101
|
Elevated Expression of Moesin in Muscular Dystrophies. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:654-664. [PMID: 28082118 DOI: 10.1016/j.ajpath.2016.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/30/2016] [Accepted: 11/15/2016] [Indexed: 12/27/2022]
Abstract
Fibrosis is the main complication of muscular dystrophies. We identified moesin, a member of the ezrin-radixin-moesin family, in dystrophic muscles of mice representing Duchenne and congenital muscular dystrophies (DMD and CMD, respectively) and dysferlinopathy, but not in the wild type. High levels of moesin were also observed in muscle biopsy specimens from DMD, Ullrich CMD, and merosin-deficient CMD patients, all of which present high levels of fibrosis. The myofibroblasts, responsible for extracellular matrix protein synthesis, and the macrophages infiltrating the dystrophic muscles were the source of moesin. Moesin-positive cells were embedded within the fibrotic areas between the myofibers adjacent to the collagen type I fibers. Radixin was also synthesized by the myofibroblasts, whereas ezrin colocalized with the myofiber membranes. In animal models and patients' muscles, part of the moesin was in its active phosphorylated form. Inhibition of fibrosis by halofuginone, an antifibrotic agent, resulted in a major decrease in moesin levels in the muscles of DMD and CMD mice. In summary, the results of this study may pave the way for exploiting moesin as a novel target for intervention in MDs, and as part of a battery of biomarkers to evaluate treatment success in preclinical studies and clinical trials.
Collapse
|
102
|
Contreras O, Brandan E. Fibro/adipogenic progenitors safeguard themselves: a novel mechanism to reduce fibrosis is discovered. J Cell Commun Signal 2016; 11:77-78. [PMID: 28000149 DOI: 10.1007/s12079-016-0372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 01/22/2023] Open
Abstract
PDGFRα regulates several cellular processes, and exacerbated PDGF signaling cause fibrosis in different tissues. Different research groups have shown that fibro/adipogenic progenitors (FAPs) are responsible for pathological fibrosis found in skeletal muscle disorders. Rando's Lab describes that an intronic polyadenylation of Pdgfra regulates FAPs activity, and therefore fibrosis. This discovery opens a new potential target for treating fibrosis.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, Postal Code 8331150, Santiago, Chile.
| |
Collapse
|
103
|
O’Rourke M, Cullen CL, Auderset L, Pitman KA, Achatz D, Gasperini R, Young KM. Evaluating Tissue-Specific Recombination in a Pdgfrα-CreERT2 Transgenic Mouse Line. PLoS One 2016; 11:e0162858. [PMID: 27626928 PMCID: PMC5023134 DOI: 10.1371/journal.pone.0162858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
In the central nervous system (CNS) platelet derived growth factor receptor alpha (PDGFRα) is expressed exclusively by oligodendrocyte progenitor cells (OPCs), making the Pdgfrα promoter an ideal tool for directing transgene expression in this cell type. Two Pdgfrα-CreERT2 mouse lines have been generated for this purpose which, when crossed with cre-sensitive reporter mice, allow the temporally restricted labelling of OPCs for lineage-tracing studies. These mice have also been used to achieve the deletion of CNS-specific genes from OPCs. However the ability of Pdgfrα-CreERT2 mice to induce cre-mediated recombination in PDGFRα+ cell populations located outside of the CNS has not been examined. Herein we quantify the proportion of PDGFRα+ cells that become YFP-labelled following Tamoxifen administration to adult Pdgfrα-CreERT2::Rosa26-YFP transgenic mice. We report that the vast majority (>90%) of PDGFRα+ OPCs in the CNS, and a significant proportion of PDGFRα+ stromal cells within the bone marrow (~38%) undergo recombination and become YFP-labelled. However, only a small proportion of the PDGFRα+ cell populations found in the sciatic nerve, adrenal gland, pituitary gland, heart, gastrocnemius muscle, kidney, lung, liver or intestine become YFP-labelled. These data suggest that Pdgfrα-CreERT2 transgenic mice can be used to achieve robust recombination in OPCs, while having a minimal effect on most PDGFRα+ cell populations outside of the CNS.
Collapse
Affiliation(s)
- Megan O’Rourke
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Carlie L. Cullen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kimberley A. Pitman
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Daniela Achatz
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Robert Gasperini
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
- School of Medicine, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kaylene M. Young
- Menzies Institute for Medical Research, University of Tasmania, Liverpool Street, Hobart, Tasmania 7000, Australia
- * E-mail:
| |
Collapse
|
104
|
Takeuchi S, Nakano SI, Nakamura K, Ozoe A, Chien P, Yoshihara H, Hakuno F, Matsuwaki T, Saeki Y, Takahashi SI, Yamanouchi K, Nishihara M. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues. Exp Cell Res 2016; 347:367-77. [PMID: 27582000 DOI: 10.1016/j.yexcr.2016.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/11/2016] [Accepted: 08/27/2016] [Indexed: 01/28/2023]
Abstract
Intramuscular adipose tissue and fibrous tissue are observed in some skeletal muscle pathologies such as Duchenne muscular dystrophy and sarcopenia, and affect muscle strength and myogenesis. They originate from common fibrogenic/adipogenic cells in the skeletal muscle. Thus, elucidating the regulatory mechanisms underlying fibrogenic/adipogenic cell differentiation is an important step toward the mediation of these disorders. Previously, we established a highly adipogenic progenitor clone, 2G11, from rat skeletal muscle and showed that basic fibroblast growth factor (bFGF) is pro-adipogenic in these cells. Here, we demonstrated that 2G11 cells give rise to fibroblasts upon transforming growth factor (TGF)-β1 stimulation, indicating that they possess mesenchymal progenitor cells (MPC)-like characteristics. The previously reported MPC marker PDGFRα is expressed in other cell populations. Accordingly, we produced monoclonal antibodies that specifically bind to 2G11 cell surface antigens and identified chondroitin sulfate proteoglycan 4 (CSPG4) as a potential MPC marker. Based on an RNA interference analysis, we found that CSPG4 is involved in both the pro-adipogenic effect of bFGF and in TGF-β-induced alpha smooth muscle actin expression and stress fiber formation. By establishing an additional marker for MPC detection and characterizing its role in fibrogenic/adipogenic differentiation, these results will facilitate the development of effective treatments for skeletal muscle pathologies.
Collapse
Affiliation(s)
- Shiho Takeuchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichi Nakano
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Peggie Chien
- Department of Biology, The University of Rochester, Rochester, NY, USA
| | - Hidehito Yoshihara
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
105
|
TGF-β Small Molecule Inhibitor SB431542 Reduces Rotator Cuff Muscle Fibrosis and Fatty Infiltration By Promoting Fibro/Adipogenic Progenitor Apoptosis. PLoS One 2016; 11:e0155486. [PMID: 27186977 PMCID: PMC4871364 DOI: 10.1371/journal.pone.0155486] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Rotator cuff tears represent a large burden of muscle-tendon injuries in our aging population. While small tears can be repaired surgically with good outcomes, critical size tears are marked by muscle atrophy, fibrosis, and fatty infiltration, which can lead to failed repair, frequent re-injury, and chronic disability. Previous animal studies have indicated that Transforming Growth Factor-β (TGF-β) signaling may play an important role in the development of these muscle pathologies after injury. Here, we demonstrated that inhibition of TGF-β1 signaling with the small molecule inhibitor SB431542 in a mouse model of massive rotator cuff tear results in decreased fibrosis, fatty infiltration, and muscle weight loss. These observed phenotypic changes were accompanied by decreased fibrotic, adipogenic, and atrophy-related gene expression in the injured muscle of mice treated with SB431542. We further demonstrated that treatment with SB431542 reduces the number of fibro/adipogenic progenitor (FAP) cells-an important cellular origin of rotator cuff muscle fibrosis and fatty infiltration, in injured muscle by promoting apoptosis of FAPs. Together, these data indicate that the TGF-β pathway is a critical regulator of the degenerative muscle changes seen after massive rotator cuff tears. TGF-β promotes rotator cuff muscle fibrosis and fatty infiltration by preventing FAP apoptosis. TGF-β regulated FAP apoptosis may serve as an important target pathway in the future development of novel therapeutics to improve muscle outcomes following rotator cuff tear.
Collapse
|