101
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null-- wogs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
102
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 5681=5681-- kbit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
103
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and sleep(5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
104
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 2391=(select 2391 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
105
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null,null,null-- ndoh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
106
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null-- iczc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
107
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 5725=5725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
108
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and (select 6824 from(select count(*),concat(0x7176787171,(select (elt(6824=6824,1))),0x716b716a71,floor(rand(0)*2))x from information_schema.character_sets group by x)a)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
109
|
|
110
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 6076=dbms_pipe.receive_message(chr(90)||chr(99)||chr(70)||chr(110),5)-- jjrn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
111
|
16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null-- ubqm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
112
|
16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null-- tvee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
113
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and (select 7517 from(select count(*),concat(0x716a7a7671,(select (elt(7517=7517,1))),0x7170707a71,floor(rand(0)*2))x from information_schema.character_sets group by x)a)-- xcrn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
114
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 3223=dbms_pipe.receive_message(chr(118)||chr(75)||chr(101)||chr(114),5)-- ganv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
115
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 5725=5725-- yjhy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
116
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null-- phze] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
117
|
Wang Z, Duan Y, Li F, Yang B, Zhang J, Hou S. Dietary supplementation with Lonicera macranthoides leaf powder enhances growth performance and muscle growth of Chinese Tibetan pigs. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
118
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null,null,null,null,null,null,null-- oeqf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
119
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null-- ancy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
120
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null,null,null,null-- keta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
121
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x union all select null-- wrun] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
122
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and sleep(5)-- pfye] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
123
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017. [DOI: 10.1186/s12866-017-1055-x and 3280=cast((chr(113)||chr(106)||chr(122)||chr(118)||chr(113))||(select (case when (3280=3280) then 1 else 0 end))::text||(chr(113)||chr(112)||chr(112)||chr(122)||chr(113)) as numeric)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
124
|
Duan Y, Li F, Wang W, Guo Q, Wen C, Yin Y. Alteration of muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscle of growing pigs fed low-protein diets with varying branched-chain amino acid ratios. Oncotarget 2017; 8:107011-107021. [PMID: 29291007 PMCID: PMC5739792 DOI: 10.18632/oncotarget.22205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
There mainly exists four major myosin heavy chains (MyHC) (i.e., I, IIa, IIx, and IIb) in growing pigs. The current study aimed to explore the effects of low-protein diets supplemented with varying branched-chain amino acids (BCAAs) on muscle fiber characteristics and the AMPK-SIRT1-PGC-1α axis in skeletal muscles. Forty growing pigs (9.85 ± 0.35 kg) were allotted to 5 groups and fed with diets supplemented with varying leucine: isoleucine: valine ratios: 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. The skeletal muscles of different muscle fiber composition, that is, longissimus dorsi muscle (LM, a fast-twitch glycolytic muscle), biceps femoris muscle (BM, a mixed slow- and fast-twitch oxido-glycolytic muscle), and psoas major muscle (PM, a slow-twitch oxidative muscle) were collected and analyzed. Results showed that relative to the control group (1:0.51:0.63, 20% CP), the low-protein diets with the leucine: isoleucine: valine ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 especially augmented the mRNA and protein abundance of MyHC I fibers in BM and lowered the mRNA abundance of MyHC IIb particularly in LM (P < 0.05), with a concurrent increase in the activation of AMPK and the mRNA abundance of SIRT and PGC-1α in BM (P < 0.05). The results reveal that low-protein diets supplemented with optimal BCAA ratio, i.e. 1:0.75:0.75-1:0.25:0.25, induce muscle more oxidative especially in oxido-glycolytic skeletal muscle of growing pigs. These effects are likely associated with the activation of the AMPK-SIRT1-PGC-1α axis.
Collapse
Affiliation(s)
- Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China
| | - Qiuping Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyue Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
125
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017; 17:162. [PMID: 28724349 PMCID: PMC5518119 DOI: 10.1186/s12866-017-1055-x;select dbms_pipe.receive_message(chr(109)||chr(83)||chr(82)||chr(98),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) that deposits among muscle fibers or within muscle cells is an important meat quality trait in pigs. Previous studies observed the effects of dietary nutrients and additives on improving the pork IMF. Gut microbiome plays an important role in host metabolism and energy harvest. Whether gut microbiota exerts effect on IMF remains unknown. RESULTS In this study, we investigated the microbial community structure of 500 samples from porcine cecum and feces using high-throughput 16S rRNA gene sequencing. We found that phylogenetic composition and potential function capacity of microbiome varied between two types of samples. Bacteria wide association study identified 119 OTUs significantly associated with IMF in the two types of samples (FDR < 0.1). Most of the IMF-associated OTUs belong to the bacteria related to polysaccharide degradation and amino acid metabolism (such as Prevotella, Treponema, Bacteroides and Clostridium). Potential function capacities related to metabolisms of carbohydrate, energy and amino acids, cell motility, and membrane transport were significantly associated with IMF content. FishTaco analysis suggested that the shifts of potential function capacities of microbiome associated with IMF might be caused by the IMF-associated microbial taxa. CONCLUSIONS This study firstly evaluated the contribution of gut microbiome to porcine IMF content. The results presented a potential capacity for improving IMF through modulating gut microbiota.
Collapse
Affiliation(s)
- Shaoming Fang
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xingwei Xiong
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Ying Su
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lusheng Huang
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Congying Chen
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
126
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017; 17:162. [PMID: 28724349 PMCID: PMC5518119 DOI: 10.1186/s12866-017-1055-x;select dbms_pipe.receive_message(chr(98)||chr(112)||chr(71)||chr(79),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) that deposits among muscle fibers or within muscle cells is an important meat quality trait in pigs. Previous studies observed the effects of dietary nutrients and additives on improving the pork IMF. Gut microbiome plays an important role in host metabolism and energy harvest. Whether gut microbiota exerts effect on IMF remains unknown. RESULTS In this study, we investigated the microbial community structure of 500 samples from porcine cecum and feces using high-throughput 16S rRNA gene sequencing. We found that phylogenetic composition and potential function capacity of microbiome varied between two types of samples. Bacteria wide association study identified 119 OTUs significantly associated with IMF in the two types of samples (FDR < 0.1). Most of the IMF-associated OTUs belong to the bacteria related to polysaccharide degradation and amino acid metabolism (such as Prevotella, Treponema, Bacteroides and Clostridium). Potential function capacities related to metabolisms of carbohydrate, energy and amino acids, cell motility, and membrane transport were significantly associated with IMF content. FishTaco analysis suggested that the shifts of potential function capacities of microbiome associated with IMF might be caused by the IMF-associated microbial taxa. CONCLUSIONS This study firstly evaluated the contribution of gut microbiome to porcine IMF content. The results presented a potential capacity for improving IMF through modulating gut microbiota.
Collapse
Affiliation(s)
- Shaoming Fang
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xingwei Xiong
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Ying Su
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lusheng Huang
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Congying Chen
- 0000 0004 1808 3238grid.411859.0State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
127
|
Fang S, Xiong X, Su Y, Huang L, Chen C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 2017; 17:162. [PMID: 28724349 PMCID: PMC5518119 DOI: 10.1186/s12866-017-1055-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intramuscular fat (IMF) that deposits among muscle fibers or within muscle cells is an important meat quality trait in pigs. Previous studies observed the effects of dietary nutrients and additives on improving the pork IMF. Gut microbiome plays an important role in host metabolism and energy harvest. Whether gut microbiota exerts effect on IMF remains unknown. RESULTS In this study, we investigated the microbial community structure of 500 samples from porcine cecum and feces using high-throughput 16S rRNA gene sequencing. We found that phylogenetic composition and potential function capacity of microbiome varied between two types of samples. Bacteria wide association study identified 119 OTUs significantly associated with IMF in the two types of samples (FDR < 0.1). Most of the IMF-associated OTUs belong to the bacteria related to polysaccharide degradation and amino acid metabolism (such as Prevotella, Treponema, Bacteroides and Clostridium). Potential function capacities related to metabolisms of carbohydrate, energy and amino acids, cell motility, and membrane transport were significantly associated with IMF content. FishTaco analysis suggested that the shifts of potential function capacities of microbiome associated with IMF might be caused by the IMF-associated microbial taxa. CONCLUSIONS This study firstly evaluated the contribution of gut microbiome to porcine IMF content. The results presented a potential capacity for improving IMF through modulating gut microbiota.
Collapse
Affiliation(s)
- Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xingwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Su
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
128
|
Duan YH, Li FN, Wen CY, Wang WL, Guo QP, Li YH, Yin YL. Branched-chain amino acid ratios in low-protein diets regulate the free amino acid profile and the expression of hepatic fatty acid metabolism-related genes in growing pigs. J Anim Physiol Anim Nutr (Berl) 2017; 102:e43-e51. [DOI: 10.1111/jpn.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Y. H. Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region; Institute of Subtropical Agriculture; Chinese Academy of Sciences; Changsha Hunan China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Changsha Hunan China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Changsha Hunan China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central; Ministry of Agriculture; Changsha Hunan China
- University of Chinese Academy of Sciences; Beijing China
| | - F. N. Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region; Institute of Subtropical Agriculture; Chinese Academy of Sciences; Changsha Hunan China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Changsha Hunan China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Changsha Hunan China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central; Ministry of Agriculture; Changsha Hunan China
- Hunan Co-Innovation Center of Animal Production Safety; CICAPS; Changsha Hunan China. Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients; Changsha Hunan China
| | - C. Y. Wen
- Laboratory of Animal Nutrition and Human Health; School of Biology; Hunan Normal University; Changsha Hunan China
| | - W. L. Wang
- Laboratory of Animal Nutrition and Human Health; School of Biology; Hunan Normal University; Changsha Hunan China
| | - Q. P. Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region; Institute of Subtropical Agriculture; Chinese Academy of Sciences; Changsha Hunan China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Changsha Hunan China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Changsha Hunan China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central; Ministry of Agriculture; Changsha Hunan China
- University of Chinese Academy of Sciences; Beijing China
| | - Y. H. Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region; Institute of Subtropical Agriculture; Chinese Academy of Sciences; Changsha Hunan China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Changsha Hunan China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Changsha Hunan China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central; Ministry of Agriculture; Changsha Hunan China
- University of Chinese Academy of Sciences; Beijing China
| | - Y. L. Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region; Institute of Subtropical Agriculture; Chinese Academy of Sciences; Changsha Hunan China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Changsha Hunan China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Changsha Hunan China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central; Ministry of Agriculture; Changsha Hunan China
- Laboratory of Animal Nutrition and Human Health; School of Biology; Hunan Normal University; Changsha Hunan China. College of Animal Science; South China Agricultural University; Guangzhou China
| |
Collapse
|
129
|
Duan Y, Guo Q, Wen C, Wang W, Li Y, Tan B, Li F, Yin Y. Free Amino Acid Profile and Expression of Genes Implicated in Protein Metabolism in Skeletal Muscle of Growing Pigs Fed Low-Protein Diets Supplemented with Branched-Chain Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9390-9400. [PMID: 27960294 DOI: 10.1021/acs.jafc.6b03966] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Revealing the expression patterns of genes involved in protein metabolism as affected by diets would be useful for further clarifying the importance of the balance among the branched-chain amino acids (BCAAs), which include leucine (Leu), isoleucine (Ile), and valine (Val). Therefore, we used growing pigs to explore the effects of different dietary BCAA ratios on muscle protein metabolism. The Leu:Ile:Val ratio was 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. Results showed that compared with the control group, low-protein diets with the BCAA ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 elevated muscle free amino acid (AA) concentrations and AA transporter expression, significantly activated the mammalian target of rapamycin complex 1 pathway, and decreased serum urea nitrogen content and the mRNA expression of genes related to muscle protein degradation (P < 0.05). In conclusion, these results indicated that maintaining the dietary Leu:Ile:Val ratio within 1:0.25:0.25-1:0.75:0.75 in low-protein diets (17% CP) would facilitate the absorption and utilization of free AA and result in improved protein metabolism and muscle growth.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Qiuping Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Chaoyue Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients , Changsha 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| |
Collapse
|