 249-amino acid long endogenous inhibitor of protein phosphatase 2A (PP2A), is increased, the activity of the phosphatase is decreased, and the microtubule-associated protein Tau is abnormally hyperphosphorylated. However, little is known about the detailed regulatory mechanism by which PP2A activity is inhibited by I (1)(PP2A) and the consequent events in mammalian cells. In this study, we found that both I (1)(PP2A) and its N-terminal half I (1)(PP2A(1-120)), but neither I (1)(PP2A(1-163)) nor I (1)(PP2A(164-249)), inhibited PP2A activity in vitro, suggesting an autoinhibition by amino acid residues 121-163 and its neutralization by the C-terminal region. Furthermore, transfection of NIH3T3 cells produced a dose-dependent inhibition of PP2A activity by I (1)(PP2A)(1). I (PP2A) and PP2A were found to colocalize in PC12 cells. I (1)(PP2A) could only interact with the catalytic subunit of PP2A (PP2Ac) and had no interaction with the regulatory subunits of PP2A (PP2A-A or PP2A-B) using a glutathione S-transferase-pulldown assay. The interaction was further confirmed by coimmunoprecipitation of I (1)(PP2A) and PP2Ac from lysates of transiently transfected NIH3T3 cells. The N-terminal isotype specific region of I (1)(PP2A) was required for its association with PP2Ac as well as PP2A inhibition. In addition, the phosphorylation of Tau was significantly increased in PC12/Tau441 cells transiently transfected with full-length I (1)(PP2A) and with PP2Ac-interacting I (1)(PP2A) deletion mutant 1-120 (I (1)(PP2A)DeltaC2). Double immunofluorescence staining showed that I (1)(PP2A) and I (1)(PP2A)DeltaC2 increased Tau phosphorylation and impaired the microtubule network and neurite outgrowth in PC12 cells treated with nerve growth factor.
Collapse
Affiliation(s)
- She Chen
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | | | | | | |
Collapse
|
103
|
Abstract
Alzheimer's disease is an incurable, fatal illness characterised by years of progressive mental decline. It afflicts half a million people in the UK--more than any other dementia. The primary risk factor is old age so this number is rising as we live longer. Current treatment is palliative while more potent drugs have encountered problems during clinical trials. It is known that the disease results from brain deterioration associated with the formation of microscopic lesions. Genetic mutations cause a small minority of cases but our knowledge of the underlying biological mechanisms is limited. The key to improved understanding may be a process vital to brain cells called axonal transport. Disruption of axonal transport seems to be an early event in the progression of the disease and is linked to lesion formation and brain dysfunction so a full investigation of this process should lead to a cure, if not prevention.
Collapse
|
104
|
Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 2008; 12:38-55. [PMID: 18194444 PMCID: PMC3139457 DOI: 10.1111/j.1582-4934.2008.00225.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 12/14/2007] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is multi-factorial and heterogeneous. Independent of the aetiology, this disease is characterized clinically by chronic and progressive dementia and histopathologically by neurofibrillary degeneration of abnormally hyperphosphorylated tau seen as intraneuronal neurofibrillary tangles, neuropil threads and dystrophic neurites, and by neuritic (senile) plaques of beta-amyloid. The neurofibrillary degeneration is apparently required for the clinical expression of AD, and in related tauopathies it leads to dementia in the absence of amyloid plaques. While normal tau promotes assembly and stabilizes microtubules, the abnormally hyperphosphorylated tau sequesters normal tau, MAP1 and MAP2, and disrupts microtubules. The abnormal hyperphosphorylation of tau also promotes its self-assembly into tangles of paired helical and or straight filaments. Tau is phosphorylated by a number of protein kinases. Glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinase 5 (cdk5) are among the kinases most implicated in the abnormal hyperphosphorylation of tau. Among the phosphatases which regulate the phosphorylation of tau, protein phosphatase-2A (PP-2A), the activity of which is down-regulated in AD brain, is by far the major enzyme. The inhibition of abnormal hyperphosphorylation of tau is one of the most promising therapeutic targets for the development of disease modifying drugs. A great advantage of inhibiting neurofibrillary degeneration is that it can be monitored by evaluating the levels of total tau and tau phosphorylated at various known abnormally hyperphosphorylated sites in the cerebrospinal fluid of patients, obtained by lumbar puncture. There are at least five subgroups of AD, each is probably caused by a different etiopathogenic mechanism. The AD subgroup identification of patients can help increase the success of clinical trials and the development of specific and potent disease modifying drugs.
Collapse
Affiliation(s)
- K Iqbal
- Department of Neurochemistry New York State Institute for Basic Research in Developmental Disabilities, Forest Hill Road, Staten Island, New York, NY 10314, USA.
| | | |
Collapse
|
105
|
Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX. Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J Neurosci 2007; 26:3429-36. [PMID: 18052981 PMCID: PMC2262108 DOI: 10.1111/j.1460-9568.2007.05955.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microtubule-associated protein tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles in brains with Alzheimer's disease. The phosphorylation sites of tau are mainly localized in the proline-rich (residues 172-251) and C-terminal tail (residues 368-441) regions, which flank the microtubule-binding repeats. Here, we investigated the effects of tau phosphorylation at these distinct sites/regions on its activity of stimulating microtubule assembly and its self-aggregation. We found that tau phosphorylation at the proline-rich region by dual-specificity tyrosine-phosphorylated and -regulated kinase 1A inhibited its microtubule assembly activity moderately and promoted its self-aggregation slightly. Tau phosphorylation at the C-terminal tail region by glycogen synthase kinase-3beta increased its activity and promoted its self-aggregation markedly. Tau phosphorylation at both regions plus the microtubule-binding region by cAMP-dependent protein kinase diminished its activity (approximately 70% inhibition) and disrupted microtubules. These studies reveal the differential regulation of tau's biological activity and self-aggregation by phosphorylation at various sites/regions.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | | | | | |
Collapse
|
106
|
Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li QX, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2007; 2:e536. [PMID: 17579710 PMCID: PMC1888726 DOI: 10.1371/journal.pone.0000536] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/16/2007] [Indexed: 01/20/2023] Open
Abstract
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.
Collapse
Affiliation(s)
- Simon Melov
- Buck Institute for Age Research, Novato, California, United States of America
- * To whom correspondence should be addressed. E-mail: (SM); (AIB)
| | - Paul A. Adlard
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Karl Morten
- Buck Institute for Age Research, Novato, California, United States of America
| | - Felicity Johnson
- Buck Institute for Age Research, Novato, California, United States of America
| | - Tamara R. Golden
- Buck Institute for Age Research, Novato, California, United States of America
| | - Doug Hinerfeld
- Buck Institute for Age Research, Novato, California, United States of America
| | - Birgit Schilling
- Buck Institute for Age Research, Novato, California, United States of America
| | - Christine Mavros
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L. Masters
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Irene Volitakis
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiao-Xin Li
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Katrina Laughton
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan Hubbard
- School of Public Health, EHS/Biostatistics, University of California Berkeley, Berkeley, California, United States of America
| | - Robert A. Cherny
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Brad Gibson
- Buck Institute for Age Research, Novato, California, United States of America
| | - Ashley I. Bush
- Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (SM); (AIB)
| |
Collapse
|